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Gaussian Mixture Regression model with logistic weights, a
penalized maximum likelihood approach

Résumé : Nous souhaitons estimer une densité conditionelle à l'aided'un modèle de mélange
de régression gaussienne à poids logistiques et moyennes dépendant d'une covariable. L'objectif
est de sélectionner le nombre de composantes dans le modèle ainsi que d'estimer les autres
paramètres par une approche de type maximum de vraisemblance pénalisé. Nous proposons une
borne inférieur sur la pénalité, proportionelle à un facteur logarithmique près, à la dimension de
chaque modèle, qui assure l'existence d'une inégalité oracle pour notre estimateur. Notre analyse
théorique est con�rmée par des expériences numériques.

Mots-clés : Estimation de densité conditionnelle, Mélange de régression gaussienne, Sélection
de modèles
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Gaussian Mixture Regression model with logistic weights,
a penalized maximum likelihood approach

L. Montuelle, E. Le Pennec and S. X. Cohen

April 9, 2013

1 Framework

In classical Gaussian mixture models, density is modeled by

sK;�; � ;w (y) =
KX

k=1

� w;k � � k ;� k (y);

where K 2 N� is the number of mixture components,� �; � is the density of a Gaussian of mean
� and covariance matrix � ,

� �; � (y) =
1

p
(2� )p j� j

e
� 1
2 (y � � )0� � 1 (y � � )

and mixture weights can always be de�ned from aK -tuple (w1; : : : ; wK ) with a logistic scheme:

� w;k =
ewk

P K
k 0=1 ewk 0

:

In this article, we consider such a model in which mixture weights as well as means can depend
on a covariate.

More precisely, we observen pairs of random variables((X i ; Yi ))1� i � n where covariatesX i s
are independent andYi s are independent conditionally to the X i s. We want to estimate the
conditional density s0(�jx) with respect to the Lebesgue measure ofY given X . We model this
conditional density by a mixture of Gaussian regression with varying logistic weights

sK;�; � ;w (yjx) =
KX

k=1

� w(x ) ;k � � k (x ) ;� k
(y);

where (� 1; : : : ; � K ) and (w1; : : : ; wK ) are nowK -tuples of functions chosen, respectively, in a set
� K and WK . Our aim is then to estimate those functions� k and wk , the covariance matrices� k

as well as the number of classesK so that the error between the estimated conditional density
and the true conditional density is as small as possible.

� Select - Inria Saclay Idf / LM Orsay - Université Paris Sud
y IPANEMA - CNRS / Synchrotron Soleil
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The classical Gaussian mixture case has been much studied [18]. Nevertheless, theoretical
properties of such model have been less considered. In a Bayesian framework, asymptotic prop-
erties of posterior distribution are obtained by Choi [7], Genovese and Wasserman [12], Van der
Vaart and Wellner [19] when the true density is assumed to be aGaussian mixture. AIC/BIC
penalization scheme are often used to select a number of cluster (see Burnham and Anderson
[4] for instance). Non asymptotic bounds are obtained by Maugis and Michel [16] even when
the true density is not a Gaussian mixture. All these works rely heavily on a bracketing entropy
analysis of the models, that will also be central in our analysis.

When there is a covariate, the most classical extension of this model is the Gaussian mixture
regression, in which the means� k are now functions, is well studied as described inMcLachlan
and Peel [18]. Models in which the proportions vary have beenconsidered by Antoniadis et al.
[1]. Using idea of Kolaczyk et al. [14], they have considereda model in which only proportion
depend in a piecewise constant manner from the covariate. Their theoretical results are nev-
ertheless obtained under the strong assumption they exactly know the Gaussian components.
This assumption can be removed as shown by Cohen and Le Pennec[8]. Models in which both
mixture weights and means depend on the covariate are considered by Ge and Jiang [11], but
in a logistic regression mixture framework. They give conditions on the number of experts to
obtain consistency of the posterior with logistic weights. Note that similar properties are studied
by Lee [15] for neural networks.

Although natural, Gaussian mixture regression with varying logistic weights seems to be
mentioned �rst by Jordan and Jacobs [13]. They provide an algorithm similar to ours, based
on EM and IRLS, for hierarchical mixtures of experts but no theoretical analysis. Chamroukhi
et al. [6] consider the case of piecewise polynomial regression model with a�ne logistic weights.
In our setting, this corresponds to a speci�c choice for� K and WK : a collection of piecewise
polynomial and a set of a�ne functions. They use a variation of the EM algorithm and a BIC
criterion and provide numerical experiments to support the e�ciency of their scheme. In this
paper, we propose a slightly di�erent penalty choice and prove non asymptotic bounds for the
risk under very mild assumptions on� K and WK that hold in their case.

2 A model selection approach

We will use a model selection approach and de�ne some conditional density models Sm by
specifying sets of Gaussian regression mixture conditional densities through their number of
classesK , a structure on the covariance matrices� k and two function sets � K and WK to
which belong respectively theK -tuple of means(� 1; : : : ; � K ) and the K -tuple of logistic weights
(w1; : : : ; wK ). Typically those sets are compact subsets of polynomial of low degree. Within
such a conditional density setSm , we estimates by the maximizer bsm of the likelihood

bsm = argmax
sK;�; � ;w 2 Sm

nX

i =1

ln sK;�; � ;w (Yi jX i );

or more precisely, to avoid any existence issue, by any� -minimizer of the -log-likelihood:

nX

i =1

� ln bsm (Yi jX i ) � min
sK;�; � ;w 2 Sm

nX

i =1

� ln sK;�; � ;w (Yi jX i ) + �:

Assume now we have a collectionf Sm gm 2M of models, for instance with di�erent number of
classesK or di�erent maximum degree for the polynomials de�ning � K and WK , we should
choose the best model within this collection. Using only thelog-likelihood is not su�cient since

RR n° 8281
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this favors models with large complexity. To balance this issue, we will de�ne a penalty pen(m)
and select the modelbm that minimizes (or rather � 0-almost minimizes) the sum of the opposite
of the log-likelihood and this penalty:

KX

k=1

� ln bsbm (Yi jX i ) + pen( bm) � min
m 2M

KX

k=1

� ln bsm (Yi jX i ) + pen(m) + � 0:

Our goal is now to de�ne a penalty pen(m) which ensures that the maximum likelihood
estimate in the selected model performs almost as well as themaximum likelihood estimate in
the best model. More precisely, we will prove that

E
�
JKL 
 n

� (s0; bsbm )
�

� C1 inf
m 2M

�
inf

sm 2 Sm

KL 
 n (s0; sm ) +
pen(m)

n
+

� + � 0

n

�
+

C2

n

whereKL 
 n is a tensorizedKullback-Leibler divergence,JKL 
 n
� a lower bound of this divergence

with a pen(m) chosen of the same order as the variance of the correspondingsingle model
maximum likelihood estimate. In the next section, we specify all those divergences and explain
the general framework proposed by Cohen and Pennec [9] for conditional density estimation. We
will then explain how to use those results in our speci�c setting. The last section is dedicated
to some numerical experiments conducted for sake of simplicity in the case whereX 2 [0; 1] and
Y 2 R.

3 A general conditional density model selection theorem

We summarize in this section the main result of Cohen and Pennec [9] that will be our main
tool to obtain the previous oracle inequality. In this work, the estimator loss is measured with a
divergenceJKL 
 n de�ned as a tensorized Kullback-Leibler divergence between the true density
and a convex combination of the true density and the estimated one. Contrary to the true
Kullback-Leibler divergence, to which it is closely related, it is bounded. This boundedness
turns out to be crucial to control the loss of the penalized maximum likelihood estimate under
mild assumptions on the complexity of the model and their collection.

Let KL be the classical Kullback-Leibler divergence, which measures adistance between two
density functions. Since we work in a conditional density framework, we use atensorized version
of it. We de�ne by KL 
 n the Kullback-Leibler tensorized divergence,

KL 
 n (s; t) = E

"
1
n

nX

i =1

KL( s(:jX i ); t(:jX i ))

#

which appears naturally in this setting. Replacing t by a convex combination betweens and t
yields the so-called Jensen-Kullback-Leibler tensorizeddivergence, denotedJKL 
 n

� ,

JKL 
 n
� (s; t) = E

"
1
n

nX

i =1

1
�

KL( s(:jX i ); (1 � � )s(:jX i ) + �t (:jX i ))

#

with � 2]0; 1[. This loss is always bounded by1
� ln 1

1� � but behaves asKL when t is close to

s. Furthermore JKL 
 n
� (s; t) � KL 
 n

� (s; t). If we let d2
 n be the tensorized extension of the
squared Hellinger distanced2, Cohen and Pennec [9] prove that there is a constantC� such that
C� d2
 n (s; t) � JKL 
 n

� (s; t).

RR n° 8281
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To any model Sm , a set of conditional densities, we associate a complexity de�ned in term
of a speci�c entropy, the bracketing entropy with respect to the root of d2
 n . Recall that a
bracket [t � ; t+ ] is a pair of real functions such that 8(x; y) 2 X � Y ; t � (x; y) � t+ (x; y) and a
function s is said to belong to the bracket[t � ; t+ ] if 8(x; y) 2 X �Y ; t � (x; y) � s(x; y) � t+ (x; y).
The bracketing entropy H [] ;d (�; S ) of a set S is de�ned as the logarithm of the minimal number
N [] ;d (�; S ) of brackets [t � ; t+ ] covering S, such that d(t � ; t+ ) � � . Our main assumption on
models is an upper bound of a Dudley type integral of these bracketing entropies:

Assumption (H) For every model Sm in the collection S, there is a non-decreasing function
� m such that � 7! 1

� � m (� ) is non-increasing on ]0,+1 [ and for every � 2 R+ ,

Z �

0

q
H [:];d 
 n (�; S m )d� � � m (� ):

One need further to control the complexity of the collection as a whole through a coding type
(Kraft) assumption.

Assumption (K) There is a family (xm )m 2M of non-negative numbers such that

X

m 2M

e� x m � � < + 1 :

For technical reason, a separability assumption, always satis�ed in the setting of this paper, is
also required.

Assumption (Sep) For every modelSm in the collection S, there exists some countable subset
S0

m of Sm and a setY0
m with � (YnY0

m ) = 0 such that for every t in Sm , it exists some se-
quence(tk )k � 1 of elements ofS0

m such that for everyx and everyy 2 Y 0
m ; ln( tk (yjx)) �����!

k ! + 1

ln( t(yjx)) .

The main result of Cohen and Pennec [9] is a condition on the penalty pen(m) which ensures
an oracle type inequality:

Theorem 1. Assume we observe(X i ; Yi ) with unknown conditional densitys0. Let S = ( Sm )m 2M

an at most countable conditional density model collection.Assume assumptions (H), (Sep) and
(K) hold. Let bsm be a� -log-likelihood minimizer in Sm

nX

i =1

� ln(bsm (Yi jX i )) � inf
sm 2 Sm

 
nX

i =1

� ln(sm (Yi jX i ))

!

