Stochastic finite differences for elliptic diffusion equations in stratified domains

Sylvain Maire 1 Giang Nguyen 2
1 TOSCA - TO Simulate and CAlibrate stochastic models
CRISAM - Inria Sophia Antipolis - Méditerranée , IECL - Institut Élie Cartan de Lorraine : UMR7502
Abstract : We describe Monte Carlo algorithms to solve elliptic partial differen- tial equations with piecewise constant diffusion coefficients and general boundary conditions including Robin and transmission conditions as well as a damping term. The treatment of the boundary conditions is done via stochastic finite differences techniques which possess an higher order than the usual methods. The simulation of Brownian paths inside the domain relies on variations around the walk on spheres method with or without killing. We check numerically the efficiency of our algorithms on various examples of diffusion equations illustrating each of the new techniques introduced here.
Type de document :
Article dans une revue
Mathematics and Computers in Simulation, Elsevier, 2016, 121, 〈10.1016/j.matcom.2015.09.008〉
Liste complète des métadonnées

Littérature citée [28 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00809203
Contributeur : Sylvain Maire <>
Soumis le : jeudi 19 septembre 2013 - 13:50:44
Dernière modification le : jeudi 15 mars 2018 - 16:56:06
Document(s) archivé(s) le : jeudi 6 avril 2017 - 23:57:12

Fichier

mairenguyen.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Sylvain Maire, Giang Nguyen. Stochastic finite differences for elliptic diffusion equations in stratified domains. Mathematics and Computers in Simulation, Elsevier, 2016, 121, 〈10.1016/j.matcom.2015.09.008〉. 〈hal-00809203v2〉

Partager

Métriques

Consultations de la notice

711

Téléchargements de fichiers

181