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ABSTRACT

Motivations: The design of RNA sequences folding into prede ned
secondary structures is a milestone for many synthetic biology and
gene therapy studies. Most of the current software uses similar local
search strategies (i.e. a random seed is progressively adapted to
acquire the desired folding properties) and more importantly do not
allow the user to control explicitly the nucleotide distribution such as
the GC-content in their sequences. However, the latter is an important
criterion for large-scale applications as it could presumably be used
to design sequences with better transcription rates and/or structural
plasticity.

Results: In this paper, we introduce IncaRNAtion , a novel algo-
rithm to design RNA sequences folding into target secondary stru-
ctures with a prede ned nucleotide distribution. IncaRNAtion uses
a global sampling approach and weighted sampling techniques. We
show that our approach is fast (i.e. running time comparable or bet-
ter than local search methods), seed-less (we remove the bias of
the seed in local search heuristics), and successfully generates high-
guality sequences (i.e. thermodynamically stable) for any GC-content.
To complete this study, we develop an hybrid method combining our
global sampling approach with local search strategies. Remarkably,
our glocal methodology overcomes both local and global approa-
ches for sampling sequences with a speci ¢ GC content and target
structure.

Availability: IncaRNAtion is available at csb.cs.mcgill.ca/incarnation/
Contact: jeromew@cs.mcgill.ca, yann.ponty@Ilix.polytechnique.fr
Key words: RNA, secondary structure, design, weighted sampling,
GC-content.

1 INTRODUCTION

techniques in gene-therapy studies will strongly rely on ef cient
computational methods to design and re-engineer RNA molecules.

Most of RNA functions are, at least partially, encoded by the
three-dimensional molecular structures, which are themselves pri-
marily determined by the secondary structures. The development of
ef cient algorithms for designing RNA sequences with pre-de ned
secondary structures is thus a milestone to enter the synthetic bio-
logy era.RNAinverse pioneered RNA secondary structure design
algorithms. It has been developed and distributed with the Vienna
RNA package (Hofackeet al, 1994). However, only posterior
experimental studies revealed the potential and practical impact of
these techniques. Thereby, during the last 6 years many improve-
ments and variants d®NAinverse have been proposed. Conce-
ptually, almost all of existing algorithms follow the same approach.
First a seed sequence is selected, then a local search strategy is used
to mutate the seed and nd, in its vicinity, a sequence with desi-
red folding properties. Using this strategMFO-RNA (Busch and
Backofen, 2006)RNA-SSD(Aguirre-Herrandezet al, 2007) and
NUPACK:Design (Zadehet al, 2011) signi cantly improved the
performance of RNA secondary structure design algorithms. More
recent research studies aimed to include more constraints in the
selection criteriaRNAexinv focused on the design of sequences
with enhanced thermodynamical and mutational robustness (Avihoo
et al, 2011), whileFrnakenstein  enables to design RNA with
multiple target structures (Lyngs# al,, 2012).

We recently introduced witRNA-ensign a novel paradigm for
the search strategy of RNA secondary structure design algorithm
(Levinetal, 2012). Instead of a local search approach, we proposed
a global sampling strategy of the mutational landscape based on the
RNAmutants algorithm (Waldispihl et al., 2008). This methodo-
logy offered promising performances, but suffered from prohibitive
runtime and memory consumption. Following our work, Garcia-

At the core of the emerging eld of synthetic biology resides our Martin et al proposecRNAIFOLD (Garcia-Martinet al, 2013), an

capacity to design and re-engineer molecules with target functionsy e ate methodology that uses constraint programming techniques
RNA molecules are well tailored for such applications. The ease tQ prune the mutational landscape. While also suffering from pro-

synthesize them (they are directly transcribed from DNA) and th&yipitive running times, it is worth noting that this latter algorithm

broad diversity of catalytic and regulation functions they can Per4iso proposes a seed-less approach to the RNA secondary structure
form enable to integratde-novologic circuits within living cells