+ �

Then for any � 2 (0; 1) and any C1 > 1, there is a constant � 0 depending only on� and C1

such that, as soon as for every indexm 2 M ,

pen(m) � � (n� 2
m + xm )

with � > � 0 and � m the unique root of 1
� � m (� ) =

p
n� , the penalized likelihood estimatebsbm with

bm such that

nX

i =1

� ln(bsbm (Yi jX i )) + pen( bm) � inf
m 2M

 
nX

i =1

� ln(bsm (Yi jX i )) + pen(m)

!

+ � 0

RR n° 8281
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satis�es

E
�
JKL 
 n

� (s0; bsbm )
�

� C1 inf
m 2M

�
inf

sm 2 Sm

KL 
 n
� (s0; sm ) +

pen(m)
n

�
+ C1

� 0� + � + � 0

n
:

The name oracle type inequality means that the right-hand side is a proxy for the estimation
risk of the best model within the collection. The term inf sm 2 Sm KL 
 n

� (s0; sm ) is a typical bias
term while pen (m )

n plays the role of the variance term. We have three sources of loss here: the
constant C1 can not be taken equal to1, we use a di�erent divergence on the left and on the right
and pen (m )

n is not directly related to the variance. The �rst issue is oft en considered as minor
while the second one turns out to be classical in density estimation results. Whenever pen(m)
can be chosen approximately proportional to the dimensionDm of the model, which will be
the case in our setting, pen (m )

n is approximately proportional to Dm =n, which is the asymptotic
variance in the parametric case. The right-hand side matches nevertheless the best known bound
obtained for a single model within such a general framework.

In the next section, we show how to apply this result in our Gaussian mixture setting and
prove that the penalty can be chosen roughly proportional to the intrinsic dimension of the
model, and thus of the order of the variance.

4 Spatial Gaussian regression mixture estimation theorem

As explained in introduction, we are looking for conditional densities of type

sK;�; � ;w (yjx) =
KX

k=1

� w;k (x)� � k (x ) ;� k
(y);

where K 2 N� is the number of mixture components,� �; � is the density of a Gaussian of mean
� and covariance matrix � , � k is a function specifying the mean givenx of the k-th component
while � k is its covariance matrix and the mixture weights � w;k are de�ned from a collection of
K functions w1; : : : ; wK by a logistic scheme:

� w;k (x) =
ewk (x )

P K
k 0=1 ewk 0(x )

:

For sake of simplicity, we will assume that the covariateX belongs to an hypercube so that
X = [0; 1]d.

We will estimate those conditional densities by conditional densities belonging to some model
Sm de�ned by

Sm =
�

(x; y) 7!
KX

k=1

� w;k (x)� � k (x ) ;� k
(y)

�
�(w1; : : : ; wK ) 2 WK ; (� 1; : : : ; � K ) 2 � K ;

(� 1; : : : ; � K ) 2 VK

�

whereWK is a compact set ofK -tuples of functions from X to R, � K a compact set ofK -tuples
of functions from X to Rp and VK a compact set ofK -tuples of covariance matrix of sizep � p.
Before describing more precisely those sets, we recall thatSm will be taken in a model collection

RR n° 8281
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S = ( Sm )m , wherem speci�es a choice for each of those parameters. The number ofcomponents
K can be chosen arbitrarily in N� , but will in practice and in our theoretical example be chosen
smaller than an arbitrary K max , which may depend on the sample sizen. The setsWK and � K

will be typically chosen as a tensor product of a same compactset of moderate dimension, for
instance a set of polynomial of degree smaller than respectively dW and d� whose coe�cients are
smaller in absolute values than respectivelyTW and T� . The structure of the set VK depends
on the noise model chosen: we can assume, for instance, it is common to allregressions, that
they share a similar volume or diagonalization matrix or they are all di�erent. More precisely,
we decompose any covariance matrix� into LDAD 0, where L = j� j1=p is a positive scalar
corresponding to the volume,D is the matrix of eigenvectors of� and A the diagonal matrix of
normalized eigenvalues of� . Let L � ; L + be positive values and� � ; � + real values. We de�ne
the set A(� � ; � + ) of diagonal matricesA such that jAj = 1 and 8i 2 f 1; : : : ; pg; � � � A i;i � � + .
A set VK is de�ned by

VK = f (L 1D1A1D 0
1; : : : ; L K DK AK D 0

K )j8k; L � � L k � L + ; D k 2 SO(p);

Ak 2 A (� � ; � + )g

Those setsVK correspond to the classical covariance matrix sets described by Celeux and Govaert
[5].

We will bound the complexity term n� 2
m in term of the dimension of Sm : we prove that

those two terms are roughly proportional. The setVK is a parametric set and thusdim(VK ) is
easily de�ned as the dimension of its parameter set. De�ningthe dimension of WK and � K is
more interesting. We rely on an entropy type de�nition of the dimension. For any K -tuples of
functions (s1; : : : ; sK ) and (t1; : : : ; tK ), we let

dk sup k1 ((s1; : : : ; sK ); (t1; : : : ; tK )) = sup
x 2X

sup
1� k � K

jsk (x) � tk (x)j

and de�ne the dimension dim(FK ) of a set FK of such K -tuples as the smallestD such that
there is a C satisfying

Hdk sup k 1
(�; F K ) � D

�
C + ln

1
�

�
:

Using the following proposition of Cohen and Pennec [9], we can easily verify that Assumption
(H) is satis�ed.

Proposition 1. If for any � 2 [0;
p

2]; H [:];d 
 n (�; S m ) � Dm (Cm + ln( 1
� )) , then the function

� m (� ) = �
p

Dm

� p
Cm +

p
� +

q
ln( 1

� ^ 1 )
�

satis�es assumption (H). Furthermore, the unique

root � m of 1
� � m (� ) =

p
n� satis�es

n� 2
m � Dm

 

2(
p

Cm +
p

� )2 +
�

ln
n

(
p

Cm +
p

� )2Dm

�

+

!

:

We show in Appendix that if

Hdk sup k 1
(�; W K ) � dim(WK )

�
CW K + ln

1
�

�

and

Hmax k supx kk 2 (�; � K ) � dim(� K )
�

C� K + ln
1
�

�
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then, if n � 1, the complexity of the corresponding modelSm satis�es

n� 2
m � Dm

 

2(
p

Cm +
p

� )2 +
�

ln
n

(
p

Cm +
p

� )2Dm

�

+

!

� Dm

�
2(

p
Cm +

p
� )2 + ln( n)

�

� Dm (C0
m + ln( n))

with C0
m that depends only on the constants de�ning VK and the constantsCW K and C� K . In

order to obtain the same constantC0
m for all models, we impose that the dimension bound holds

with the same constants for all models:

Assumption (DIM) There exist two constants CW and C� such that, for every model Sm in
the collection S,

Hmax k kk 1 (�; W K ) � dim(WK )
�

CW + ln
1
�

�
:

and

Hmax k supx kk 2 (�; � K ) � dim(� K )
�

C� + ln
1
�

�

We can now state our main result:

Theorem 2. For any collection of Gaussian regression mixtures satisfying (K) and (DIM), there
is a constant C such that for any � 2 (0; 1) and any C1 > 1, there is a constant� 0 depending only
on � and C1 such that, as soon as for every indexm 2 M , pen(m) = � ((C +ln n) dim( Sm )+ xm )
with � > � 0, the penalized likelihood estimatebsbm with bm such that

nX

i =1

� ln(bsbm (Yi jX i )) + pen( bm) � inf
m 2M

 
nX

i =1

� ln(bsm (Yi jX i )) + pen(m)

!

+ � 0

satis�es

E
�
JKL 
 n

� (s0; bsbm )
�

� C1 inf
m 2M

�
inf

sm 2 Sm

KL 
 n
� (s0; sm ) +

pen(m)
n

+
� 0� + � + � 0

n

�
:

In the previous theorem, the assumption on pen(m) could be replaced by the milder one

pen(m) � �

 

2Dm C2 + Dm

�
ln

n
C2Dm

�

+
+ xm

!

:

To minimize arbitrariness, xm should be chosen such that 2�x m
pen(m ) is as small as possible. Notice

that the constant C only depends on the model collection parameters, for instance on the maximal
number of componentsK max . As often in model selection, the collection may be chosen according
to to the sample sizen. If the constant C0 grows no faster thanln(n), the penalty shape can be
kept intact and a similar result holds uniformly in n up to a slightly larger � 0. For instance, as
K max only appears in C through a logarithmic term, K max may grow as a power of the sample
size.
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We postpone the proof of this theorem to the Appendix and focus on Assumption (DIM).
This assumption can often be veri�ed when the functions setsWK and � K are de�ned as images
of a �nite dimensional compact subset of parameters whenX 2 [0; 1]d. For example, those
sets can be de�ned as linear combination of a �nite set of bounded functions whose coe�cients
belong to a compact set. We study here the case of linear combination of the �rst elements of
a polynomial basis but similar results hold, up to some modi�cation on the coe�cient sets, for
many other choices (�rst elements of a Fourier, spline or wavelet basis, elements of an arbitrary
bounded dictionary...)

Let dW and d� be two integers andTW and T� some positive numbers. We de�ne

W =

8
<

:
w : [0; 1]d ! Rjw(x) =

dWX

j r j=0

� r xr and k� k1 � TW

9
=

;

� =

8
<

:
� : [0; 1]d ! Rp

�
�
�8j 2 f 1; : : : ; pg; 8x; � j (x) =

d�X

j r j=0

� ( j )
r xr and k� k1 � T�

9
=

;

Let WK = f 0g � W K � 1 and � K = � K .
We prove in Appendix that

Lemma 1. WK and � K satisfy assumption (DIM), with CW = ln
� p

2 + TW
� dW + d

d

� �
and

C� = ln
� p

2 +
p

p
� d� + d

d

�
T�

�
, not depending onK .

To apply Theorem 2, it remains to describe a collection(Sm ) and a suitable choice for
(xm ). Assume, for instance, that the models in our collection arede�ned by an arbitrary
maximal number of components K max , a common free structure for the covariance matrix
K -tuple and a common maximal degree for the setsWK and � K , then one can verify that
dim(Sm ) = ( K � 1 + Kp)

� dW + d
d

�
+ Kp p+1

2 and that the weight family (xm = K ) satisfy As-
sumption (K) with � � 1=(e � 1). Theorem 2 yields then an oracle inequality with pen(m) =
� ((C + ln( n)) dim( Sm ) + xm ). Note that as xm � (C + ln( n)) dim( Sm ), one can obtain a sim-
ilar oracle inequality with pen(m) = � (C + ln( n)) dim( Sm ) for a slightly larger � . Finally, as
explained in the proof, choosing a covariance structure from the �nite collection of Celeux and
Govaert [5] or choosing the maximal degree for the setsWK and � K among a �nite family can
be obtained with the same penalty but with a larger constant � in Assumption (K).

