
Symbolic Path-Oriented Test Data Generation for Floating-Point Programs

Roberto Bagnara∗, Matthieu Carlier†, Roberta Gori‡, Arnaud Gotlieb§

∗BUGSENG srl and Department of Mathematics and Computer Science, University of Parma, Italy

Email: roberto.bagnara@bugseng.com
†INRIA Rennes Bretagne Atlantique, France

‡Department of Computer Science, University of Pisa, Italy

Email: gori@di.unipi.it
§Certus Software V&V Center, SIMULA Research Laboratory, Norway

Email: arnaud@simula.no

Abstract—Verifying critical numerical software involves the
generation of test data for floating-point intensive programs. As
the symbolic execution of floating-point computations presents
significant difficulties, existing approaches usually resort to
random or search-based test data generation. However, without
symbolic reasoning, it is almost impossible to generate test
inputs that execute many paths with floating-point compu-
tations. Moreover, constraint solvers over the reals or the
rationals do not handle the rounding errors. In this paper,
we present a new version of FPSE, a symbolic evaluator for
C program paths, that specifically addresses this problem. The
tool solves path conditions containing floating-point computa-
tions by using correct and precise projection functions. This
version of the tool exploits an essential filtering property based
on the representation of floating-point numbers that makes
it suitable to generate path-oriented test inputs for complex
paths characterized by floating-point intensive computations.
The paper reviews the key implementation choices in FPSE
and the labeling search heuristics we selected to maximize the
benefits of enhanced filtering. Our experimental results show
that FPSE can generate correct test inputs for selected paths
containing several hundreds of iterations and thousands of
executable floating-point statements on a standard machine:
this is currently outside the scope of any other symbolic-
execution test data generator tool.

I. INTRODUCTION

During the last decade, the use of floating-point com-

putations in the design of critical systems has become

increasingly acceptable. Even in the civil and military avion-

ics domain, which are among the most critical domains

for software, floating-point numbers are now seen as a

sufficiently-safe, faster and cheaper alternative to fully-

controlled, implementation-based fixed-point arithmetic.

Acceptance of floating-point computations in the design of

critical systems took a long time. In fact, rounding errors are

difficult to predict and control, and can lead to catastrophic

failures. For instance, during the first Persian Gulf War,

the failure of a Patriot missile battery in Dhahran was

traced to an accumulating rounding error in the continuous

execution of tracking and guidance software, causing the

death of several civilians [1]. A careful analysis of this

failure revealed that, even though the rounding error obtained

at each step of the floating-point computation was very

small, the propagation during a long loop-iterating path

could lead to dramatic imprecision.

Adoption of floating-point computations in critical sys-

tems involves the use of thorough unit testing procedures

that are able to exercise complex chains of floating-point

operations. In particular, a popular practice among software

engineers in charge of the testing of floating-point-intensive

computations consists in executing carefully chosen loop-

iterating paths in programs. They usually pay more attention

to the paths that are most likely to expose the system to

unstable numerical computations. For critical systems, a

complementary requirement is to demonstrate the infeasi-

bility of certain paths, in order to convince a third-party

certification authority that certain unsafe behaviors of the

systems cannot be reached. As a consequence, software

engineers face two difficult problems:

1) How to accurately predict the expected output of a

given floating-point computation?1

2) How to find a test input that is able to exercise a given

path, the execution of which depends on the results of

floating-point computations, or to guarantee that such

a path is infeasible?

The first problem has been well addressed in the literature

[3] through several techniques, either based on multiple

related program executions [4], [5], or on statically-extracted

properties of programs [6], or on perturbation techniques to

evaluate the stability of a numerical program [7]. In contrast,

the second problem received only little attention. Beyond

the seminal work of W. Miller and D. L. Spooner [8],

who proposed to guide the search of floating-point inputs to

execute a selected path, few approaches try to exactly reason

about floating-point computations. The work in [8] paved the

way to the development of search-based test data genera-

tion techniques, which consist in searching test inputs by

minimizing a cost function, evaluating the distance between

the currently executed path and a targeted selected path [9]–

[12]. Although these techniques enable quick and efficient

1This is the the well-known oracle problem [2].

coverage of testing criteria such as “all decisions,” they are

unfortunately sensible to the rounding-errors incurred in the

computation of the branch distance [12]. Moreover, search-

based test data generation cannot be used to study path

feasibility, i.e., to decide whether a possible execution path

involving floating-point computations is feasible or not in

the program. In addition, these techniques can be stuck in

local minima without being able to provide a meaningful

result [12]. An approach to tackle these problems combines

program execution and symbolic reasoning [13]. This kind

of reasoning requires solving constraints over floating-point

numbers in order to generate test inputs that exercise a

selected behavior of the program under test. However, solv-

ing floating-point constraints is hard and requires dedicated

filtering algorithms [14], [15]. According to our knowledge,

this approach is currently implemented in four solvers only:

ECLAIR2, FPCS [16], FPSE3 [17], and Gatel, a test data

generator for Lustre programs [16], [18].

A promising approach to improve the filtering capabili-

ties of constraints over floating-point variables consists in

using some peculiar numerical properties of floating-point

numbers. For linear constraints, this led to a relaxation

technique where floating-point numbers and constraints are

converted into constraints over the reals by using linear

programming approaches [19]. For interval-based consis-

tency approaches, B. Marre and C. Michel identified a

property of the representation of floating-point numbers and

proposed to exploit it in filtering algorithms for addition and

subtraction constraints [20]. In [21], a reformulation of the

Marre-Michel property in terms of filtering by maximum

ULP (Units in the Last Place) was proposed in order to

ease its implementation in constraint solvers such as FPSE.

In addition, the authors sketched a generalization of the

property to multiplication and division constraints. This

paper is concerned with this challenge. More precisely, it

addresses the question of whether the Marre-Michel property

can be useful for the automatic solution of realistic test input

generation problems. The contributions of the paper are:

1) The filtering algorithm proposed in [20] for addition

and subtraction is reformulated and corrected.

2) The plan anticipated in [21] is brought to completion:

a uniform framework is thoroughly defined that gen-

eralizes the property identified by Marre and Michel

to the case of multiplication and division.

3) Our implementation of filtering by maximum ULP in

FPSE is presented and critical design choices (e.g., to

avoid slow convergence phenomena) are explained.

4) Experimental results are presented on constraint sys-

tems that have been extracted from programs engag-

ing into intensive floating-point computations. These

results show that the Marre-Michel property and its

2http://bugseng.com/products/eclair
3http://www.irisa.fr/celtique/carlier/fpse.html

generalization defined in this paper speed up the test

inputs generation process.

The rest of the paper is organized as follows. Next section

presents the IEEE 754 standard of binary floating-point

numbers and introduces the notations used throughout the

paper. Section III recalls the basic principles of interval-

based consistency techniques over floating-point variables

and constraints. Section IV presents our generalization of

the Marre-Michel property, while Section V details our

implementation of the property in FPSE. Section VI presents

our experimental results and analysis. Section VII discusses

related work and Section VIII concludes the paper.