. L . . design problem.
(Rodrigoet al, 2012) or re-program existing regulation mechani- |, “is paper, we introducéncaRNAtion , a RNA secon-

sms (Changt al, 2012). Future advances and applications of thesg;,y structure design algorithm that bene ts of our recent algo-
rithmic advances (Reinharet al, 2013) to expand our original

to whom correspondence should be addressed
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RNA-ensign algorithm (Levin et al, 2012). IncaRNAtion pairs ( > 0), or forbid them altogether (= + 1 ). Position-
addresses previous limitations BINA-ensign and offers new  specic sequence constraints can also be enforced at this level
functionalities. First, while our previous program had a running time(details omitted for the sake of clarity) by assigningBoa + 1
complexity ofO(n®), IncaRNAtion  now runs in linear-time and  penalty (leading to a null probability) in the presence of a base
space complexity, allowing it to demonstrate similar speeds as anincompatible with a user-speci ed constraint mask.

local search algorithm. NextncaRNAtion is seed-lessUnlike

RNA-ensign , itdoes not require a seed sequence to initiate its sea2.1.2 GC-weighted Boltzmann ensemble and distributidn

rch. Finally,IncaRNAtion implements a novel algorithm based order to counterbalance the documented tendency of sampling
on weighted sampling techniques (Bodini and Ponty, 2010) that enanethods to generat€C-rich sequences (Leviet al, 2012), we
bles us to control, for the rst timegxplicitly the GC-content of the  introduce a parametar2 R*, whose value will in uence th&C-
solution. This functionality is essential because wild-type sequencesontent of generated sequences. For any secondary str&ttire
within living organisms often present medium or I@®C-content, ~ GC-weighted-Boltzmann factor of a sequersdie B[SX](s) such that
presumably to offer better transcription rates and/or structural plasti-

city. Previous programs do not allow to control this parameter and B[Sx](s) - e S x# 9c(s) 1)
tend to output sequences having hi@k-contents (Lyngset al,
2012). whereR is the Boltzmann constant afidthe temperature in Kelvin.

We demonstrate the performance of our algorithms on a set of Summing theGC-weighted-Boltzmann factor over all possible
real RNA structures extracted from tiRNA STRAND database sequences of a given lengfBj, one obtains theGC-weighted
(Andronescuet al, 2008). To complete this study, we develop an partition functionZ g], from which one de nes th&C-weighted

hybrid method combining our global sampling approach with localgoitzmann probability(s) of each sequence respectively such
search strategies such as the one implementé®RNAinverse .  hat

Remarkably, our glocal methodology overcomes both local and glo-
bal approaches for sampling sequences with a speci ¢ GC content

X
[x] — [x] [x] -
and target structure. Zs Bs (s) and  Psi(s)= —

jsi=n

2.2 Linear-time stochastic sampling algorithm for the
2 _METHODS o _ GC-weighted-Boltzmann ensemble
We introduce a probabilistic model for the design of RNA SEQUENCEY o s now describe a linear-time algorithm to sample sequences at

with a speci ¢ GC-content and folding into a prede ned secondary ,,44m in thesC-weighted Boltzmann distribution. This algorithm
structure_. Forthe Sak_e OfS'mp“(,:'ty’ we choose to base this prOOf'Offollows the general principles of the recursive approach to random
cor_1cept |mplem(_entat|on on a s!mp!l ed free-energy functl_bh), generation (Wilf, 1977), pioneered in the context of RNA by the
Wh.'Ch only considers the co_ntrlt_)utlons of stackeo_l canonical b_aseSFold algorithm (Ding and Lawrence, 2003). The algorithm starts
pairs. We Sh°.W how a modi cation of the dynan_uc programming by precomputing the partition function restricted to each substru-
St_:heme usgd |RNAmutants. aI_Iows fgr the sampling of good _a_nd cture occurring in the target structure, and then performs a series of
diverse design candidates, in linear time and space complexities. recursive stochastic backtracks, using precomputed values to decide
. on the probability of each alternative.
2.1 De nitions
A targeted secondary structug of lengthn is given as a non- 2.2.1 Precomputing theGC-weighted partition function Fir-
crossing arc-annotated sequence, whgrestands for the base- stly, a dynamic programming algorithm computé’ﬁ’jg] the GC-