5 Numerical scheme and numerical experiment

We illustrate our theoretical result in a setting similar to the one considered by Chamroukhi
et al. [6]. We observen pairs (X i ; Yi ) with X i 2 [0; 1] and Yi 2 R and look for the best estimate
of the conditional density s0(yjx) that can be written

sK;�; � ;w (yjx) =
KX

k=1

� w;k (x)� � k (x ) ;� k
(y);

with w 2 WK and � 2 � K . We consider the simple case whereWK and � K comprise linear
functions. We do not impose any structure on the covariance matrices. Our aim is to estimate
the best number of componentsK , as well as the model parameters. As described with more
details later, we use an EM type algorithm to estimate the model parameters for eachK and
select one using the penalized approach described previously.
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Figure 1: Typical realizations

In our numerical experiment, we consider two di�erent examples: one in which true condi-
tional density belongs to one of our models, aparametric case, and one in which this is not true, a
non parametric case. In the �rst situation, we expect to perform almost as well as the maximum
likelihood estimation in the true model. In the second situation, we expect our algorithm to
automatically balance the model bias and its variance. Moreprecisely, we let

s0(yjx) =
1

1 + exp(15x � 7)
� � 15x +8 ;0:3(y) +

exp(15x � 7)
1 + exp(15x � 7)

� 0:4x +0 :6;0:4(y)

in the �rst example, denoted example P, and

s0(yjx) =
1

1 + exp(15x � 7)
� 15x 2 � 22x +7 :4;0:3(y) +

exp(15x � 7)
1 + exp(15x � 7)

� � 0:4x 2 ;0:4(y)

in the second example, denoted example NP. For both experiments, we let X be uniformly
distributed over [0; 1]. Figure 1 shows a typical realization for both examples.

As often in model selection approach, the �rst step is to compute the maximum likelihood
estimate for each number of componentsK . To this purpose, we use a numerical scheme based
on the EM algorithm [10] similar to the one used by Chamroukhi et al. [6]. The only di�erence
with a classical EM is in the Maximization step since there isno closed formula for the weights
optimization. We use instead a Newton type algorithm. Note that we only perform a few Newton
steps (5 at most) and ensures that the likelihood does not decrease. We have noticed that there
is no need to fully optimize at each step: we did not observe a better convergence and the
algorithmic cost is high. We denote from now on this algorithm Newton-EM. Figure 2 illustrates
the fast convergence of this algorithm towards a local maximum of the likelihood. Notice that
the lower bound on the variance required in our theorem appears to be necessary in practice.
It avoids the spurious local maximizer issue of EM algorithm, in which a class degenerates to a
minimal number of points allowing a perfect Gaussian regression �t. We use a lower bound of
10
n . Biernacki and Castellan [3] provide a more precise data-driven bound: min 1� i<j � n (Yi � Yj )2

2� 2
n � 2K +1 ((1 � � )1=K ) ,

with � 2
n � 2K +1 the chi-squared quantile function, which is of the same order as 1

n in our case. In
practice, the constant 10 gave good results.
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Figure 2: Increase of the Log-likelihood of the estimated density at each step of our iterative
Newton-EM algorithm in the example NP with 3 components and 2 000 data points.

An even more important issue with EM algorithms is initializ ation, since the local minimizer
obtained depends heavily on it. We observe that, while the weights w do not require a special
care and can be simply initialized uniformly equal to 0, the means require much more attention
in order to obtain a good minimizer. We propose an initialization strategy which can be seen as
an extension of a Quick-EM scheme with random initialization.

We draw randomly K lines, each de�ned as the line going through two points(X i ; Yi ) drawn
at random among the observations. We perform then a K-means clustering using the distance
along the Y axis. Our Newton-EM algorithm is initialized by the regression parameters as well
as the empirical variance on each of theK clusters. We perform then3 steps of our minimization
algorithm and keep among50 trials the one with the largest likelihood. This winner is used as
the initialization of a �nal Newton-EM algorithm using 10 steps.

We consider two other strategies: anaive one in which the initial lines chosen at random
and a common variance are used directly to initialize theNewton-EM algorithm and a clever
one in which observations are �rst normalized in order to have a similar variance along both
the X and the Y axis, a K-means on bothX and Y with 5 times the number of components is
then performed and the initial lines are drawn among the regression lines of the resulting cluster
comprising more than 2 points.

The complexity of those procedures di�ers and as stressed byCeleux and Govaert [5] the
fairest comparison is to perform them for the same amount of time (5 seconds, 30 seconds, 1
minute...) and compare the obtained likelihoods. The di�erence between the 3 strategies is not
dramatic: they yield very similar likelihoods. We nevertheless observe that thenaive strategy has
an important dispersion and fails sometime to give a satisfactory answer. Comparison between
the clever strategy and the regular one is more complex since the di�erence is much smaller.
Following Celeux and Govaert [5], we have chosen the regularone which corresponds to more
random initializations and thus may explores more local maxima.

Once the parameters' estimates have been computed for eachK , we select the model that
minimizes

nX

i =1

� ln(bsm (Yi jX i )) + pen(m)

with pen(m) = � dim(Sm ). Note that our theorem ensures that there exists a� large enough for

RR n° 8281



Gaussian Mixture Regression model with logistic weights, apenalized maximum likelihood approach13

0 0.290.44 1 1,5 2 2,5 3 3,5 4 4,5 5
2

4

6

8

10

12

14

16

18

20

22

k

N
um

be
r 

of
 m

ix
tu

re
 c

om
po

ne
nt

s 
of

 th
e 

se
le

ct
ed

 m
od

el

(a) Example P with 2 000 points

0 0.47 1 2 3 4 5
4

6

8

10

12

14

16

18

20

k

N
um

be
r 

of
 m

ix
tu

re
 c

om
po

ne
nt

s 
of

 th
e 

se
le

ct
ed

 m
od

el

(b) Example NP with 2 000 points

Figure 3: Slope heuristic: plot of the selected model dimension with respect to the penalty
coe�cient � . In both examples, b� is of order 1=2.

which the estimate has good properties, but does not give an explicit value for � . In practice,
� has to be chosen. The two most classical choices are� = 1 and � = ln n

2 which correspond
to the AIC and BIC approach, motivated by asymptotic arguments. We have used here the
slope heuristic proposed by Birgé and Massart and describedfor instance in Baudry et al. [2]. It
consists in representing the dimension of the selected model according to � (�g 3), and �nding �̂
such that if � < �̂ , the dimension of the selected model is large, and reasonable otherwise. The
slope heuristic prescribes then the use of� = 2 �̂ . In both examples, we have noticed that the
sample's size had no signi�cant in�uence on the choice of� , and that very often 1 was in the
range of possible values indicated by the slope heuristic. According to this observation, we have
chosen in both examples� = 1 .

We measure performances in term of tensorized Kullback-Leibler distance. Since there is
no known formula for tensorized Kullback-Leibler distance in the case of Gaussian mixtures,
and since we know the true density, we evaluate the distance using Monte Carlo method. The
variability of this randomized evaluation has been veri�ed to be negligible in practice.

For several numbers of mixture components and for the selected K, we draw in �gure 4 the box
plots and the mean of tensorized Kullback-Leibler distanceover 55 trials. The �rst observation
is that the mean of tensorized Kullback-Leibler distance between the penalized estimator ŝK̂
and s0 is smaller than the mean of tensorized Kullback-Leibler distance betweenŝK ans s0 over
K 2 f 1; : : : ; 20g. This is in line with the oracle type inequality of Theorem 2. Our numerical
results hint that our theoretical analysis may be pessimistic. A close inspection show that the
bias-variance trade-o� di�ers between the two examples. Indeed, since in the �rst one the true
density belongs to the model, the best choice isK = 2 even for small n. As shown on the
histogram of Figure 5, this is almost always the model chosenby our algorithm. Observe also
that the mean of Kullback-Leibler distance seems to behave like dim( Sm )

2n (shown by a dotted
line). This is indeed the expected behavior when the true model belongs to a nested collection
and corresponds to the classical AIC heuristic. In the second example, the true model does not
belong to the collection. The best choice forK should thus balance a model approximation error
and a variance one. We observe in Figure 5 such a behavior: thelarger n the more complex the
model and thus K . Note that the slope of the mean error seems also to grow likedim( Sm )

2n even
though there is no theoretical guarantee of such a behavior.

Figure 6 shows the error decay when the sample sizen grows. As expected in the parametric
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(b) Example P with 10 000 data points
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(c) Example NP with 2 000 data points
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(d) Example NP with 10 000 data points

Figure 4: Box-plot of the Kullback-Leibler distance according to the number of mixture com-
ponents. On each graph, the right-most box-plot shows this Kullback-Leibler distance for the
penalized estimator ŝ bK
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(a) Example P with 2 000 data points
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(b) Example P with 10 000 data points
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(c) Example NP with 2 000 data points
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(d) Example NP with 10 000 data points

Figure 5: Histograms of the selected K

RR n° 8281



Gaussian Mixture Regression model with logistic weights, apenalized maximum likelihood approach16

10
3

10
4

10
-4

10
-3

10
-2

Sample's size

m
ea

n 
of

 K
ul

lb
ac

k-
Le

ib
le

r 
di

st
an

ce
 o

ve
r 

30
 tr

ia
ls

 

 
E[KL]
n->t/n
linear regression of E[KL]

(a) Example P. The slope of the free regression line is
' � 1; 3
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(b) Example NP. The slope of the regression line is '
� 0; 6.

Figure 6: Kullback-Leibler distance between the true density and the computed density using
(X i ; Yi ) i � N with respect to the sample size, represented in a log-log scale. For each graph, we
added a free linear least-square regression and one with slope � 1 to stress the two di�erent
behavior.

case, example P, we observe the decay int=n predicted in the theory, with t some constant.
The rate in the second case appears to be slower. Indeed, as the true conditional density does
not belong to any model, the selected models are more and morecomplex whenn grows which
slows the error decay. In our theoretical analysis, this canalready be seen in the decay of the
variance term of the oracle inequality. Indeed, if we let m0(n) be the optimal oracle model, the
one minimizing the right-hand side of the oracle inequality, the variance term is of order

D m 0 ( n )

n
which is larger than 1

n as soon asDm 0 (n ) ! + 1 . It is well known that the decay depends on
the regularity of the true conditional density. Providing a minimax analysis of the proposed
estimator, as have done Maugis and Michel [17], would be interesting but is beyond the scope of
this paper.

A Proof of Theorem 2

In this section, an overview of the proof of the model selection theorem, applied to our Gaussian
regression mixture, is given. B is dedicated to the example with polynomial means and weights.
The constants in the Assumption (DIM) and the theorem are speci�ed. Then, in C, we provide
more details on the proofs and lemmas used in the �rst section.