II. PRELIMINARIES

A. IEEE 754

This section recalls the arithmetic model specified by the

IEEE 754 standard for binary floating-point arithmetic [22].

IEEE 754 binary floating-point formats are uniquely iden-

tified by: p ∈ N, the number of significant digits (precision);

emax ∈ N, the maximum exponent; emin ∈ N, the minimum

exponent (usually 1 − emax). The single precision format

has p = 24 and emax = 127, the double precision format

has p = 53 and emax = 1023 (IEEE 754 also defines

extended precision formats). An IEEE 754 floating-point

number z has the form (−1)sa.m × 2e where s is the

sign bit, a is the hidden bit, m is the significand and the

exponent e is also denoted by ez . Each format defines

several classes of numbers: normal numbers, subnormal

numbers, signed zeroes, infinities and NaNs (Not a Num-

ber). The smallest positive normal floating-point number

is fnor
min = 1.0 · · · 0 × 2emin = 2emin and the largest is

fmax = 1.1 · · · 1×2emax = 2emax(2−21−p); normal numbers

have the hidden bit a = 1. The non-zero floating-point

numbers whose absolute value is less than 2emin are called

subnormals: they always have fewer than p significant digits

as their hidden bit is a = 0. Every finite floating-point

number is an integral multiple of the smallest subnormal

magnitude fmin = 0.0 · · · 01 × 2emin = 2emin+1−p. There

are two infinities, denoted by +∞ and −∞, and two signed

zeros, denoted by +0 and −0: they allow some algebraic

properties to be maintained [23]. NaNs are used to represent

the results of invalid computations such as a division or

a subtraction of two infinities. They allow the program

execution to continue without being halted by an exception.

IEEE 754 defines five rounding directions: toward neg-

ative infinity (down), toward positive infinity (up), toward

zero (chop) and toward the nearest representable value

(near); the latter comes into two flavors: tail-to-even or

tail-to-away in which values with even mantissa or values

away from zero are preferred, respectively. This paper is

only concerned with round-to-nearest, tail-to-even, which is,

by far, the most widely used. The round-to-nearest, tail-to-

even value of a real number x will be denoted by ◦(x).

http://bugseng.com/products/eclair
http://www.irisa.fr/celtique/carlier/fpse.html

All rounding modes are monotonic; in particular, for each

x, y ∈ R, x ≤ y implies ◦(x) ≤ ◦(y).

The most important requirement of IEEE 754 arithmetic

is the accuracy of floating-point computations: add, subtract,

multiply, divide, square root, remainder, conversion and

comparison operations must deliver to their destination the

exact result rounded as per the rounding mode in effect and

the format of the destination. It is said that these operations

are “exactly rounded.”

The accuracy requirement of IEEE 754 can still surprise

the average programmer: for example the single precision,

round-to-nearest addition of 999999995904 and 10000 (both

numbers can be exactly represented) gives 999999995904,

i.e., the second operand is absorbed. The maximum error

committed by representing a real number with a floating-

point number under some rounding mode can be expressed

in terms of the function ulp: R → R [24]. Its value on 1.0
is about 10−7 for the single precision format.

The chop and near rounding modes are symmetric, i.e.,

the value after rounding does not depend on the sign: for

each x ∈ R, ◦(x) = −◦(−x).

B. Notation

R denotes the set of real numbers while Fp,emax
denotes

an idealized set of binary floating-point numbers, defined

from a given IEEE 754 format: this excludes subnormals and

NaNs, but includes −∞,+∞ and zeroes. This restriction al-

lows to considerably simplify the presentation (e.g., avoiding

all technical details concerning subnormals); yet, everything

can be generalized to any IEEE 754 binary floating-point

format [25]. The exposition is also much simplified by

allowing emax to be ∞, i.e., by considering an idealized

set of floats where the exponent is unbounded. F+
p,emax

denotes the “positive” subset of Fp,emax
, i.e., with s = 0.

When the format is clear from the context, a real decimal

constant (such as 1012) denotes the corresponding round-to-

nearest, tail-to-even floating-point value (i.e., 999999995904
for 1012). Henceforth, x+ (resp., x−) denotes the smallest

(resp., greatest) floating-point number strictly greater (resp.,

smaller) than x w.r.t. the considered IEEE 754 format. Of

course, we have fmax
+ = +∞ and (−fmax)

− = −∞.

Binary arithmetic operations over the floats will be de-

noted by ⊕, ⊖, ⊗ and ⊘, corresponding to +, −, · and /
over the reals, respectively. According to IEEE 754, they are

defined with the rounding operator ◦ by x⊕ y = ◦(x+ y),
x⊖ y = ◦(x− y), x⊗ y = ◦(x · y) and x⊘ y = ◦(x/y). As

IEEE 754 floating-point numbers are closed by negation, we

will denote the negation of x ∈ Fp,emax
simply by −x. The

symbol ⊙ denotes any of ⊕, ⊖, ⊗ or ⊘. A floating-point

variable x is associated to an interval of possible floating-

point values; we will write x ∈ [x,x], where x and x denote

the smallest and greatest value of the the interval, x ≤ x

and either x 6= +0 or x 6= −0.

III. BACKGROUND ON CONSTRAINT SOLVING OVER

FLOATING-POINT VARIABLES

A. Interval-based Consistency on Arithmetic Constraints

Program analysis usually starts with the generation

of an intermediate code representation in a form called

three-address code (TAC). In this form, complex arith-

metic expressions and assignments are decomposed into

sequences of assignment instructions of the form result :=
operand1 operator operand2. A further refinement con-

sists in the computation of the static single assignment form

(SSA) whereby, labeling each assigned variable with a fresh

name, assignments can be considered as if they were equality

constraints. For example, the TAC form of the floating-point

assignment z := z∗z+z is t := z∗z; z := t+z, which in

SSA form becomes t1 := z1 ∗ z1; z2 := t1 + z1, which, in

turn, can be regarded as the conjunction of the constraints

t1 = z1 ⊗ z1 and z2 = t1 ⊕ z1.

In an interval-based consistency approach to constraint

solving over the floats, constraints are used to iteratively

refine the intervals associated to each variable. A projection

is a function that, given a constraint and the intervals

associated to two of the variables occurring in it, computes a

possibly refined interval for the third variable (the projection

is said to be over the third variable). Taking z2 = t1⊕ z1 as

an example, the projection over z2 is called direct projection

(it goes in the same sense of the TAC assignment it comes

from), while the projections over t1 and z1 are called indirect

projections. Non-optimal projections for the four arithmetic

operations can be found in [15], [17].4

B. The Marre-Michel Property

In [20], Marre and Michel published an idea to improve

the filtering of the addition/subtraction projectors. This is

based on a property of the distribution of floating-point

numbers among the reals: the greater a float is, the greater

the distance between it and its immediate successor is.

