Smile Detection Using Multi-scale Gaussian Derivatives - Archive ouverte HAL Access content directly
Conference Papers Year : 2013

Smile Detection Using Multi-scale Gaussian Derivatives

(1) , (1)
1

Abstract

In this paper we show that Multi-scale Gaussian Derivatives combined with Support Vector Machines provide an effective approach to facial expression analysis.The approach was tested on the GENKI and Cohn-Kanade dataset for detecting smiles. Our approach outperformed the current benchmark approach of using Gabor Energy Filters with Support Vector Machines.
Fichier principal
Vignette du fichier
ELSINA-25.pdf (1017.13 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-00807362 , version 1 (03-04-2013)

Identifiers

  • HAL Id : hal-00807362 , version 1

Cite

Varun Jain, James L. Crowley. Smile Detection Using Multi-scale Gaussian Derivatives. 12th WSEAS International Conference on Signal Processing, Robotics and Automation, Feb 2013, Cambridge, United Kingdom. ⟨hal-00807362⟩
580 View
421 Download

Share

Gmail Facebook Twitter LinkedIn More