We will show that Assumption (DIM) ensures that for all � 2 [0;
p

2]; H [:];d 
 n (�; S m ) �
Dm (Cm + ln( 1

� )) with a common Cm . If this happens, Proposition 1 yields the results. In other
words, if we can control models' bracketing entropy with a uniform constant C, we get a suitable
bound on the complexity. This result will be obtain by �rst de composing the entropy term
between the weights and the Gaussian mixtures. Therefore weuse the following distance over
conditional densities:

sup
x

dy (s; t) = sup
x 2X

� Z

y

� p
s(yjx) �

p
t(yjx)

� 2
dy

� 1
2

:
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Notice that d2
 n (s; t) � supx d2
y (s; t).

For all weights � and � 0, we de�ne

sup
x

dk (�; � 0) = sup
x 2X

 
KX

k=1

� p
� k (x) �

q
� 0

k (x)
� 2

! 1
2

:

Finally, for all densities s and t over Y, depending onx, we set

sup
x

max
k

dy (s; t) = sup
x 2X

max
1� k � K

dy (sk (x; :); tk (x; :))

= sup
x 2X

max
1� k � K

� Z

y

� p
sk (x; y) �

p
tk (x; y)

� 2
dy

� 1
2

:

Lemma 2. Let P =
n

(� w;k )1� k � K =w 2 WK ; and 8(k; x); � w;k (x) = ew k ( x )
P K

l =1 ew l ( x )

o
and

G =
n

(� � k ;� k )1� k � K =� 2 � K ; � 2 VK

o
. Then for all � in [0;

p
2], for all m in M ,

H [:];sup
x

dy (�; S m ) � H [:];sup
x

dk

�
�
5

; P
�

+ H [:];sup
x

max
k

dy

�
�
5

; G
�

:

One can then relate the bracketing entropy ofP to the entropy of WK

Lemma 3. For all � 2 [0;
p

2],

H [:];sup
x

dk

�
�
5

; P
�

� Hmax
k

kk 1

 
3
p

3�

20
p

K
; WK

!

Since P is a set of weights, 3
p

3�
20

p
K

could be replaced by 3
p

3�
20

p
K � 1

with an identi�ability con-
dition. For example, W 0

K = f (0; w2 � w1; : : : ; wK � w1)jw 2 WK g can be covered using brackets
of null size on the �rst coordinate, lowering squared Hellinger distance between the brackets'
bounds to a sum ofK � 1 terms. Therefore, H [:];sup

x
dk

�
�
5 ; P

�
� Hmax

k
kk 1

�
3

p
3�

20
p

K � 1
; W 0

K

�
.

Since we have assumed that9DW K ; CW s.t 8� 2 [0;
p

2],

Hmax
k

kk 1 (�; W K ) � DW K

�
CW + ln

�
1
�

��

Then

H [:];sup
x

dk

�
�
5

; P
�

� DW K

 

CW + ln

 
20

p
K

3
p

3�

!!

To tackle the Gaussian regression part, we rely heavily on the following proposition,

Proposition 2. Let � � 17
29 ,  � =

25(� � 1
2 )

49(1 + 2�
5 )

. For any 0 < � �
p

2 and any � � � 1
5
p

� 2 cosh( 2�
5 )+ 1

2

�
p ,

(�; L; A; D ) 2 � � [L � ; L + ] �A (� � ; � + ) � SO(p) and (~�; ~L; ~A; ~D) 2 � � [L � ; L + ] �A (� � ; + 1 ) �
SO(p); � = LDAD 0 and ~� = ~L ~D ~A ~D 0, assume that t � (x; y) = (1 + �� � )� p� ~� (x ) ;(1+ � � ) � 1 ~� (y)
and t+ (x; y) = (1 + �� � )p � ~� (x ) ;(1+ � � ) ~� (y).
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If
8
>>>><

>>>>:

8x 2 Rd; k� (x) � ~� (x)k2 � p � L � � �
� �

� +
� �

2

(1 + 2
25 � � )� 1 ~L � L � ~L

81 � i � p; jA � 1
i;i � ~A � 1

i;i j � 1
10

� �
� +

8y 2 Rp; kDy � ~Dyk � 1
10

� �

� +
� � kyk

then [t � ; t+ ] is a �
5 Hellinger bracket such thatt � (x; y) � � � (x ) ;� (y) � t+ (x; y).

We consider three cases: the parameter (mean, volume, matrix) is known (? = 0 ), unknown
but common to all classes (? = c), unknown and possibly di�erent for every class (? = K ). For
example, [� K ; L 0; D c; A0] denotes a model in which only means are free and eigenvector matrices
are assumed to be equal and unknown. Under our assumption that D � K ; C� s.t 8� 2 [0;

p
2],

Hmax k supx k:k2 (�; � K ) � D � K

�
C� + ln

�
1
�

��

we deduce:

H [:];max k supx dy

�
�
5

; G
�

� D
�

C+ ln
�

1
�

��
(1)

where D = Z �;? + ZL;? +
p(p � 1)

2
ZD;? + ( p � 1)ZA;? and

C = ln

 

5p

s

� 2 cosh
�

2�
5

�
+

1
2

!

+
Z �;? C�

D
+

Z �;?

2D
ln

�
� +

p � L � � 2
�

�

+
ZL;?

D
ln

0

@
4 + 129 ln

�
L +

L �

�

10

1

A +
ZD;?

D

�
ln(cU ) +

p(p � 1)
2

ln
�

10� +

� �

��

+
ZA;? (p � 1)

D
ln

�
4
5

+
52� +

5� �
ln

�
� +

� �

��
:

Z �;K = D � K ; Z �;c = D � 1 ; Z �; 0 = 0

ZL; 0 = ZD; 0 = ZA; 0 = 0 ;

ZL;c = ZD;c = ZA;c = 1 ;

ZL;K = ZD;K = ZA;K = K

We notice that the following upper-bound of Cis independent from the model of the collection,
because we have made this hypothesis onC� .

C � ln

 

5p

s

� 2 cosh
�

2�
5

�
+

1
2

!

+ C� +
1
2

ln
�

� +

p � L � � 2
�

�

+ ln

0

@
4 + 129 ln

�
L +

L �

�

10

1

A +
2

p(p � 1)
ln(cU ) + ln

�
10� +

� �

�

+ ln
�

4
5

+
52� +

5� �
ln

�
� +

� �

��
:= C1:
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We conclude that H [:];supx dy (�; S m ) � Dm
�
Cm + ln

�
1
�

��
, with

Dm = DW K + D

Cm =
DW K

Dm

 

CW + ln

 
20

p
K

3
p

3

!!

+
DC1

Dm

� CW + ln
�

20
p

K max

3
p

3

�
+ C1 := C

Note that the constant C does not depend on the dimensionDm of the model, thanks to the
hypothesis that CW is common for every modelSm in the collection. Using Proposition 1, we
deduce thus that

n� 2
m � Dm

0

B
@2

� p
C+

p
�

� 2
+

0

B
@ln

n
� p

C+
p

�
� 2

Dm

1

C
A

+

1

C
A :

Theorem 1 yields then, for a collectionS = ( Sm )m 2M , with M = f (K; W K ; � K ; VK )jK 2
N� ; WK ; � K ; VK as previously de�ned g for which Assumption (K) holds, the oracle inequality
of Theorem 2 as soon as

pen(m) � �

0

B
@Dm

0

B
@2

� p
C+

p
�

� 2
+

0

B
@ln

n
� p

C+
p

�
� 2

Dm

1

C
A

+

1

C
A + xm

1

C
A :

B Proof of Theorem for polynomial

We focus here on the example in whichWK and � K are polynomials of degree respectively at
most dW and d� .

By applying lemmas 1, 3 and 1, we get:

Corollary 1.

H [:];sup
x

dk

�
�
5

; P
�

� (K � 1)
�

dW + d
d

�

�
�
ln

� p
2 +

20

3
p

3
TW

p
K � 1

�
dW + d

d

��
+ ln

�
1
�

��
:

� (K � 1)
�

dW + d
d

�

�
�
CW + ln

�
20

3
p

3

p
K � 1

�
+ ln

�
1
�

��
:

H [:];sup
x

max
k

dy

�
�
5

; G
�

� D
�

C+ ln
�

1
�

��
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with

D = D � K + K
p(p + 1)

2
; D � K = pK

�
d� + d

d

�

C=
2

2D � K + Kp(p + 1)

 

D � K C� +
D � K

2
ln

 
25p� +

�
� 2 cosh

�
2�
5

�
+ 1

2

�

 � L � � 2
�

!

+ K

2

4ln(cU ) + ln

0

@
4 + 129 ln

�
L +

L �

�

10

1

A +
p(p + 1)

2
ln

 

5p

s

� 2 cosh
�

2�
5

�
+

1
2

!

+
p(p � 1)

2
ln

�
10� +

� �

�
+ ( p � 1) ln

�
4
5

+
52� +

5� �
ln

�
� +

� �

����
:

Just like in the general case, we de�neC1 by:

C1 = C� +
1
2

ln

 
25p� +

�
� 2 cosh

�
2�
5

�
+ 1

2

�

 � L � � 2
�

!

+ ln

 

5p

s

� 2 cosh
�

2�
5

�
+

1
2

!

+
2

p(p + 1)

0

@ln(cU ) + ln

0

@
4 + 129 ln

�
L +

L �

�

10

1

A + ( p � 1) ln
�

4
5

+
52� +

5� �
ln

�
� +

� �

��
1

A

+
p � 1
p + 1

ln
�

10� +

� �

�

and remind that C = CW + ln
�

20
p

K max � 1
3

p
3

�
+ C1 is an upper-bound for Cm . We recall that

CW = ln
� p

2 + TW
� dW + d

d

� �
and C� = ln

� p
2 +

p
pT�

� d� + d
d

� �
, and observe that C does not

depend on the modelSm in the collection sinceC only depends onK max ; TW ; dW ; T� ; d� ; p; d; �
and the parameters de�ning VK . Then we can apply the result in the general case to the
collection (Sm ) in which each model is de�ned by a number of componentsK , a common free
structure on the covariance matrix K -tuple and a common maximal degree for the setsWK

and � K . (xm = K )m 2M satis�es Kraft inequality, since
P

m 2M e� x m � 1
e� 1 . We obtain

an oracle inequality with pen(m) = � ((C + ln( n)) dim( Sm ) + xm ), where C = 2(
p

C +
p

� )2,
dim(Sm ) = ( K � 1 + Kp)

� dW + d
d

�
+ Kp p+1

2 and xm = K for the selection of the number of
components in the mixture. If we change the structureVK over the covariance matrices, it only
changes the constant� in Kraft inequality, since there a �nite number of possible structures for
a �xed K and the sum

P
m 2M e� x m can be rewritten

P
K 2 N�

P
m 2Mj m (1)= K e� x m .