More precisely, for a given float x with exponent ex, if

∆ = x+ − x, then for y of exponent ex + 1 we have

y+ − y = 2∆.

Proposition 3.1: [20, Proposition 1] Let z ∈ Fp,∞ be

such that 0 < z < +∞; let also

z = 1.b2 · · · bi

k
︷ ︸︸ ︷

0 · · · 0× 2ez , with bi = 1;

α = 1.1 · · · 1× 2ez+k, with k = p− i;

β = α⊕ z.

Then, for each x, y ∈ Fp,∞, z = x ⊖ y implies x ≤ β and

y ≤ α. Moreover, β ⊖ α = β − α = z.

4E.g., for the constraint z = x⊕ y we have z = x⊕ y and z = x⊕ y

(direct), x = mid(z,z+) ⊖ y and x = mid(z,z−) ⊖ y (1st indirect),

y = mid(z,z+) ⊖ x and y = mid(z,z−) ⊖ x (2nd indirect). Here,
for finite x, y ∈ Fp,emax

, we denote by mid(x, y) the number that is
exactly halfway between x and y; note that either mid(x, y) ∈ Fp,emax

or mid(x, y) ∈ Fp+1,emax
.

z
α

α+ α++

β

β+

z

∆ 2∆ 2∆0

Figure 1. An illustration of the Marre-Michel property

This property, which can be generalized to subnormals,

can intuitively be explained on Figure 1 as follows. Let

z ∈ Fp,∞ be a strictly positive constant such that z =
x⊖ y, where x, y ∈ Fp,∞ are unknown. The Marre-Michel

property says that y cannot be greater than α. In fact, α
is carefully positioned so that α++ − α+ = 2(α+ − α),
eα + 1 = eβ and z = β − α; if we take y = α+ we need

x > β if we want z = x− y; however, the smallest element

of Fp,∞ that is greater than β, β+, is 2∆ away from β, i.e.,

too much. Going further with y does not help: if we take

y ≥ α+, then y − α is an odd multiple of ∆ (one ∆ step

from α to α+, all the subsequent steps being even multiples

of ∆), whereas for each x ≥ β, x−β is an even multiple of

∆. Hence, if y > α,
∣
∣z−(x−y)

∣
∣ ≥ ∆ = 2ez+1−i. However,

since k 6= p−1, z+− z = z− z− = 2ez+1−p ≤ ∆. The last

inequality, which holds because p ≥ i, implies z 6= x ⊖ y.

A similar reasoning allows to see that x cannot be greater

than β independently from the value of y.

In order to improve the filtering of the addition/subtraction

projectors, in [20], Marre and Michel presented an algorithm

to maximize the values of α and β over an interval. That

algorithm and the main ideas behind the work presented in

[20] will be revisited and discussed in detail in Section IV-C.

IV. FILTERING BY MAXIMUM ULP

This section reformulates the Marre-Michel property so as

to generalize it to multiplication and division. The filtering

algorithms that result from this generalization are collec-

tively called filtering by maximum ULP.

A. Upper Bound

For each floating-point operation ⊙ ∈ {⊕,⊖,⊗,⊘}, we

will define the sets F⊙ ⊆ Fp,emax
and F⊙ ⊆ F+

p,∞. Then

we will define a function δ⊙ : F⊙ → F⊙ satisfying the

following properties, for each z ∈ F⊙ \ {−0,+0,−∞}:

∃y ∈ F⊙ . δ⊙(z)⊙ y = z; (1)

∀z′ ∈ F⊙ : z′ > δ⊙(z) =⇒ ∄y ∈ F⊙ . z′ ⊙ y = z. (2)

In words, δ⊙(z) is the greatest float in F⊙ that can be the

left operand of ⊙ to obtain z. Remark that we may have

F⊙ * Fp,emax
: properties (1) and (2) refer to an idealized

set of floating-point numbers with unbounded exponents.

Since we are interested in finding the upper bound of

δ⊙(z) for z ∈ [z,z], we need the following

Proposition 4.1: Let w, v1, . . . , vn ∈ F⊙\{−0,+0,−∞}
be such that, for each i = 1, . . . , n, δ⊙(w) ≥ δ⊙(vi). Then,

for each i = 1, . . . , n and w′ ∈ F⊙ such that w′ > δ⊙(w),
there does not exist a float y ∈ F⊙ such that w′ ⊙ y = vi.

Let z = x⊙y be a constraint where −0,+0,−∞ /∈ [z,z]
and let w ∈ [z,z] be such that δ⊙(w) ≥ δ⊙(v) for each

v ∈ [z,z]: then no element of x that is greater than δ⊙(w)
can participate to a solution of the constraint.

Dually, in order to refine the upper bound of y subject to

the constraint z = x⊙ y, it is possible to define a function

δ
′

⊙ that satisfies properties similar to (1) and (2). In this

paper we will focus on bounds for x only. Note, though,

that when ⊙ is commutative (i.e., ⊕ or ⊗), δ⊙ = δ
′

⊙.

B. Lower bound

For computing the lower bound, we will introduce func-

tions δ⊙ : F⊙ → F⊙ for each z ∈ F⊙ \ {−0,+0,+∞}:

∃y ∈ F⊙ . δ⊙(z)⊙ y = z; (3)

∀z′ ∈ F⊙ : z′ < δ⊙(z) =⇒ ∄y ∈ F⊙ . z′ ⊙ y = z. (4)

These properties entail a result similar to Proposition 4.1:

given the constraint z = x⊙ y where −0,+0,+∞ /∈ [z,z]
and w ∈ [z,z] such that δ⊙(w) ≤ δ⊙(v) for each v ∈ [z,z],
the float δ⊙(w) is a possibly refined lower bound for x.

C. Filtering by Maximum ULP on Addition/Subtraction

In this section we introduce the functions δ⊕ and δ⊕.

The functions δ⊖ and δ⊖ can be deduced by symmetry,

as explained in Section III-B and [20]. Using the Michel

and Marre property (Proposition 3.1) we formally define the

function δ⊕ as follows.

Definition 4.1: Let us define F⊕ = Fp,emax
, F⊕ = F+

p,∞,

and let z ∈ F⊕ be such that |z| = 1.b2 · · · bi0 · · · 0 × 2ez ,

with bi = 1. Similarly to Proposition 3.1, let k = p − i,
α = 1.1 · · · 1× 2ez+k and β = α⊕ z. Then δ⊕ : F⊕ → F⊕

is defined, for each z ∈ F⊕, as follows:

δ⊕(z) =







+∞, if z = −∞ or z = +∞;

α, if −∞ < z < 0;

+0, if z = −0 or z = +0;

β, if 0 < z < +∞.

