M. Alonso, E. Becker, M. Roy, and T. Wörmann, Multiplicities and idempotents for zerodimensional systems, Algorithms in Algebraic Geometry and Applications, pp.1-20, 1996.

S. Basu, R. Pollack, and M. Roy, Algorithms in Real Algebraic Geometry, Algorithms and Computation in Mathematics, vol.10, 2006.
DOI : 10.1007/978-3-662-05355-3

URL : https://hal.archives-ouvertes.fr/hal-01083587

Y. Bouzidi, S. Lazard, M. Pouget, and F. Rouillier, Rational univariate representations of bivariate systems and applications, Proceedings of the 38th international symposium on International symposium on symbolic and algebraic computation, ISSAC '13, 2013.
DOI : 10.1145/2465506.2465519

URL : https://hal.archives-ouvertes.fr/hal-00802698

Y. Bouzidi, S. Lazard, M. Pouget, and F. Rouillier, Separating linear forms for bivariate systems, Proceedings of the 38th international symposium on International symposium on symbolic and algebraic computation, ISSAC '13, 2013.
DOI : 10.1145/2465506.2465518

URL : https://hal.archives-ouvertes.fr/hal-00809425

L. Busé, H. Khalil, and B. Mourrain, Resultant-Based Methods for Plane Curves Intersection Problems, Computer Algebra in Scientific Computing (CASC), pp.75-92, 2005.
DOI : 10.1007/11555964_7

J. Canny, A new algebraic method for robot motion planning and real geometry, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987), pp.39-48, 1987.
DOI : 10.1109/SFCS.1987.1

J. Cheng, S. Lazard, L. Peñaranda, M. Pouget, F. Rouillier et al., On the Topology of Real Algebraic Plane Curves, Mathematics in Computer Science, vol.41, issue.9, pp.113-137, 2010.
DOI : 10.1007/s11786-010-0044-3

URL : https://hal.archives-ouvertes.fr/inria-00517175

D. I. Diochnos, I. Z. Emiris, and E. P. Tsigaridas, On the asymptotic and practical complexity of solving bivariate systems over the reals, Journal of Symbolic Computation, vol.44, issue.7, pp.818-835, 2009.
DOI : 10.1016/j.jsc.2008.04.009

P. Emeliyanenko and M. Sagraloff, On the complexity of solving a bivariate polynomial system, Proceedings of the 37th International Symposium on Symbolic and Algebraic Computation, ISSAC '12, pp.154-161, 2012.
DOI : 10.1145/2442829.2442854

W. Fulton, L. González-vega, and M. Kahoui, Algebraic curves: an introduction to algebraic geometry An improved upper complexity bound for the topology computation of a real algebraic plane curve, J. of Complexity, vol.12, issue.4, pp.527-544, 1996.

T. Lickteig and M. Roy, Sylvester???Habicht Sequences and Fast Cauchy Index Computation, Journal of Symbolic Computation, vol.31, issue.3, pp.315-341, 2001.
DOI : 10.1006/jsco.2000.0427

M. Mignotte, Mathématiques pour le calcul formel, 1989.

V. Y. Pan, Solving a Polynomial Equation: Some History and Recent Progress, SIAM Review, vol.39, issue.2, pp.187-220, 1997.
DOI : 10.1137/S0036144595288554

F. Rouillier, Solving Zero-Dimensional Systems Through the Rational Univariate Representation, Applicable Algebra in Engineering, Communication and Computing, vol.9, issue.5, pp.433-461, 1999.
DOI : 10.1007/s002000050114

URL : https://hal.archives-ouvertes.fr/inria-00073264

S. M. Rump, Polynomial minimum root separation, Mathematics of Computation, vol.33, issue.145, pp.327-336, 1979.
DOI : 10.1090/S0025-5718-1979-0514828-8

URL : http://tubdok.tub.tuhh.de/bitstream/11420/305/1/Ru79.pdf

M. Sagraloff, When Newton meets Descartes, Proceedings of the 37th International Symposium on Symbolic and Algebraic Computation, ISSAC '12, pp.297-304
DOI : 10.1145/2442829.2442872

E. Schost, Sur la Résolution des Systèmes PolynomiauxàPolynomiaux`Polynomiauxà Paramètres, 2001.

A. Schönhage, The fundamental theorem of algebra in terms of computational complexity, 1982.

J. Zur-gathen and J. Gerhard, Modern Computer Algebra, 2003.
DOI : 10.1017/CBO9781139856065

C. Yap, Fundamental Problems of Algorithmic Algebra, 2000.