C Lemma Proofs

In this section, we provide the proofs of the main lemmas usedin the �rst appendix, to prove
Theorem 2. It begins with bracketing entropy's decomposition, then we focus on the bracketing
entropy of the weight's families in the general case and in our example, followed by the analysis
of the bracketing entropy of Gaussian families.
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C.1 Bracketing entropy's decomposition

Lemma 4. Let

P =

(

� = ( � k )1� k � K =8k; � k : X ! R+ and 8x 2 X ;
KX

k=1

� k (x) = 1

)

;

	 =
�

( 1; : : : ;  K )=8k;  k : X � Y ! R+ ; and 8x; 8k;
Z

 k (x; y)dy = 1
�

;

C=

(

(x; y) 7!
KX

k=1

� k (x) k (x; y)=� 2 P ;  2 	

)

:

Then for all � in [0;
p

2],

H [:];sup
x

dy (�; C) � H [:];sup
x

dk

�
�
5

; P
�

+ H [:];sup
x

max
k

dy

�
�
5

; 	
�

:

The proof mimics the one of Lemma 7 from [9].

Proof. First we will exhibit a covering of bracket of C.
Let ([� i; � ; � i; + ])1� i � N P be a minimal covering of � bracket for sup

x
dk of P:

8i 2 f 1; : : : ; NP g; 8x 2 X ; dk (� i; � (x); � i; + (x)) � �:

Let ([ i; � ;  i; + ])1� i � N 	 be a minimal covering of� bracket for sup
x

max
k

dy of 	 : 8i 2 f 1; : : : ; N 	 g; 8x 2

X ; 8k 2 f 1; : : : ; K g; dy ( i; �
k (x; :);  i; +

k (x; :)) � � . Let s be a density in C. By de�nition, there is
� in P and  in 	 such that for all (x; y) in X � Y ; s(yjx) =

P K
k=1 � k (x) k (x; y).

Due to the covering, there isi in f 1; : : : ; NP g such that

8x 2 X ; 8k 2 f 1; : : : ; K g; � i; �
k (x) � � k (x) � � i; +

k (x):

There is alsoj in f 1; : : : ; N 	 g such that

8x 2 X ; 8k 2 f 1; : : : ; K g; 8y 2 Y ;  j; �
k (x; y) �  k (x; y) �  j; +

k (x; y):

Since for all x, for all k and for all y, � k (x) and  k (x; y) are non-negatives, we may multiply
term-by-term and sum these inequalities overk to obtain:

8x 2 X ; 8y 2 Y ;
KX

k=1

�
� i; �

k (x)
�

+

�
 j; �

k (x; y)
�

+
� s(yjx) �

KX

k=1

� i; +
k (x) j; +

k (x; y):

 "
KX

k=1

�
� i; �

k

�

+

�
 j; �

k

�

+
;

KX

k=1

� i; +
k  j; +

k

#!

1� i � N P
1� j � N 	

is thus a bracket covering ofC.

Now, we focus on brackets' size using lemmas from [9] (namelyLemma 11, 12, 13), To lighten
the notations, � �

k and  �
k are supposed non-negatives for allk. Following their Lemma 12, only

using Cauchy-Schwarz inequality, we prove that

sup
x

d2
y

 
KX

k=1

� �
k (x) �

k (x; :);
KX

k=1

� +
k (x) +

k (x; :)

!

� sup
x

d2
y;k (� � (x) � (x; :); � + (x) + (x; :))
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Then, using Cauchy-Schwarz inequality again, we get by their Lemma 11:

sup
x

d2
y;k (� � (x) � (x; :); � + (x) + (x; :))

� sup
x

0

@max
k

dy ( +
k (x; :);  �

k (x; :))

vu
u
t

KX

k=1

� +
k (x)

+ dk (� + (x); � � (x)) max
k

s Z
 �

k (x; y)dy

! 2

According to their Lemma 13, 8x;
P K

k=1 � +
k (x) � 1 + 2(

p
2 +

p
3)� .

sup
x

0

@max
k

dy ( +
k (x; :);  �

k (x; :))

vu
u
t

KX

k=1

� +
k (x)

+ dk (� + (x); � � (x)) max
k

s Z
 �

k (x; y)dy

! 2

�
� q

1 + 2(
p

2 +
p

3)� + 1
� 2

� 2

� (5� )2

The result follows from the fact we exhibited a 5� covering of brackets ofC, with cardinality
NP N 	 .

C.2 Bracketing entropy of weight's families

C.2.1 When WK is a compact

We demonstrate that for any � 2 [0;
p

2],

H [:];sup
x

dk

�
�
5

; P
�

� Hmax
k

kk 1

 
3
p

3�

20
p

K
; WK

!

Proof. We show that 8(w; z) 2 (WK )2; 8k 2 f 1; : : : ; K g; 8x 2 X ; j
p

� w;k (x) �
p

� z;k (x)j �
F (k; x)d(w; z), with F a function and d some distance. We de�ne8k; 8u 2 RK ; Ak (u) =

exp( u k )P K
k =1 exp( u k )

, so � w;k (x) = Ak (w(x)) .

8(u; v) 2 (RK )2,

�
�
�
p

Ak (v) �
p

Ak (u)
�
�
� =

�
�
�
�

Z 1

0
r

� p
Ak

�
(u + t(v � u)) :(v � u)dt

�
�
�
�

Besides,

r
� p

Ak

�
(u) =

�
1
2

p
Ak (u)

@
@ul

(ln( Ak (u)))
�

1� l � K

=
�

1
2

p
Ak (u) ( � k;l � A l (u))

�

1� l � K
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�
�
�
p

Ak (v) �
p

Ak (u)
�
�
�

=
1
2

�
�
�
�
�

Z 1

0

p
Ak (u + t(v � u))

KX

l =1

(� k;l � A l (u + t(v � u))) ( vl � ul )dt

�
�
�
�
�

�
1
2

Z 1

0

p
Ak (u + t(v � u))

KX

l =1

j� k;l � A l (u + t(v � u)) j j (vl � ul )j dt

�
kv � uk1

2

Z 1

0

p
Ak (u + t(v � u))

KX

l =1

j� k;l � A l (u + t(v � u)) j dt

Since8u 2 RK ;
P K

k=1 Ak (u) = 1 ,
P K

l =1 j� k;l � A l (u)j = 2(1 � Ak (u))

�
�
�
p

Ak (v) �
p

Ak (u)
�
�
� � k v � uk1

Z 1

0

p
Ak (u + t(v � u)) (1 � Ak (u + t(v � u))) dt

�
2

3
p

3
kv � uk1

sincex 7!
p

x(1 � x) is maximal over [0;1] for x = 1
3 . We deduce that for any (w; z) in (WK )2,

for all k in f 1; : : : ; K g, for any x in X , j
p

� w;k (x) �
p

� z;k (x)j � 2
3

p
3

maxl kwl � zl k1 .
By hypothesis, for any positive � , an � -net N of WK may be exhibited. Let w be an element

of WK . There is a z belonging to the � -net N such that maxl kzl � wl k1 � � . Since for all k in
f 1; : : : ; K g, for any x in X ,

j
q

� w;k (x) �
q

� z;k (x)j �
2

3
p

3
max

l
kwl � zl k1 �

2

3
p

3
�;

and

KX

k=1

� q
� z;k (x) +

2

3
p

3
� �

q
� z;k (x) +

2

3
p

3
�
� 2

= K
�

4�

3
p

3

� 2

;

�� � p
� z � 2

3
p

3
�
� 2

;
� p

� z + 2
3

p
3
�
� 2

��

z2N

is a 4�
p

K
3

p
3

-bracketing cover ofP. As a result, H [] ;supx dk

�
�
5 ; P

�
�

Hmax k kk 1

�
3

p
3

20
p

K
�; W K

�
.

C.2.2 When WK = f 0g 
 W K � 1 with W a set of polynomials

We remind that

W =

8
<

:
w : [0; 1]d ! R=w(x) =

dWX

j r j=0

� r xr and k� k1 � TW

9
=

;

Proposition 3. For all � 2 [0;
p

2],

H [:];sup
x

dk

�
�
5

; P
�

� (K � 1)
�

dW + d
d

�

�
�

ln
� p

2 +
20

3
p

3
TW

p
K � 1

�
dW + d

d

��
+ ln

�
1
�

��
:
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Proof. WK is a �nite dimensional compact set. Thanks to the result in the general case, we get

H [:];sup
x

dk

�
�
5

; P
�

� Hmax
k

kk 1

 
3
p

3�

20
p

K � 1
; WK

!

� H k:k1

 
3
p

3�

20
p

K � 1
� dW + d

d

� ;
n

� 2 R(K � 1)(d W + d
d )=k� k1 � TW

o
!

� (K � 1)
�

dW + d
d

�
ln

 

1 +
20

p
K � 1TW

� dW + d
d

�

3
p

3�

!

� (K � 1)
�

dW + d
d

�

�
�
ln

� p
2 +

20

3
p

3
TW

p
K � 1

�
dW + d

d

��
+ ln

�
1
�

��

The second inequality comes from: for allw; v in WK ,
maxk kwk � vk k1 � maxk

P dW
j r j=0 j� k;r � � k;r j �

� dW + d
d

�
maxk;r j� k;r � � k;r j.

C.3 Bracketing entropy of Gaussian families

C.3.1 General case

We rely on a general construction of Gaussian brackets:

Proposition 4. Let � � 17
29 ,  � =

25(� � 1
2 )

49(1 + 2�
5 )

. For any 0 < � �
p

2, any p � 1 and any

� � � 1
5
p

� 2 cosh( 2�
5 )+ 1

2

�
p ,

let (�; L; A; D ) 2 � � [L � ; L + ] � A (� � ; � + ) � SO(p) and (~�; ~L; ~A; ~D) 2 � � [L � ; L + ] �
A (� � ; + 1 ) � SO(p), de�ne � = LDAD 0 and ~� = ~L ~D ~A ~D 0,

t � (x; y) = (1 + �� � )� p � ~� (x ) ;(1+ � � ) � 1 ~� (y) and t+ (x; y) = (1 + �� � )p � ~� (x ) ;(1+ � � ) ~� (y):

If
8
>>>><

>>>>:

8x 2 X ; k� (x) � ~� (x)k2 � p � L � � �
� �

� +
� 2

��
1 + 2

25 � �
� � 1 ~L � L � ~L

81 � i � p; jA � 1
i;i � ~A � 1

i;i j � 1
10

� �
� +

8y 2 Rp; kDy � ~Dyk � 1
10

� �

� +
� � kyk

then [t � ; t+ ] is a �=5 Hellinger bracket such thatt � (x; y) � � � (x ) ;� (y) � t+ (x; y):

Admitting this proposition, we are brought to construct net s over the spaces of the means,
the volumes, the eigenvector matrices and the normalized eigenvalue matrices. We consider
three cases: the parameter (mean, volume, matrix) is known (? = 0 ), unknown but common
to all classes (? = c), unknown and possibly di�erent for every class (? = K ). For example,
[� K ; L 0; D c; A0] denotes a model in which only means are free and eigenvector matrices are
assumed to be equal and unknown.
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If the means are free (? = K ), we construct a grid G� K over � K , which is compact. Since

Hmax k supx k:k2

 s

p � L � � �
� �

� +
� � ; � K

!