Theorem 4.1: δ⊕ is well-defined and satisfies (1) and (2).

The function δ⊕ : F⊕ → F⊕ is defined dually: for each

z ∈ F⊕ \ {−0,+0,+∞}, δ⊕(z) = − δ⊕(−z). It is easy

to see that properties (1) and (2) of δ⊕ entail properties (3)

and (4) of δ⊕.

We now need algorithms to maximize δ⊕ and minimize

δ⊕ over an interval of floating-point values. Since the two

problems are dual to each other, we will focus on the

maximization of δ⊕. As δ⊕ is not monotonic, a nontrivial

analysis of its range over an interval is required. When the

interval contains only finite, nonzero and positive (resp.,

negative) values, the range of δ⊕ has a simple shape. We

are thus brought to consider an interval [z,z] such that

z /∈ {−∞,−0,+0} and z /∈ {−0,+0,+∞} have the same

sign. We will now revisit and correct the algorithm proposed

by Michel and Marre in [20] to maximize δ⊕ over [z,z].

The idea presented in [20] is the following. When dealing

with an interval [z,z] with z > 0, α (and thus β and our

δ⊕) grows with the exponent and the number of successive

0 bits to the right of the mantissa, i.e., k in Proposition 3.1

and in Definition 4.1. Thus, maximizing these two criteria

allows to maximize α over the interval.

Definition 4.2: Let z be a variable over Fp,emax
such

that z /∈ {−∞,−0,+0} and z /∈ {−0,+0,+∞} have the

same sign and z < z. Then µ⊕(z) ∈ Fp,emax
is given by

1.0 · · · 0 × 2ez , if ez 6= ez; otherwise we define µ⊕(z) =
1.b2 · · · bia0 · · · × 2ez , where, for some bi+1 6= b′i+1,

|z| = 1.b2 · · · bibi+1 · · · × 2ez ;

|z| = 1.b2 · · · bib
′

i+1 · · · × 2ez ;

a =

{

0, if 1.b2 · · · bi0 · · · 0× 2ez = |z|;

1, otherwise.

Theorem 4.2: Let z be as in Definition 4.2. Then, for

each z ∈ [z,z], δ⊕(z) ≤ δ⊕
(
µ⊕(z)

)
.

As we have already pointed out, the algorithm of Defini-

tion 4.2 is very similar to the algorithm presented in [20].

There is an importance difference, though: in the case when

z = 1.b2 · · · bibi+10 · · · 0× 2ez , z = 1.b2 · · · bib
′
i+1 · · ·× 2ez

and bj = 1, for some j ≤ i. In this case, the algorithm

of [20] returns 1.b2 · · · bi10 · · · 0× 2ez . Note, however, that

the value that maximizes α is z, which is different from

1.b2 · · · bi10 · · · 0× 2ez .

Definition 4.2 can be extended to intervals that include

subnormals [25], but not to intervals containing zeroes. So,

when z’s interval contains zeroes, only the classical filtering

is applied. For efficiency reasons, filtering by maximum ULP

is only applied when δ⊕
(
µ⊕(z)

)
≤ fmax so as to avoid the

use of wider floating-point formats.

Example 4.1: Consider z = x⊕y with z ∈ [1.0, 2.0], x ∈
[−1.0×250, 1.0×250] and y ∈ [−1.0×230, 1.0×230]. With

classical filtering we obtain x,y ∈ [−1.0 × 230, 1.0 × 230],
whereas with filtering by maximum ULP we obtain the much

tighter interval x,y ∈ [−1.1 · · · 1× 224, 1.0× 225].

This example shows that filtering by maximum ULP

can be stronger than classical interval-consistency based

filtering. However, there are trivial examples that show the

opposite phenomenon so that classical and maximum ULP

are orthogonal: both should be applied, through interval

intersection, in order to obtain optimal results.

D. Filtering by Maximum ULP on Multiplication

Let z ∈ Fp,emax
be a strictly positive constant such that

z = x ⊗ y, where x, y ∈ Fp,emax
are unknown. As for

Property 3.1, there exists a greatest float xm ∈ Fp,emax
such

that there exists y ∈ Fp,emax
satisfying z = xm ⊗ y. More

precisely, xm is the float such that z = xm ⊗ fnor
min. Such a

float always exists because multiplication by fnor
min = 2emin

is equivalent to an exponent shifting. Now let us consider

x′ ∈ Fp,emax
such that x′ > xm. By monotonicity of ⊗,

z < x′⊗fnor
min and there is no other float y 6= fnor

min such that

z = x′ ⊗ y. In fact, by monotonicity, such float y should

be smaller than fnor
min. On the other hand, y must be greater

than +0 for otherwise x′ ⊗ y would not be strictly positive.

However, for no y ∈ Fp,emax
we have +0 < y < fnor

min.

Therefore, the value xm such that z = xm ⊗ fnor
min is the

greatest value for x that can satisfy z = xm⊗y for some y.

Definition 4.3: F⊗ =
{
z ∈ Fp,emax

∣
∣ fnor

min · |z| ≤ fmax

}

and F⊗ = F+
p,emax

are the domain and codomain of

δ⊗ : F⊗ → F⊗, defined for each z ∈ F⊗ as follows:

δ⊗(z) = |z| · 2−emin

Theorem 4.3: Function δ⊗ is well-defined and satis-

fies (1) and (2).

The function δ⊗ is simply defined as δ⊗ = − δ⊗(z).
Moreover, Definition 4.3 and Theorem 4.3 can be extended

to intervals that include subnormals replacing all occurrences

of fnor
min by fmin [25].

The value M ∈ [z,z] that maximizes δ⊗ is the one with

the greatest absolute value, i.e., M = max
{
|z|, |z|}. Since

δ⊗ is defined as − δ⊗(z), the value that minimizes δ⊗ is

again M . Hence, if [z,z] does not contain zeroes, δ⊗(M)
(resp., δ⊗(M)) is an upper bound (resp., a lower bound) of

x w.r.t. the constraint z = x⊗y. The restriction to intervals

not containing zeroes is justified by the fact that, e.g., if

z = 0 then z = x ⊗ y holds with x = fmax and y = 0,

hence no useful filtering can be applied to x.

As the product is commutative, the function of Defini-

tion 4.3 can be used for filtering y as well. Note that this

filtering can only be applied when max
{
|z|, |z|

}
∈ F⊗.

Example 4.2: Consider the IEEE 754 single-precision

constraint z = x ⊗ y with z ∈ [1.0 × 2−50, 1.0 × 2−30]
and x,y ∈ [−∞,+∞]. We have

δ⊗(1.0× 2−30) = 1.0× 2−30 · 2−(−126) = 1.0× 296,

δ⊗(1.0× 2−30) = −1.0× 2−30 · 2−(−126) = −1.0× 296,

so, while classical filtering does not prune the intervals for x

and y, filtering by maximum ULP yields the refined intervals

x,y ∈ [−1.0 · · · 0× 296, 1.0 · · · 0× 296].