pairing position of positionm in S if any (and, reciprocaIIySSi = weighted partition function (the dependencyirs omitted here for
i), or 1otherwise. Inaddition, let us denote#yc(s) the number  the sake of clarity) for a structu®, assuming its (previously cho-
of occurrences o6 andC in an RNA sequencs. sen) anking nucleotides are andb respectively, either forming a

closing base-paifl\ = T) ornot N = F). Remark that the empty

2.1.1 Simplied energy modelWe use a simpli ed free-energy structure only supports the empty sequence, having eflesgyone
model which only includes additive contributions from stacking has
base-pairs. Using individual values from the Turner 2004 model zibl= 7@ = ¢ ORT =7 (3)
(retrieved from the NNDB (Turner and Mathews, 2010)). Given @& 1o general recursion scheme consists in three different terms,
candidate sequensdor a secondary structuf®, the free-energy of
any sequence of lengthjS;j is given by

E(s;S) X E X

S; = sl si0S: : : 0 0.
(i) (%92s e 2= 2= . X"z B, )
stacking pairs a’28

depending on the rst position i6:
Case 1First position is unpairedy = S9:

whereE ,, .o is Setto0 if ab= ? (no base-pair to stack onto), Case 2.First position is paired with last positior§( = (S9),
the tabulated free-energy of stacking pdiak)=(a%") in the Tur-  Stacking onto a pre-existing exterior pait = T):

ner model if available, or 2 [0; 1 ] for non-Watson-Crick/Wobble X .

pairs (i.e. not inf GU; UG; CG, GC, AU or UAg). This latter para- 7 lab] ._ * 90(a%h?) e%ﬂbo 7 [a%°. )

. . R . T:(S% -~ T:50
meter allows one to choose whether to simply penalize invalid base (s9 20028 2 S




Algorithm 1: SB; (a;b;N;S)

r Random z{32)  // Random real in  [0;Z[52]
switch do
caseS = " return "; /I Empty structure
caseS= S° // First position is unpaired

for a2 B do
roor x* e Z[a ]

if r < Othen return a° S&(a b;F;S9
caseS = ( S% andN = T // Extremities are
involved in stacking base pair

for (%% 2B B do

x* gc(a%b?) e Eur a

r r 0b0=RT

if r < Othen return a%SB, (a%b% T;S%:K°
otherwise /I First position is paired
without a stacking pair

/I S= (8% s

for (%) 2B B do

[a%bY
250

==,
2.

E
0.,,0 21 a0p0
r rox*oc@%hd) oot

7 [2%% 5 [0%b]
) Fs° Tis®
if r< Othen return

a%SB, (a% b T;S9 :b%SB (b b;F; S%

Case 3.First position is involved in a base-pai (= (S% S%,
which is not stacking onto an exterior base-phir£ ForS%6 "):

Fig. 2: General work ow of our adaptive sampling algorithm (Wal-
dispihl and Ponty, 2011).

Since sequences of arbitraBC-content may be generated by Algo-
rithm 1, we use a rejection-based approach (Bodini and Ponty,

2010), previously adapted by the authors in a similar context (Wal-

E, ) Jop0 dispihl and Ponty, 2011). This gives an a&gorlthm which generates
zZ, ([a 3)1500 = x* @) Tt 5 isbgl z [Fbosg]o k valid sequences in expected tinfek n' n) when =0 (or
20028 2 ' ( k n) when is a positive constant) and memory ink n).