� D � K

0

@C� + ln

0

@ 1
q

p � L � � �
� �

� +
� �

1

A

1

A ;

�
�
�
�
�
G� K

 s

p � L � � �
� �

� +
� �

! �
�
�
�
�

�

0

@C� + ln

0

@ 1
q

p � L � � �
� �

� +
� �

1

A

1

A

D � K

:

If the means are common and unknown (? = c), belonging to � 1 , we construct a gridG� c

� q
p � L � � �

� �

� +
� �

�

over � 1 with cardinality at most
0

@C� + ln

0

@ 1
q

p � L � � �
� �

� +
� �

1

A

1

A

D � 1

:

Finally, if the means are known (? = 0 ), we do not need to construct a grid. In the end,

�
�
�G� ?

� q
p � L � � �

� �

� +
� �

� �
�
� �

0

@C� + ln

0

@ 1r

p � L � � �
� �
� +

� �

1

A

1

A

Z �;?

, with Z �;K = D � K , Z �;c =

D � 1 and Z �; 0 = 0 .
Then, we consider the gridGL over [L � ; L + ]:

GL

�
2
25

� �

�
=

�
L �

�
1 +

2
25

� �

� g

=g 2 N; L �

�
1 +

2
25

� �

� g

� L +

�

�
�
�
�GL

�
2
25

� �

� �
�
�
� � 1 +

ln
�

L +

L �

�

ln
�
1 + 2

25 � �
�

Since � � � 2
5 , ln

�
1 + 2

25 � �
�

� 10
129 � � .

�
�
�
�GL

�
2
25

� �

� �
�
�
� � 1 +

129 ln
�

L +

L �

�

10� �
�

4 + 129 ln
�

L +

L �

�

10� �

By de�nition of a net, for any D 2 SO(p) there is a ~D 2 GD

�
1
10

� �

� +
� �

�
such that 8y 2

Rp; kDy � ~Dyk � 1
10

� �

� +
� � kyk. There exists a universal constantcU such that

�
�
�GD

�
1
10

� �

� +
� �

� �
�
� �

cU

�
10� +

� � � �

� p ( p � 1)
2

.

For the grid GA , we look at the condition on the p � 1 �rst diagonal values and obtain:

�
�
�
�GA

�
1
10

� �

� +
� �

� �
�
�
� �

0

@2 +
ln

�
� +

� �

�

ln
�

1 + 1
10

� �

� +
� �

�

1

A

p� 1

Since� � � 2
5 , ln

�
1 + 1

10
� �

� +
� �

�
� 5

52
� �

� +
� � , then

�
�
�
�GA

�
1
10

� �

� +
� �

� �
�
�
� �

�
2 +

52
5� �

� +

� �
ln

�
� +

� �

�� p� 1

�
�

4 + 52
� +

� �
ln

�
� +

� �

�� p� 1 �
1

5� �

� p� 1
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Let ZL; 0 = ZD; 0 = ZA; 0 = 0 , ZL;c = ZD;c = ZA;c = 1 , ZL;K = ZD;K = ZA;K = K . We

de�ne f �;? from � ? to � K by

8
><

>:

0 7! (� 0;1; : : : ; � 0;1) if ? = 0
� 7! (�; : : : ; � ) if ? = c

(� 1; : : : ; � K ) 7! (� 1; : : : ; � K ) if ? = K

and similarly f L;? , f D;?

and f A;? , respectively from (R+ )Z L;? into (R+ )K , from (SO(p)) Z D;? into (SO(p)) K and from
A(� � ; � + )Z A;? into A(� � ; � + )K .

We de�ne

� : ( � 1; : : : ; � K ; L 1; : : : ; L K ; D1; : : : ; DK ; A1; : : : ; AK ) 7! (� k ; L k D k Ak D 0
k )1� k � K

and 	 : ( � k ; � k )1� k � K 7! (� � k ;� k )1� k � K . The image of � ? � [L � ; L + ]Z L;? � SO(p)Z D;? �
A (� � ; � + )Z A;? by 	 � � � (f �;? 
 f L;? 
 f D;? 
 f A;? ) is the set G of all K-tuples of Gaussian
densities of type [� ?; L ?; D?; A?].

Now, we de�ne B :

(� k ; � k )1� k � K 7!
�
(1 + �� � )� p � � k ;(1+ � � ) � 1 � k

; (1 + �� � )p � � k ;(1+ � � )� k

�
1� k � K

:

The image ofG� ? � GZ L;?

L � GZ D;?

D � GZ A;?

A by B � � � (f �;? 
 f L;? 
 f D;? 
 f A;? ) is a �=5-bracket
covering of G, with cardinality bounded by

0

@
p

� + exp (C� )
q

p � L � � 2
� � �

1

A

Z � ;?

�

0

@
4 + 129 ln

�
L +

L �

�

10� �

1

A

Z L;?

� cZ D;?

U

�
10� +

� � � �

� p ( p � 1)
2 Z D;?

�
�

4 + 52
� +

� �
ln

�
� +

� �

�� (p� 1)Z A;?
�

1
5� �

� (p� 1)Z A;?

Taking � � = 1

5
q

� 2 cosh( 2�
5 )+ 1

2

�
p , we obtain

H [:];supx max k dy

�
�
5

; G
�

� D
�

C+ ln
�

1
�

��

with D = Z �;? + ZL;? +
p(p � 1)

2
ZD;? + ( p � 1)ZA;? and

C = ln

 

5p

s

� 2 cosh
�

2�
5

�
+

1
2

!

+
Z �;? C�

D
+

Z �;?

2D
ln

�
� +

p � L � � 2
�

�

+
ZL;?

D
ln

0

@
4 + 129 ln

�
L +

L �

�

10

1

A +
ZD;?

D

�
ln(cU ) +

p(p � 1)
2

ln
�

10� +

� �

��

+
ZA;? (p � 1)

D
ln

�
4
5

+
52� +

5� �
ln

�
� +

� �

��

C.3.2 With polynomial means

Using previous work, we only have to handle� K 's bracketing entropy. Just like for WK , we aim
at bounding the bracketing entropy by the entropy of the parameters' space.
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We focus on the example where� K = � K and

� =

8
<

:
� : [0; 1]d ! Rp

�
�
�8j 2 f 1; : : : ; pg; 8x; � j (x) =

d�X

j r j=0

� ( j )
r xr and k� k1 � T�

9
=

;

We consider for any� , � in � and any x in [0; 1]d,

k� (x) � � (x)k2
2 =

pX

j =1

0

@
d�X

j r j=0

�
� ( j )

r � � ( j )
r

�
xr

1

A

2

�
pX

j =1

0

@
d�X

j r j=0

�
� ( j )

r � � ( j )
r

� 2

1

A

0

@
d�X

j r j=0

x2r

1

A

�
�

d� + d
d

� pX

j =1

d�X

j r j=0

�
� ( j )

r � � ( j )
r

� 2

� p
�

d� + d
d

� 2

max
j;r

�
� ( j )

r � � ( j )
r

� 2

So,

H [:];max k supx kk 2 (�; � K ) � Hmax k;j;r j :j

0

@ �
p

p
� d� + d

d

� ;

8
<

:

�
� ( j;k )

r

�
1� j � p
j r j� d�
1 � k � K

�
�
�k� k1 � T�

9
=

;

1

A

� pK
�

d� + d
d

�
ln

 

1 +
p

p
� d� + d

d

�
T�

�

!

� pK
�

d� + d
d

� �
ln

� p
2 +

p
p
�

d� + d
d

�
T�

�
+ ln

�
1
�

��

� D � K

�
C� + ln

�
1
�

��

with D � K = pK
� d� + d

d

�
and C� = ln

� p
2 +

p
p
� d� + d

d

�
T�

�
.

C.4 Proof of the key proposition to handle bracketing entrop y of Gaus-
sian families

C.4.1 Proof of Proposition 4

Proof. [t � ; t+ ] is a � /5 bracket.
Since(1 + � � ) ~� � 1 � (1 + � � )� 1 ~� � 1 = ((1 + � � ) � (1 + � � )� 1) ~� � 1 is a positive-de�nite matrix,
Maugis and Michel's lemma can be applied.

Lemma 5. ([16]) Let � � 1 ;� 1 and � � 2 ;� 2 be two Gaussian densities with full rank covariance
matrix in dimension p such that � � 1

1 � � � 1
2 is a positive de�nite matrix. For any y 2 Rp,

� � 1 ;� 1 (y)
� � 2 ;� 2 (y)

�

s
j� 2j
j� 1j

exp
�

1
2

(� 1 � � 2)0(� 2 � � 1)� 1(� 1 � � 2)
�

:
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Thus, 8x 2 X ; 8y 2 Rp;

t � (x; y)
t+ (x; y)

=
(1 + �� � )� p

(1 + �� � )p

� � (x ) ;(1+ � � ) � 1 ~� (y)

� � (x ) ;(1+ � � ) ~� (y)
�

1
(1 + �� � )2p

s
(1 + � � )p

(1 + � � )� p

=
�

1 + � �

(1 + �� � )2

� p

=
�

1 + � �

1 + 2�� � + � 2� 2
�

� p

� 1

For all x in X ,

d2
y (t � ; t+ ) =

Z
t � (x; y)dy +

Z
t+ (x; y) dy � 2

Z p
t � (x; y)

p
t+ (x; y)dy

= (1 + �� � )� p + (1 + �� � )p � 2(1 + �� � )� p=2(1 + �� � )p=2

�
Z q

� � (x ) ;(1+ � � ) � 1 ~� (y)
q

� � (x ) ;(1+ � � ) ~� (y) dy

= (1 + �� � )� p + (1 + �� � )p � (2

� d2
y

�
� � (x ) ;(1+ � � ) � 1 ~� (y); � � (x ) ;(1+ � � ) ~� (y)

��
:

Using the following lemma,

Lemma 6. Let � � 1 ;� 1 and � � 2 ;� 2 be two Gaussian densities with full rank covariance matrix in
dimension p, then

d2 (� � 1 ;� 1 ; � � 2 ;� 2 ) = 2
�

1 � 2p=2j� 1� 2j � 1=4j� � 1
1 + � � 1

2 j � 1=2

� exp
�

�
1
4

(� 1 � � 2)0(� 1 + � 2)� 1(� 1 � � 2)
��

:

we obtain

d2
y (t � ; t+ ) = (1 + �� � )� p + (1 + �� � )p � 2 2p=2 �

(1 + � � ) + (1 + � � )� 1� � p=2

= 2 � 2 2p=2 �
(1 + � � ) + (1 + � � )� 1� � p=2

+ (1 + �� � )� p � 2

+ (1 + �� � )p

Applying Lemma 7

Lemma 7. For any 0 < � �
p

2 and any p � 1, let � � 1
2 and

� � � 1
5
p

� 2 cosh( 2�
5 )+ 1

2

�
p , then

� � �
2
5p

�
2
5

:

and

Lemma 8. For any p 2 N� , for any � � > 0,

2 � 2p=2+1 �
(1 + � � ) + (1 + � � )� 1� � p=2

�
p� �

2

2
�

p2� �
2

2

Furthermore, if p� � � c, then

(1 + �� � )p + (1 + �� � )� p � 2 � � 2 cosh(�c )p2� �
2:
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with c = 2
5 , it comes out that:

sup
x

d2
y (t � (x; y); t+ (x; y)) �

�
�
5

� 2

:

Now, we show that for all x in X , for all y in Rp, t � (x; y) � � � (x ) ;� (y) � t+ (x; y). We use
therefore Lemma 9, thanks to the hypothesis made on covariance matrices.