E. Filtering by Maximum ULP on Division

On the Fp,emax
domain, a role similar to the one of fnor

min

in the definition of filtering by ULP max on multiplication

is played by fmax in the definition of filtering by ULP max

on division.

Definition 4.4: Let

F⊘ =
{
z ∈ Fp,emax

∣
∣ |z| ⊗ fmax ≤ fmax

}

and F⊘ = F+
p,emax

. Then δ⊘ : F⊘ → F⊘ is defined, for

each z ∈ F⊘, by δ⊘(z) = |z| ⊗ fmax.

Theorem 4.4: Function δ⊘ is well-defined and satis-

fies (1) and (2).

A similar result can be obtained for intervals that include

subnormals by a suitable modification of Definition 4.4 [25].

The function δ⊘ is simply defined, for each z ∈ F⊘, by

δ⊘ = − δ⊘(z).

The value M ∈ [z,z] that maximizes δ⊘ is the one that

has the greatest absolute value, i.e., M = max
{
|z|, |z|

}
.

Since δ⊘ is defined as − δ⊘(z), M is also the value that

minimizes δ⊘. Hence, if [z,z] does not contain zeroes,

δ⊘(M) (resp., δ⊘(M)) is an upper bound (resp. a lower

bound) of x w.r.t. the constraint z = x ⊘ y. Once again,

the restriction to intervals not containing zeroes is justified

by the fact that, e.g., if z = 0 then z = x ⊘ y holds with

x = fmax and y = ∞, hence, also in this case, no useful

filtering can be applied to x. Note that this filtering can only

be applied when max
{
|z|, |z|

}
∈ F⊘.

Example 4.3: Consider the IEEE 754 single-precision

constraint z = x⊘y with z ∈ [−1.0×2−110,−1.0×2−121]
and x,y ∈ [−∞,+∞]. We have

δ⊘(1.0× 2−110) = 1.0× 2−110 · 1.1 · · · 1× 2127

= 1.1 · · · 1× 217,

δ⊘(1.0× 2−110) = −1.0× 2−110 · 1.1 · · · 1× 2127

= −1.1 · · · 1× 217.

Again, filtering by maximum ULP improves upon classical

filtering with x ∈ [−1.1 . . . 1× 217, 1.1 . . . 1× 217].

F. Synthesis

Table I provides a compact presentation of filtering by

maximum ULP under the assumption emin = 1 − emax,

where the required functions can be summarized as follows:

δ⊕(z) =

{

β, if 0 < z < +∞,

α, if −∞ < z < 0;
δ⊕(z) = − δ⊕(−z);

δ⊗(z) = |z| · 2−emin ; δ⊗(z) = − δ⊗(z);

δ⊘(z) = |z| ⊗ fmax; δ⊘(z) = − δ⊘(z).

V. IMPLEMENTATION IN FPSE

A. FPSE

FPSE [17] is a constraint solver based on interval consis-

tency filtering dedicated to the analysis of IEEE 754 floating-

point computations coming from C programs. The tool takes

a path condition as input, which is a quantifier-free conjunc-

tion of constraints extracted from a path of a C function.

Constraints hold over the input variables of the program,

including global variables, as well as temporary variables

introduced by classical compiler code transformations. For a

given path condition, FPSE can either return the first solution

found or show that there is no solution. In the former case,

the result can be interpreted as a test data that activates the

selected path; in the latter case, infeasibility of the path is

proved. Of course, solving the constraints in reasonable time

is not always possible since the search space can be huge.

The constraints in FPSE are based on expressions built

over ⊕, ⊖, ⊗, ⊘ and the relations =, 6=, <, ≤. Interval

constraints (e.g., x ∈ [a, b]) are allowed as well as IEEE 754

type casting constraints, namely float-to-double, double-to-

float, long-to-double and double-to-long. FPSE works under

some hypotheses that are now summarized. The tool deals

only with the near tail-to-even rounding mode, which is

used by default in almost all C implementations and is the

most difficult to handle in constraint solving over floating-

point variables [15]. To model floating-point computations,

special attention is paid to conform to the actual execution

of programs. In order to capture the semantics of the

program, it is of course necessary to respect the precedence

of expression operators as specified by the C language as

well as the evaluation order realized by the language imple-

mentation at hand. FPSE respects the shape of expressions

as represented in the abstract syntax tree of the program

without any rearrangement or simplification. The order in

which operands are evaluated by a C implementation can be

matched by using a preprocessor like CIL [26].

Any symbolic expression is decomposed into a sequence

of TAC assignments where fresh temporary variables are

introduced bearing in mind that the order of evaluation must

be preserved.5 This decomposition requires that intermediate

results of an operation conform to the type of storage of

its operands.6 Constraint solving is implemented by using

interval consistency combined with search heuristics. Several

heuristics with static and dynamic choice of variable have

been considered. FPSE is implemented with about 10 KLOC

of SICStus Prolog (for the high-level constraint-solving

machinery) and C (for the projection functions).

5The introduction of temporary variables does not change the semantics
of floating-point computations as long as it reflects the behavior of the
compiler and of the floating-point unit.

6This is not always true: e.g., on Intel’s architectures based on the 387
floating-point coprocessor, registers have more precision than the IEEE 754
float and double types; this makes rounding unpredictable. Luckily,
SSE instruction sets, which do not pose this problem, are superseding 387.

Table I
FILTERING BY MAXIMUM ULP SYNOPSIS

Constraint x ⊆ · y ⊆ · Condition(s)

z = x⊕ y, 0 < z ≤ fmax [δ⊕(ζ), δ⊕(ζ)] [δ⊕(ζ), δ⊕(ζ)] ζ = µ⊕(z), −fmax ≤ δ⊕(ζ), δ⊕(ζ) ≤ fmax

z = x⊕ y, −fmax ≤ z < 0 [− δ⊕(ζ′),− δ⊕(ζ′)] [− δ⊕(ζ′),− δ⊕(ζ′)] ζ′ = µ⊕(−z), −fmax ≤ δ⊕(ζ′), δ⊕(ζ′) ≤ fmax

z = x⊖ y, 0 < z ≤ fmax [δ⊕(ζ), δ⊕(ζ)] [− δ⊕(ζ),− δ⊕(ζ)] ζ = µ⊕(z), −fmax ≤ δ⊕(ζ), δ⊕(ζ) ≤ fmax

z = x⊖ y, −fmax ≤ z < 0 [− δ⊕(ζ′),− δ⊕(ζ′)] [δ⊕(ζ′), δ⊕(ζ′)] ζ′ = µ⊕(−z), −fmax ≤ δ⊕(ζ′), δ⊕(ζ′) ≤ fmax