(6) A complete analysis of the rejection process can be found in an ear-
Remark that the number of combinationsapfb andN remains  lier contribution (Waldispihl and Ponty, 2011), but let us briey
bounded by a constant, thus the complexity of compuﬂ@g] outline the approach, and the main arguments used to establish its
mainly depends on the values taken ®yupon subsequent recur- complexity.
sive calls. Such values are entirely determinedSbgt any given As summarized by Figure 2, our adaptive sampling approach sim-
step of the recursion, and their dependency can be summarized inpdy generates sets of sequences by repeatedly running the stochastic
tree having( jSj). Therefore, the computation (Zj‘h[fj‘gb] requires  backtrack algorithm. The averag®C-content induced by the cur-
( n) time and space using dynamic-programming. rent value of thex parameter, can then be adequately estimated from
the sample, or computed exactly using recent algorithmic adva-
2.2.2 Stochastic backtrackOnce the GC-weighted partition nces (Ponty and Saule, 2011). The set of sequences is ltered to
functions have been computed and memorized, a stochast@nly retain valid sequences. The value of the parametesrthen
backtrack starts from the target structuBe with any exterior ~adapted to match the averaG€-content (induced by the value of
baseqa; b] and no nesting base-pair, corresponding to agBl  X) with the targeted one. It can be shown that the expeGe€d
(?:?:F;S ) to Algorithm 1. At each step, a suitable assignmentcontent is a continuous and strictly increasing monotonic function
for one or several positions is chosen, using probabilities deriof X, whose limits aréd whenx = 0 andn whenx ! +1 . Con-
ved from the precomputation, as illustrated by Figure 1. One osequently, for any targete@C-contentgc 2 [0%; 100%] there
several recursive calls over the appropriate substructures are th&fists a unique valugg. such that generated sequences feature,
performed. On each recursive call, the algorithm assigns at leagin the average, the rigi&C-content. In practice, a simple binary
one nucleotide to a — previously unassigned — position. Moreoversearch (Waldisphl and Ponty, 2011) is used in our implementa-
the number of executions of each loops is bounded by a constariion, and typically converges after very few iterations. An optimal

Consequently, the complexity of Algorithm 1 is iq n) time and ~ value forx can also be derived analytically using interpolation
space. after ( n) evaluations oz %°) for different candidate values of

X, as previously noted (Waldighl and Ponty, 2011) and could be

2.2.3 Self-adaptive sampling strategyet us remind that our implemented using the Fast-Fourier Transform (Segttaf., 2012).

goal is to produce a set of sequences whagecontent matches a
prescribed valugc. An absolute tolerancemay be allowed, so that
the GC-content of any valid sequence must fallgc  ;gc + ].

2.2.4 Overall complexity It was previously established (Wal-
dispihl and Ponty, 2011) that, for each value>qf there exists
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Case 1:First position is unpaired.

PN o DY
@ TN D D Y N U e Cne Ot.b:

Case 2:Extremities are paired, surrounded by another base-pair, forming a stacking base-pair.

E
m Paogp = X7 0 @~ Z )7
(a; e U U UaD N aWa SOve e AV

Case 3:First position in paired to some position, but not involved in a stacking pair.

Eor a0 (o) .
Paogp = x* 9 g Z [ 7 P07 o

Fig. 1: Stochastic backtrack procedure for a given substru@urgither the rst position is left unpaired (top), a base-pair is formed
between the two extremities, stacking onto an exterior base-pair (middle), or paired without creating a stacking, de ning two regions on
which subsequent recursive calls are needed (bottom). For the empty structure (omitted here), the empty sequence is returned. Positior
indicated in red are assigned at the current stage of the backtrack.

constants x and x such that the distribution @&8C-contentasym- 3 RESULTS
ptotically converges towards a nor_me_ll Ia_w thPg expectation in3.1 Implementation
x N (1+ o(1)) and standard deviationin, ~ n (1+ o(1)). . . .
Furthermore, the distribution @C-content is highly concentrated, OUr softwarelncaRNAtion , wasimplemented iRython 2.7
as asserted by its limited standard deviation, therefore the expd/e UsedRNAinverse from the Vienna Package 2.QHofacker
cted number of attempt& required to gener&te avalid sequence Whgltlal" 1994). All time benchmarks were runona single AMD Opte-
=0 (resp. 2 (L = n))grows like ( ") (resp. (1) , i.e. ron(tm) 6278 Processqr ?t 2.4 GHz W|th cache of 512 KB. The
a constant), leading to the announced complexities. Formally, sincBenalty , associated with invalid base-pairs, was setgo
a suitable weighk must be recomputed for each targeted structure
and GC-content, then the numbéf of iterations required for the
converge can bB accounted for explicitly, leading to time complexi-