Lemma 9. Let (L; A; D ) 2 [L � ; L + ]�A (� � ; � + ) � SO(p) and ( ~L; ~A; ~D) 2 [L � ; L + ]�A (� � ; 1 ) �
SO(p), de�ne � = LDAD 0 and ~� = ~L ~D ~A ~D 0. If8

><

>:

(1 + � L )� 1 ~L � L � ~L

81 � i � p; jA � 1
i;i � ~A � 1

i;i j � � A � � 1
�

8y 2 Rp; kDy � ~Dyk � � D kyk

then (1 + � � ) ~� � 1 � � � 1 and � � 1 � (1 + � � )� 1 ~� � 1 satisfy

8y 2 Rp;y0
�

(1 + � � ) ~� � 1 � � � 1
�

y � ~L � 1 �
(� � � � L )� � 1

+ � (1 + � � )� � 1
� (2� D + � A )

�
kyk2

8y 2 Rp;y0
�

� � 1 � (1 + � � )� 1 ~� � 1
�

y �
~L � 1

1 + � �

�
� � � � 1

+ � � � 1
� (2� D + � A )

�
kyk2

Using

(
� L = 2

25 � �

� D = � A = 1
10

� �

� +
� �

we get lower bounds of the same order:

8y 2 Rp;y0
�

(1 + � � ) ~� � 1 � � � 1
�

y �
~L � 1

2� +
� � kyk2

8y 2 Rp;y0
�

� � 1 � (1 + � � )� 1 ~� � 1
�

y �
~L � 1

1 + � �

7
10� +

� � kyk2

Let's compare � �; � and t+ .

� � (x ) ;� (y)
(1 + �� � )p � ~� (x ) ;(1+ � � ) ~� (y)

� (1 + �� � )� p

0

@

s
j(1 + � � ) ~� j

j� j
exp

�
1
2

(� (x) � ~� (x))0
�

(1 + � � ) ~� � �
� � 1

(� (x) � ~� (x))
�

1

A

�
(1 + � � )p=2

(1 + �� � )p

0

@

s
j ~� j
j� j

exp
�

1
2

(� (x) � ~� (x))0
�

(1 + � � ) ~� � �
� � 1

(� (x) � ~� (x))
�

1

A :

But,

�
(1 + � � ) ~� � �

� � 1
=

�
(1 + � � ) ~�(� � 1 � (1 + � � )� 1 ~� � 1)�

� � 1

= (1 + � � )� 1� � 1(� � 1 � (1 + � � )� 1 ~� � 1)� 1 ~� � 1

RR n° 8281



Gaussian Mixture Regression model with logistic weights, apenalized maximum likelihood approach30

Thus by Lemma 9,

(� (x) � ~� (x))0
�

(1 + � � ) ~� � �
� � 1

(� (x) � ~� (x))

� (1 + � � )� 1L � 1
� � � 1

� (1 + � � ) ~L
10
7

� + � � 1
�

~L � 1� � 1
� k� (x) � ~� (x)k2

�
10
7

L � 1
� � � 2

� � + � � 1
� k� (x) � ~� (x)k2

�
10
7

L � 1
� � � 2

� � + � � 1
� p � L � � 2

� � � 1
+ � 2

�

�
10
7

p � � �

Since

s
j ~� j
j� j

=

 
~L
L

! p
2

�
�

1 +
2
25

� �

� p=2

,

� � (x ) ;� (y)
(1 + �� � )p � ~� (x ) ;(1+ � � ) ~� (y)

�
(1 + � � )p=2(1 + 2

25 � � )p=2

(1 + �� � )p exp
�

5 �

7
p� �

�
:

It su�ces that

5 �

7
� � � ln

0

@ 1 + �� �
p

1 + � �

q
1 + 2

25 � �

1

A

Now let

f (� � ) = ln(1 + �� � ) �
1
2

ln(1 + � � ) �
1
2

ln
�

1 +
2
25

� �

�

f 0(� � ) =
�

1 + �� �
�

1
2(1 + � � )

�
1

25
�
1 + 2

25 � �
� =

(27k � 4)� � + 50k � 27
2(1 + �� � )(1 + � � )(25 + 2 � � )

Since� > 17
29 ,

f 0(� � ) >
k � 27

50

(1 + �� � )(1 + � � )
�
1 + 2

25 � �
�

Finally, since f (0) = 0 and � � � 2
5 , one deduces

f (� � ) >
k � 27

50

(1 + �� � )(1 + � � )
�
1 + 2

25 � �
� � �

�
k � 27

50�
1 + 2

5 �
� �

1 + 2
5

� �
1 + 2

25
2
5

� � � =
5
7

125(k � 27
50 )

129
�
1 + 2

5 �
� � �

�
5
7

 � � �
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So � �; � � t+ . t �

� �; �
is handled the same way.

(1 + �� � )� p � ~� (x ) ;(1+ � � ) � 1 ~� (y)

� � (x ) ;� (y)

� (1 + �� � )� p

 s
j� j

j(1 + � � )� 1 ~� j
exp

�
1
2

(� (x) � ~� (x))0
�

� � (1 + � � )� 1 ~�
� � 1

(� (x) � ~� (x))
� !

�
(1 + � � )p=2

(1 + �� � )p exp
�

1
2

(� (x) � ~� (x))0
�

� � (1 + � � )� 1 ~�
� � 1

(� (x) � ~� (x))
�

Now
�

� � (1 + � � )� 1 ~�
� � 1

=
�

�
�

(1 + � � ) ~� � 1 � � � 1
�

(1 + � � )� 1 ~�
� � 1

= (1 + � � ) ~� � 1
�

(1 + � � ) ~� � 1 � � � 1
� � 1

� � 1

and

(� (x) � ~� (x))0
�

� � (1 + � � )� 1 ~�
� � 1

(� (x) � ~� (x)) � (1 + � � ) ~L � 1� � 1
� 2~L� + � � 1

� L � 1
� � � 1

� p � L � � 2
� � � 1

+ � 2
�

� 2p � (1 + � � )� �

We only need to prove that

 � (1 + � � )� � � ln
�

1 + �� �p
1 + � �

�

Let

g(� � ) = ln
�

1 + �� �p
1 + � �

�

g0(� � ) =
�

1 + �� �
�

1
2(1 + � � )

=
�� � + 2 � � 1

2(1 + � � )(1 + �� � )

Provided that � � 1
2 and � � � 2

5 ,

g0(� � ) >
2� � 1

2(1 + 2
5 )(1 + 2

5 � )
:

Finally, since g(0) = 0 ,

g(� � ) >
2� � 1

2(1 + 2
5 )(1 + 2

5 � )
� � =

5(2� � 1)
14(1 + 2�

5 )
� � �

7
5

 � � � � (1 + � � )  � � � :

One deduces(1 + �� � )� p � ~� (x ) ;(1+ � � ) � 1 ~� (y) � � � (x ) ;� (y).

C.5 Proof of inequalities used for bracketing entropy's dec omposition

For sake of completeness, we prove here the inequalities of Lemma 11 and 12 of [9] used in the
proof of Lemma 4.
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Proof of Lemma 11. For all x in X ,

d2
y;k (� � (x) � (x; :); � + (x) + (x; :))

=
Z KX

k=1

� q
� +

k (x)
� q

 +
k (x; y) �

q
 �

k (x; y)
�

+
q

 �
k (x; y)

� q
� +

k (x) �
q

� �
k (x)

�� 2

dy

=
Z KX

k=1

� +
k (x)

� q
 +

k (x; y) �
q

 �
k (x; y)

� 2

dy

+
Z KX

k=1

 �
k (x; y)

� q
� +

k (x) �
q

� �
k (x)

� 2

dy

+2
KX

k=1

q
� +

k (x)
� q

� +
k (x) �

q
� �

k (x)
� Z q

 �
k (x; y)

� q
 +

k (x; y) �
q

 �
k (x; y)

�
dy

�

 
KX

k=1

� +
k (x)

!

max
k

d2
y ( +

k (x; :);  �
k (x; :)) + d2

k (� + (x); � � (x)) max
k

Z
 �

k (x; y)dy

+2
KX

k=1

q
� +

k (x)
� q

� +
k (x) �

q
� �

k (x)
�

dy ( +
k (x; :);  �

k (x; :))

s Z
 �

k (x; y)dy

�

 
KX

k=1

� +
k (x)

!

max
k

d2
y ( +

k (x; :);  �
k (x; :)) + d2

k (� + (x); � � (x)) max
k

Z
 �

k (x; y)dy

+2 max
k

s Z
 �

k (x; y)dy max
k

dy ( +
k (x; :);  �

k (x; :))

 
KX

k=1

� +
k (x)

! 1=2

dk (� + (x); � � (x))

�

0

@max
k

dy ( +
k (x; :);  �

k (x; :))

vu
u
t

KX

k=1

� +
k (x)

+ dk (� + (x); � � (x)) max
k

s Z
 �

k (x; y)dy

! 2
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Proof of Lemma 12. For all x in X ,

d2
y

 
KX

k=1

� �
k (x) �

k (x; :);
KX

k=1

� +
k (x) +

k (x; :)

!

=
Z KX

k=1

� +
k (x) +

k (x; y)dy

+
Z KX

k=1

� �
k (x) �

k (x; y)dy � 2
Z

vu
u
t

KX

k=1

� +
k (x) +

k (x; y)

vu
u
t

KX

k=1

� �
k (x) �

k (x; y)dy

�
Z KX

k=1

� +
k (x) +

k (x; y)dy +
Z KX

k=1

� �
k (x) �

k (x; y)dy

� 2
Z KX

k=1

q
� +

k (x) +
k (x; y)

q
� �

k (x) �
k (x; y)dy

� d2
y;k (� � (x) � (x; :); � + (x) + (x; :))

C.6 Proof of lemmas used for Gaussian's bracketing entropy

C.6.1 Proof of Lemma 7

Proof.