z = x⊗ y, 0 < |z| ≤ 2(2− 21−p) [δ⊗(m), δ⊗(m)] [δ⊗(m), δ⊗(m)] m = max
{

|z|, |z|
}

,

z = x⊘ y, 0 < |z| ≤ 1 [δ⊘(m), δ⊘(m)] m = max
{

|z|, |z|
}

B. Relative ǫ

Slow convergence phenomena typically arise when few

values are continuously pruned in a constraint propagation

cycle. For example, the constraint x < y ∧ y ≤ x causes a

slow convergence phenomenon over floating-point (and, for

that matter, also integer) variables. Each time a projection

function is woken, a single float is pruned from the domain

of x and y. Unsatisfiability is ultimately proved, but not

in reasonable time. To avoid slow convergence phenomena,

we implemented a procedure that stops the filtering under a

given threshold called relative ǫ. For a given floating-point

variable, if a filtering function does not reduce its domain

of more than ǫ%, then we withdraw that filtering function

and do not prune the domain. An important difference with

respect to interval-propagation-based constraint solvers over

continuous domains is that we differentiate the treatment

of direct and indirect projection functions. For direct pro-

jection functions this threshold is positioned at 0%, while

for indirect projection functions it is positioned at 10% (a

value that was experimentally determined to provide a good

compromise). The idea is to benefit from the structure of the

problem. When all the input variables of the program under

test are instantiated, direct projection functions are sufficient

to get a solution: thus applying them unconditionally is

advantageous. In contrast, when a local or an output variable

is instantiated first, this may lead to a propagation cycle

that has to be cut very early: we discovered that cutting

it using the relative ǫ on indirect projection functions is

very effective as every potential propagation cycle involves

at least one indirect projection function. For example, in

x < y∧y ≤ x only indirect projection functions are involved

on both variables, and propagation cycles do not occur. Of

course, in this pathological case there is no propagation

cycle but the system is still partially consistent at the end of

the initial filtering: hopefully other constraints will allow to

prune many values from the domains of x and y so that

enumeration will not have to try all the values to prove

unsatisfiability.

VI. EXPERIMENTAL EVALUATION

The aim of our experimental study was to evaluate filter-

ing by maximum ULP (in brief ULP Max) and to determine

whether it is an effective, practical property for solving

constraints over the floats with an acceptable overhead. For

presentation of the results in this paper we selected two C

functions performing intensive floating-point computations.

The first one is a small C function that computes a root of a

polynomial equation within a given range: dichotomic()

in Figure 2. Its computations are dominated by single-

precision floating-point computations. The second program

is a real-world program embedded on unmanned airplanes

to avoid fly-to-fly collision.

We implemented several search heuristics with static and

dynamic variable orderings. For the choice of values, we

implemented a domain-splitting strategy adapted to floating-

point variables that proved to be very effective. For a given

variable, our strategy selects first the floating-point value

v that separates the domain of x in two equivalently-sized

sub-domains, i.e., two domains containing the same number

of floats; then it considers x = v, x < v and x > v by

successively backtracking on these choices.

For the dichotomic() function we selected at random

a path that iterates 12 times in the loop and considered all its

path prefixes from iteration 1 to 12. For each path, we used

FPSE to automatically generate a test input (an instantiation

of all the input variables) that covers the path. We considered

two versions of FPSE: a version that implements ULP Max

filtering as defined in this paper, and a version without

that. We measured: the number of elementary (ternary)

constraints on the path (NbC); the number of uninstantiated

floating-point variables on the path and the number of

variables involved in the solution path of the search tree

(NbV); the number of times ULP Max filtering takes place,

globally and on the solution path (NbE); the number of

floats pruned by ULP Max, in millions, globally and on

the solution path (NbD); the percentage of domains pruned

by ULP Max over all the variables involved in the solution

path (%); the CPU time for generating test inputs with the

standard version of FPSE (w/o) and with FPSE augmented

Table II
EXPERIMENTAL RESULTS FOR dichotomic() (TIMEOUT = 30 MIN)

NbC NbV
Global results On the solution path ULP Max Speedup
NbE NbD NbV NbE NbD % w/o w/ factor

1 17 12 62 17,515 12 1 864 20.2 0.142 0.080 1.775
2 31 22 3,948 484,128 22 0 0 0.00 12.326 3.536 3.486
3 45 32 461 102,522 32 3 1,174 9.15 3.969 0.872 4.552
4 59 42 544,377 9,208,097 42 0 0 0.00 timeout 847.778 ∞
5 73 52 510 158,716 52 5 1,895 8.86 2.370 1.506 1.574
6 87 62 799 209,621 62 0 0 0.00 timeout 2.050 ∞
7 101 72 494 87,934 72 7 2,625 8.77 6.087 0.983 6.192
8 115 82 timeout timeout timeout timeout timeout 0.00 timeout timeout ∞
9 129 92 258 83,166 92 9 3,338 8.67 2.352 0.978 2.405

10 143 102 637 157,421 102 0 0 0.00 timeout 2.482 ∞
11 157 112 224 73,702 112 11 4,034 8.57 2.471 0.724 3.413
12 171 122 635 153,318 122 0 0 0.00 4.924 2.642 1.864

float f(float x) { return x*x - 2.0F; }
float dichotomic(float xL, float xR) {

float xM = 1.0F;

while ((xR - xL) > 0.0001F) {
xM = (xR + xL) / 2.0F;

if ((f(xL) * f(xM)) > -1.0F) { xL = xM; }
else { xR = xM; } }

return xM; }

Figure 2. The dichotomic() function

with ULP Max (w/); the ratio between w/o and w/ (Speedup

factor).

For CPU time, we took the average of 10 runs of the same

test input generation process. All results were computed on

a system equipped with an Intel Core 2 Duo 3.00 GHz and

running Linux 2.6 with 4 GB of RAM.

The results for dichotomic(), are presented in Ta-

ble II. These show that FPSE with ULP Max is effective

enough to solve at least 3 constraint systems that the

standard version cannot solve. Moreover, ULP Max is able

to prune the domains of floating-variables in all the cases

and CPU time gains are due to this extra pruning power. On

6 paths, FPSE with ULP Max was able to prune between

8% and 20% of the variable domains.

The second example is a real-world example ex-

tracted from a critical embedded system. The function

tcas_periodic_task_1Hz(), an excerpt of which is

presented in Figure 3, is the core of a TCAS system (Traf-

fic Collision Avoidance System) embedded into unmanned

aircrafts.7 The system receives the speed and direction of

other aircrafts and, based on floating-point computations,

it modifies the speed and direction of the host aircraft in

order to avoid collisions. This program is interesting because

determining the feasibility of its paths is hard and requires

precise reasoning on non-linear floating-point computations.