tiesin (( M + " n) k n)(if =0,i.e. without any tolerance) 4.5
and ( M k n)(if > 0). 4.0 +— Incarnation+RNAinverse
3.0
<25
(]
E20
'_
1.5
2.3 Postprocessing unpaired regions: A local/global 1.0
(glocal) hybrid approach 05
. . . . . - A_/_/Q\.——‘{
Due to our simpli ed energy model, unpaired regions are not subjec 0 9’::\
"20 30 40 50 60 70 80 90

to design constraints other than #B€-content, leading to modest Length

probabilities for refolded design candidates to match the targeted

structure. To improve these performances and test the complemepiy  3: Average time in seconds to generate one sequence for
tarity of our global sampling approach with previous contributions|ncaRNAtion andRNAinverse .

based on local search, we used Ri¢Ainverse software to rede-

sign unpaired regions. We speci ed a constraint mask to prevent

stacking base-pairs from being modi ed and, whenever necessary,

reestablished their conteatposteriori asRNAinverse has been

witnessed to take some liberties with constraints masks. As shown Figure 3 presents the average times spent rurinicgRNAtion

in Table 1 (Supplementary material), this postprocessing does natRNAinverse to generate one sequence with the requiBst+
drastically alter th&sC-content, so the glocal approach reasonablycontent. As expected, the time grows linearly in function of the
addresses the constrain@€-content design problem. length of the structures fdancaRNAtion




3.2 Dataset 3.4 Success rate

To evaluate the quality of our method, we used secondary structurédfe started by estimating the success rate of our methodology and
from theRNA STRAND database (Andronesetial, 2008). Those  computed the percentage of sequences with a MFE structure identi-
are known secondary structure from a variety of organisms. We concal to the target secondary structure. Figure 6 shows our results. We
sidered a subset &0 structures selected by Levigt al. (2012),  clearly see that before the post-processing stepRNAinverse )
whose length ranges betwe@® and 100 nucleotides. To ease the sequences sampled lngaRNAtion have a low success rate
the visualization of results, we clustered together structures havingrst row). As mentioned earlier, this could be explained by the fact
similar length, stacks density and proportion of free nucleotides irthat no selection criterion has been at this stage applied to unpaired
loops, leading to distributions of structures shown in Figure 4. nucleotides. Remarkably, after the local search optimization (with
RNAinverse ) of nucleotides in unpaired regions (second row),
we observe a dramatic improvement of our success rate. As expe-

3.3 Design
9 ) ) cted, we observed that length is, in general, not a good predictor
We ran our method as follows. First, we sampled approximd®y o the hardness of designing a structure. Instead, a high number

sequences per structure. Then, we use these sequences as seegiflee nucleotides in the structure seems to be a good measure of
RNAinverse . Finally, we computed the MFE with tHeNAfold the hardness of its design. Similarly, these data also show that desi-
program from théenna Package 2.(Hofackeret al, 1994). gning sequences with loBC-content is challenging for all types of
Before starting our benchmgrk, we asses the negd for pur metrférgets.
ods and performed an analysis of t&C-content drift achieved  \yg jnvestigated further the quality of the sequences generated
with state-of-the-art software. Using our dat_aseEOfst_ructures, by IncaRNAtion . In particular, we estimated the capacity of our
we generatedl00 samples per structure with classical softwa- methods to generate “good” sequences with desired folding capa-
res who do not control th&C-content. NamelyRNAinverse ,  pjities regardless of the property to fold exactly into the target
INFO-RNA, NUPACK:Design andFrnakenstein . We show  gyrcure. In Figure 7, we show the ratio of well predicted base pairs
the distribution of theSC-content of the sequences produced with j, the MFE structure of our sampled sequences. As above, we can
these softwares in Fig. 5 those distributions. observe that, in all cases, the sequences that are the hardest to design
As anticipated, we observe a clear bias toward [@@contents 416 those with an extremely lo®C-content. Indeed, the energetic
and a complete absence of sequence with less 308 of GC.  ¢ontripution of the base pairs to the stability of the structure is wea-
Thls_ s_tnkmg results motivates a need for methoqls that enable tgq, Interestingly, we also notice that the most accurate sequences
explicitly control the GC-content and more precisely that ena- yie|q a GC-content 0f70  10%. Overall, we observe that all our
ble to design sequences with ld&C-content (i.e. 30% or 1ess).  gamples have good folding properties, and that there is a correla-