� � �
1

5
q

� 2 cosh(2�
5 ) + 1

2

�
p

�
1

5
q

� 2 + 1
2

�
p

�
1

5
q �

1
2

� 2
+ 1

2

�
p

�
2
p

2

5
p

3p
�

2
5p

C.6.2 Proof of Lemma 8

Proof.

2 � 2 2d=2 �
(1 + � � ) + (1 + � � )� 1� � d=2

= 2

 

1 �
�

eln(1+ � � ) + e� ln(1+ � � )

2

� � d=2!

= 2
�

1 � (cosh (ln(1 + � � ))) � d=2
�

= 2 f (ln(1 + � � ))

where f (x) = 1 � cosh(x) � d=2. Studying this function yields

f 0(x) =
d
2

sinh(x) cosh(x) � d=2� 1

f 00(x) =
d
2

cosh(x) � d=2 �
d
2

�
d
2

+ 1
�

sinh(x)2 cosh(x) � d=2� 2

=
d
2

 

1 �
�

d
2

+ 1
� �

sinh(x)
cosh(x)

� 2
!

cosh(x) � d=2
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as cosh(x) � 1, we have thus

f 00(x) �
d
2

:

Now sincef (0) = 0 and f 0(0) = 0 , this implies for any x � 0

f (x) �
d
2

x2

2
�

d2

2
x2

2
:

We deduce thus that

2 � 2 2d=2 �
(1 + � � ) + (1 + � � )� 1� � d=2

�
1
2

d2 (ln(1 + � � )) 2

and using ln(1 + � � ) � � �

2 � 2 2d=2 �
(1 + � � ) + (1 + � � )� 1� � d=2

�
1
2

d2� 2
� :

Now,

(1 + �� � )d + (1 + �� � )� d � 2 = 2 (cosh (d ln(1 + �� � )) � 1) = 2 g(d ln(1 + �� � ))

with g(x) = cosh(x) � 1. Studying this function yields

g0(x) = sinh( x) and g00(x) = cosh(x)

and thus, sinceg(0) = 0 and g0(0) = 0 , for any 0 � x � c

g(x) � cosh(c)
x2

2
:

Since ln(1 + �� � ) � �� � , d� � � c implies d ln(1 + �� � ) � �c , we obtain thus

(1 + �� � )d + (1 + �� � )� d � 2 � cosh(�c )d2 (ln(1 + �� � )) 2 � � 2 cosh(�c )d2� 2
� :

C.6.3 Proof of Lemma9

Proof. By de�nition,

x0
�

(1 + � � ) ~� � 1 � � � 1
�

x = (1 + � � ) ~L � 1
pX

i =1

~A � 1
i;i j ~D 0

i xj2 � L � 1
pX

i =1

A � 1
i;i jD 0

i xj2

= (1 + � � ) ~L � 1
pX

i =1

~A � 1
i;i j ~D 0

i xj2 � (1 + � � ) ~L � 1
pX

i =1

~A � 1
i;i jD 0

i xj2

+ (1 + � � ) ~L � 1
pX

i =1

~A � 1
i;i jD 0

i xj2 � (1 + � � ) ~L � 1
pX

i =1

A � 1
i;i jD 0

i xj2

+ (1 + � � ) ~L � 1
pX

i =1

A � 1
i;i jD 0

i xj2 � L � 1
pX

i =1

A � 1
i;i jD 0

i xj2
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Along the same lines,

x0
�

� � 1 � (1 + � � )� 1 ~� � 1
�

x = L � 1
pX

i =1

A � 1
i;i jD 0

i xj2 � (1 + � � )� 1 ~L � 1
pX

i =1

~A � 1
i;i j ~D 0

i xj2

= L � 1
pX

i =1

A � 1
i;i jD 0

i xj2 � (1 + � � )� 1 ~L � 1
pX

i =1

A � 1
i;i jD 0

i xj2

+ (1 + � � )� 1 ~L � 1
pX

i =1

A � 1
i;i jD 0

i xj2 � (1 + � � )� 1 ~L � 1
pX

i =1

~A � 1
i;i jD 0

i xj2

+ (1 + � � )� 1 ~L � 1
pX

i =1

~A � 1
i;i jD 0

i xj2 � (1 + � � )� 1 ~L � 1
pX

i =1

~A � 1
i;i jD 0

i xj2

Now
�
�
�
�
�

pX

i =1

~A � 1
i;i j ~D 0

i xj2 �
pX

i =1

~A � 1
i;i jD 0

i xj2
�
�
�
�
�

�
pX

i =1

~A � 1
i;i

�
�
� j ~D 0

i xj2 � j D 0
i xj2

�
�
�

� � � 1
�

pX

i =1

�
�
� j ~D 0

i xj2 � j D 0
i xj2

�
�
�

� � � 1
�

pX

i =1

�
�
� j ~D 0

i xj � j D 0
i xj

�
�
�
�
�
� j ~D 0

i xj + jD 0
i xj

�
�
�

� � � 1
�

 
pX

i =1

�
�
�( ~D i � D i )0x

�
�
�
2
! 1=2  

pX

i =1

�
�
�( ~D i + D i )0x

�
�
�
2
! 1=2

� � � 1
� � D kxk2kxk = � � 1

� 2� D kxk2:

Furthermore,
�
�
�
�
�

pX

i =1

~A � 1
i;i jD 0

i xj2 �
pX

i =1

A � 1
i;i jD 0

i xj2
�
�
�
�
�

�
pX

i =1

�
�
� ~A � 1

i;i � A � 1
i;i

�
�
� jD 0

i xj2

� � A � � 1
�

pX

i =1

jD 0
i xj2 = � A � � 1

� kxk2:

We notice then that

(1 + � � ) ~L � 1
pX

i =1

A � 1
i;i jD 0

i xj2 � L � 1
pX

i =1

A � 1
i;i jD 0

i xj2 =
�

(1 + � � ) ~L � 1 � L � 1
� pX

i =1

A � 1
i;i jD 0

i xj2

� (� � � � L ) ~L � 1� � 1
+ kxk2

while

L � 1
pX

i =1

A � 1
i;i jD 0

i xj2 � (1 + � � )� 1 ~L � 1
pX

i =1

A � 1
i;i jD 0

i xj2 =
�

L � 1 � (1 + � � )� 1 ~L � 1
� pX

i =1

A � 1
i;i jD 0

i xj2

�
�
1 � (1 + � � )� 1� ~L � 1� � 1

+ kxk2

�
� �

1 + � �
� � 1

+
~L � 1kxk2

RR n° 8281



Gaussian Mixture Regression model with logistic weights, apenalized maximum likelihood approach36

We deduce thus that

x0
�

(1 + � � ) ~� � 1 � � � 1
�

x � (� � � � L ) ~L � 1� � 1
+ kxk2 � (1 + � � ) ~L � 1� � 1

� (2� D + 2 � A ) kxk2

� ~L � 1 �
(� � � � L )� � 1

+ � (1 + � � )� � 1
� (2� D + � A )

�
kxk2

and

x0
�

� � 1 � (1 + � � )� 1 ~� � 1
�

x �
� �

1 + � �

~L � 1� � 1
+ kxk2 � (1 + � � )� 1 ~L � 1� � 1

� (2� D + � A ) kxk2

�
~L � 1

1 + � �

�
� � � � 1

+ � � � 1
� (2� D + � A )

�
kxk2

References

[1] A. Antoniadis, J. Bigot, and R. von Sachs. A multiscale approach for statistical characteri-
zation of functional images. Journal of Computational and Graphical Statistics, 18, 2009.

[2] J.-P. Baudry, C. Maugis, and B. Michel. Slope heuristics: Overview and implementation.
Statistics and Computing, 22, 2011.

[3] Christophe Biernacki and Gwenaelle Castellan. A data-driven bound on variances for avoid-
ing degeneracy in univariate gaussian mixtures.Pub IRMA Lille , 71, 2011.

[4] K. P. Burnham and D. R. Anderson. Model selection and multimodel inference. A practical
information-theoretic approach. Springer-Verlag, New-York, 2nd edition, 2002.

[5] G. Celeux and G. Govaert. Gaussian parsimonious clustering models. Pattern Recognition,
1995.

[6] F. Chamroukhi, A. Samé, G. Govaert, and P. Aknin. A hidden process regression model
for functional data description. application to curve discrimination. Neurocomputing, 73:
1210�1221, March 2010.

[7] T. Choi. Convergence of posterior distribution in the mixture of regressions. Journal of
Nonparametric Statistics, 20(4):337�351, may 2008.

[8] S. Cohen and E. Le Pennec. Partition-based conditional density estimation. ESAIM Probab.
Stat., 2012.

[9] S. X. Cohen and E. Le Pennec. Conditional density estimation by penalized likelihood model
selection and applications. Technical report, 2011.

[10] A.P Dempster, N.M Laird, and D.B Rubin. Maximum likelih ood from incomplete data via
the em algorithm. Journal of the Royal Statistical Society. Series B., 1977.

[11] Y. Ge and W. Jiang. On consistency of bayesian inferencewith mixtures of logistic regression.
Neural Computation, 18(1):224�243, January 2006.

[12] C. Genovese and L. Wasserman. Rates of convergence for the gaussian mixture sieve.The
Annals of Statistics, 28(4):1105�1127, august 2000.

RR n° 8281



Gaussian Mixture Regression model with logistic weights, apenalized maximum likelihood approach37

[13] Michael I. Jordan and Robert A. Jacobs. Hierarchical Mixtures of Experts and the EM
Algorithm. Neural Computation, 6:181�214, 1994.

[14] E.D. Kolaczyk, J. Ju, and S. Gopal. Multiscale, multigranular statistical image segmenta-
tion. Journal of the American Statistical Association, 100:1358�1369, 2005.

[15] H.K.H Lee. Consistency of posterior distributions for neural networks. Neural Networks,
13:629�642, july 2000.

[16] C. Maugis and B. Michel. A non asymptotic penalized criterion for gaussian mixture model
selection. ESAIM Probability and Statistics, 2011.

[17] C. Maugis and B. Michel. Adaptive density estimation using �nite gaussian mixtures.
ESAIM P&S , 2012. Accepted for publication.

[18] G. McLachlan and D. Peel. Finite Mixture Models . Wiley, 2000.

[19] A.W. Van der Vaart and J.A. Wellner. Weak convergence and empirical processes. Springer,
1996.

RR n° 8281



RESEARCH CENTRE
SACLAY – ÎLE-DE-FRANCE

1 rue Honoré d'Estienne d'Orves

Bâtiment Alan Turing

Campus de l'École Polytechnique

91120 Palaiseau

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399