For tcas_periodic_task_1Hz(), we selected all

the possible paths up to 5 iterations of the main loop. This

corresponds to about 130 paths among which 51% were

7The complete source code is available at http://paparazzi.enac.fr

void tcas_periodic_task_1Hz(void) {
...

for (i = 2; i < NB_ACS; i++) {
uint32_t dt = gps_itow - acs[i].itow;

...

float dx = acs[i].east - estimator_x;

float dy = acs[i].north - estimator_y;

float dz = acs[i].alt - estimator_z;

float dvx

= vx - acs[i].gspeed * sinf(acs[i].course);

float dvy

= vy - acs[i].gspeed * cosf(acs[i].course);

float dvz = estimator_z_dot - acs[i].climb;

float scal = dvx*dx + dvy*dy + dvz*dz;

float ddh = dx*dx + dy*dy;

float ddv = dz*dz;

float tau = TCAS_HUGE_TAU;

...

switch (tcas_acs_status[i].status) {
case TCAS_RA: ... break;

case TCAS_TA: ... break;

case TCAS_NO_ALARM: ... break;

} } }

Figure 3. An excerpt of tcas.c

shown to be infeasible by FPSE, regardless of whether ULP

Max was used or not. For the remaining 49% of feasible

paths, ULP Max has effects on 27 paths. We generated test

inputs for all these paths with both versions of FPSE (i.e.,

w and w/o ULP Max). The results, which are reported in

Table III, show that ULP Max always prunes the search

space by more than 40 millions of single-precision floating-

point values. In other words, ULP Max effectively prunes

the search space in most cases. However, this extra-pruning

does not always result in the overall speedup of the test

input generation process: with reference to Table III, when

the speedup is below 1 the overhead of computing ULP Max

is not compensated by the gains it offers. On the other hand,

it must be observed that those cases are not too frequent (9

cases out of 27 in this example) and the implementation of

ULP Max in FPSE has much room for improvement.

http://paparazzi.enac.fr

Table III
EXPERIMENTAL RESULTS FOR tcas_periodic_task_1Hz()

NbC NbV
Global results On the solution path ULP Max Speedup

NbE NbD (M) NbV NbE NbD (M) % w/o w/ factor

1 157 191 5 765 191 1 11 0.28 1.200 1.212 0.99
2 152 191 1 45 191 1 45 1.07 3.261 3.313 0.98
3 152 191 1 45 191 1 45 1.07 3.688 3.715 0.99
4 152 191 4 753 191 0 0 0.00 0.039 0.032 1.22
5 152 191 4 753 191 0 0 0.00 0.041 0.037 1.11
6 157 191 4 955 191 0 0 0.00 0.060 0.048 1.25
7 157 191 4 955 191 0 0 0.00 0.071 0.078 0.91
8 157 191 25 1,884 191 20 1,884 2.20 0.046 0.046 1.00
9 157 191 25 1,884 191 20 1,884 2.20 0.369 0.382 0.97

10 157 191 25 1,884 191 20 1,884 2.20 0.068 0.068 1.00
11 157 191 25 1,884 191 20 1,884 2.20 0.706 0.698 1.01
12 152 191 25 1,884 191 20 1,884 2.20 0.029 0.027 1.05
13 152 191 25 1,884 191 20 1,884 2.20 0.027 0.029 0.93
14 157 191 3 387 191 1 10 0.24 0.076 0.030 2.53
15 157 191 3 395 191 0 0 0.00 0.081 0.039 0.93
16 157 191 1 43 191 1 43 1.01 0.071 0.076 0.93
17 157 191 3 387 191 1 10 0.24 0.074 0.032 2.31
18 157 191 3 395 191 0 0 0.00 0.083 0.040 2.08
19 157 191 1 43 191 1 43 1.01 0.075 0.076 0.99
20 152 191 1 43 191 1 43 1.01 0.079 0.079 1.00
21 152 191 1 43 191 1 43 1.01 0.075 0.075 1.00
22 152 191 8 521 191 6 144 0.56 0.077 0.033 2.33
23 152 191 8 521 191 6 144 0.56 0.077 0.033 2.33
24 157 191 2 477 191 0 0 0.00 0.079 0.031 2.55
25 157 191 2 477 191 0 0 0.00 0.074 0.032 2.31
26 152 191 1 43 191 1 43 1.01 0.075 0.077 0.97
27 152 191 1 43 191 1 43 1.01 0.078 0.077 1.01

VII. DISCUSSION

In this paper we brought to completion the plan antic-

ipated in [21]. This is part of a long-term research effort

concerning the correct, precise and efficient handling of

floating-point constraints [14]–[17], [19]–[21].

Other authors have considered using search-based test

data generation with a specific notion of distance in their fit-

ness function [10], [27]. For instance, search-based tools like

AUSTIN and FloPSy can generate a test input for a specific

path by evaluating the path covered by some current input

with respect to a targeted path in the program. However,

they cannot solve the constraints of path conditions, since:

1) they cannot determine unsatisfiability when the path is

infeasible, and 2) they can fail to find a test input while the

set of constraints is satisfiable.8

Recently, Borges et al. [28] combined a search-based test

data generation engine with the RealPaver interval constraint

solver, which is well-known in the Constraint Programming

community. Even though FPSE and RealPaver are based

on similar principles, their treatment of intervals is com-

pletely different. While FPSE preserves the solutions over

the floats, RealPaver preserves the solutions over the reals

8The floating-point intensive programs shown in the previous section
seem to be outside the reach of the search-based tool AUSTIN [10]: for
example, AUSTIN seems to die pseudo-randomly on dichotomic();
both for dichotomic()and tcas_periodic_task_1Hz() we were
not able to produce any test input data within 2 days of CPU time.

by making the appropriate choices in the rounding modes

used for computing the interval bounds. [17] contains small

examples showing that an interval constraint solver over the

reals can miss floating-point solutions to constraints over

floating-point variables. However, as RealPaver can treat

transcendental functions with high precision, the approach

followed in [28] allows the generation of floating-point

inputs for programs that use such functions in a nontrivial

way, something that is outside the scope of this paper.

VIII. CONCLUSION

This paper concerns constraint solving over floating-point

numbers and its application to automatic test data generation.

Interval-based consistency techniques are very effective for

the solution of such numerical constraints, provided precise

and efficient filtering algorithms are available. We refor-

mulated and corrected the filtering algorithm proposed by

Marre and Michel in [20] for addition and subtraction. We

proposed a uniform framework that generalizes the property

identified by Marre and Michel to the case of multiplication

and division. The main ideas of this article were roughly

sketched in [21]: in this paper they have been revised,

corrected and extended. The new filtering algorithms have

been implemented in the FPSE system and the experimental

evaluation show that they definitely improve the state-of-

the-art of automatic test data generation for floating-point

programs. Future work includes the exploration of other

properties based on linearization of floating-point compu-

tations, such as those proposed in [19].

ACKNOWLEDGMENT

We are grateful to Abramo Bagnara (BUGSENG srl, Italy)

for the many fruitful discussions we had on the subject

of this paper, and to Paul Zimmermann (INRIA Lorraine,

France) for the help he gave us proving a crucial result.

REFERENCES

[1] R. Skeel, “Roundoff error and the Patriot missile,” SIAM
News, vol. 25, no. 4, p. 11, Jul. 1992.

[2] E. J. Weyuker, “On testing non-testable programs,” The
Computer Journal, vol. 25, no. 4, pp. 465–470, 1982.

[3] V. V. Kuliamin, “Standardization and testing of mathematical
functions,” in Perspectives of Systems Informatics, ser. LNCS,
2010, vol. 5947, pp. 257–268.

[4] P. E. Ammann and J. C. Knight, “Data diversity: An approach
to software fault tolerance,” IEEE Trans. Comput., vol. 37,
no. 4, pp. 418–425, 1988.

[5] F. T. Chan, T. Y. Chen, S. C. Cheung, M. F. Lau, and
S. M. Yiu, “Application of metamorphic testing in numerical
analysis,” in Proc. of the IASTED Int’l Conf. on Software
Engineering, 1998, pp. 191–197.

[6] E. Goubault, “Static analyses of the precision of floating-point
operations,” in Static Analysis: 8th Int’l Symp., ser. LNCS,
vol. 2126, 2001, pp. 234–259.

[7] E. Tang, E. T. Barr, X. Li, and Z. Su, “Perturbing numerical
calculations for statistical analysis of floating-point program
(in)stability,” in Proc. of the 19th Int’l Symp. on Software
Testing and Analysis, 2010, pp. 131–142.

[8] W. Miller and D. L. Spooner, “Automatic generation of
floating-point test data,” IEEE Trans. Software Eng., vol. 2,
no. 3, pp. 223–226, 1976.

[9] B. Korel, “Automated software test data generation,” IEEE
Trans. Software Eng., vol. 16, no. 8, pp. 870–879, 1990.

[10] K. Lakhotia, M. Harman, and H. Gross, “AUSTIN: A tool
for search based software testing for the C language and its
evaluation on deployed automotive systems,” in Proc. of the
2nd Int’l Symp. on Search Based Software Engineering, 2010,
pp. 101–110.

[11] P. McMinn, “Search-based software test data generation: A
survey,” Software Testing, Verification and Reliability, vol. 14,
no. 2, pp. 105–156, 2004.

[12] A. Arcuri, “Theoretical analysis of local search in software
testing,” in Proc. of the 5th Int’l Symp. on Stochastic Algo-
rithms: Foundations and Applications, ser. LNCS, vol. 5792,
2009, pp. 156–168.

[13] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed
automated random testing,” in Proc. of the ACM SIGPLAN
2005 Conf. on Programming Language Design and Imple-
mentation, 2005, pp. 213–223.

[14] C. Michel, M. Rueher, and Y. Lebbah, “Solving constraints
over floating-point numbers,” in Proc. of the 7th Int’l Conf.
on Principles and Practice of Constraint Programming,
ser. LNCS, vol. 2239, 2001, pp. 524–538.

[15] C. Michel, “Exact projection functions for floating point
number constraints,” in Proc. of the 7th Int’l Symp. on
Artificial Intelligence and Mathematics, 2002.

[16] B. Blanc, F. Bouquet, A. Gotlieb, B. Jeannet, T. Jeron,
B. Legeard, B. Marre, C. Michel, and M. Rueher, “The V3F
project,” in Proc. of the 1st Workshop on Constraints in
Software Testing, Verification and Analysis, 2006.

[17] B. Botella, A. Gotlieb, and C. Michel, “Symbolic execution
of floating-point computations,” Software Testing, Verification
and Reliability, vol. 16, no. 2, pp. 97–121, 2006.

[18] B. Marre and B. Blanc, “Test selection strategies for Lustre
descriptions in GATeL,” in Proc. of the Workshop on Model
Based Testing, ser. ENTCS, vol. 111, 2005, pp. 93–111.

[19] M. S. Belaid, C. Michel, and M. Rueher, “Boosting local con-
sistency algorithms over floating-point numbers,” in Proc. of
the 18th Int’l Conf. on Principles and Practice of Constraint
Programming, ser. LNCS, vol. 7514, 2012, pp. 127–140.

[20] B. Marre and C. Michel, “Improving the floating point
addition and subtraction constraints,” in Proc. of the 16th Int’l
Conf. on Principles and Practice of Constraint Programming,
ser. LNCS, vol. 6308, 2010, pp. 360–367.

[21] M. Carlier and A. Gotlieb, “Filtering by ULP maximum,” in
Proc. of the 23rd IEEE Int’l Conf. on Tools with Artificial
Intelligence, 2011, pp. 209–214.

[22] IEEE Standard for Floating-Point Arithmetic, IEEE Std 754-
2008 (revision of IEEE Std 754-1985) ed., The Institute of
Electrical and Electronics Engineers, Inc., Aug. 2008.

[23] D. Goldberg, “What every computer scientist should know
about floating-point arithmetic,” ACM Computing Surveys,
vol. 23, no. 1, pp. 5–48, 1991.

[24] J.-M. Muller, “On the definition of ulp(x),” INRIA, Rapport
de recherche 5504, 2005.

[25] R. Bagnara, M. Carlier, R. Gori, and A. Gotlieb, “Filtering
floating-point constraints by maximum ULP,” 2013, submit-
ted for publication.

[26] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer, “CIL:
Intermediate language and tools for analysis and transforma-
tion of C programs,” in Compiler Construction: Proc. of the
11th Int’l Conf., ser. LNCS, vol. 2304, 2002, pp. 213–228.

[27] K. Lakhotia, N. Tillmann, M. Harman, and J. De Halleux,
“FloPSy: Search-based floating point constraint solving for
symbolic execution,” in Proc. of the 22nd IFIP WG 6.1 Int’l
Conf. on Testing Software and Systems, 2010, pp. 142–157.

[28] M. Borges, M. d’Amorim, S. Anand, D. Bushnell, and C. S.
Pasareanu, “Symbolic execution with interval solving and
meta-heuristic search,” in Proc. of the 5th IEEE Int’l Conf. on
Software Testing, Verification and Validation, 2012, pp. 111–
120.

	Introduction
	Preliminaries
	IEEE 754
	Notation
	Background on Constraint Solving over Floating-Point Variables
	Interval-based Consistency on Arithmetic Constraints
	The Marre-Michel Property

	Filtering by Maximum ULP
	Upper Bound
	Lower bound
	Filtering by Maximum ULP on Addition/Subtraction
	Filtering by Maximum ULP on Multiplication
	Filtering by Maximum ULP on Division
	Synthesis

	Implementation in FPSE
	FPSE
	Relative epsilon

	Experimental Evaluation

	Discussion

	Conclusion
	Acknowledgment
	References