In order to provide a complete overview of the performance ofijqn hetween the “precision” of the samples and the hardness of the
IncaRNAtion , we provide additional statistics for these software design.

in the supplementary material. We noticed a highly decreased structural sensitivity for the sequ-

ences with15% free nucleotides in the loops. However, one must

remain careful interpreting this observation, as the structures within
this class all originate from the PDB, and are relatively small (for the
complete STRAND DB, the average length is526énts, compared

to  38nts around 15% unpaired bases).

0.35

HEl NUPACK
BN INFO-RNA ||
Il RNAinverse

HEW Frnakenstein|| 3.5 Properties of designed sequences

In this section, we further analyze the generated sequences with a
MFE structure that folds into the target structure.

A desirable feature in sequence design, is to produce samples with
a high sequence diversity and stable secondary structure. Therefore,
in the following we will use two useful measures which are the sequ-
ence identity of the samples, and the Boltzmann probability of the
target structure in the low energy ensemble.

0.30f

I e I
= N N
% o &

% of sequences

=}
=
=]

0.05} 1 The sequence identity is de ned over a Setf aligned sequences
(in our case, all sequences have the same length and can be trivially
0'0%0 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 allgned) as:

%GC content

0 1

X 1 X § o
Fig. 5. Overall GC-content distribution for sequences desi- . Seq.identity  (7)
gned usingRNAinverse , INFO-RNA, NUPACK:Design and stis?2S S g2

Frnakenstein  folding in the desired structure.
wheres; is the nucleotide at positiarnin sequencs. Intuitively, this
measure captures the diversity of sequences generated by a given
method. Next, the Boltzmann frequency is de ned, for a struc8ire
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Fig. 4: Number of secondary structures per bin, according to our three clustering criteria.

Fig. 6: Success ratmcaRNAtion before after afteRNAinverse post-processing. The rst row shows the percentage of sampled
sequences folding into the target when using dnbaRNAtion . The second shows after processing previous resultsRiithinverse .

Fig. 7: Structural sensitivity (i.e¢¢ well predicted base pairs# base pairs in target) of the sampled sequences MFE.

and a sequenceas: large percentages of free nucleotides increase the dif culty of the
task.
E(sS) The thermodynamical stability of the target structure on the desi-

—7S
4 Frequency C) gned sequence is another important property when estimating the

performance of RNA design algorithms. We estimate the quality
whereZ ® is the partition function of sequenseThis measure tells  of our solutions in Figure 9. First, we observe a slow decline of
us how dominant is a structui® in the Boltzmann ensemble of the structure stability (i.e. the frequency) when the target structure
structures over a sequense A high value implies a stable stru- increases in size. Yet, for an averaG€-content, the frequency
cture. We compute this frequency wiNAfold from theVienna stays overl0% even at size 0100 nucleotides. Next, we note that
Package 2.0 (Hofackeretal, 1994). for the most dif cult target structures (i.e. the longer ones or those

Figure 8 shows the number of solutions generated (i.e. sequewith high percentages of unpaired nucleotides in loops)Gig:

nces with a MFE structure identical to the target structure). Herecontent have a limited (almost null) in uence on the stability of the
we note that lowGC-contents have a strong (negative) in uence target structure on the designed sequence. By contrast, this is less
on the number of sequences generated, and in parallel also affegtie for easiest and small structures with only few free nucleotides
negatively the sequence diversity. This observation emphasizes thg internal loops.
dif culty to design sequences with loutC-content. Once again,




Fig. 8: Number of solutions generated witicaRNAtion +RNAinverse on the rst row and their average sequence identity on the
second.

Fig. 9: Thermodynamical stability of the target structure. The curves report the average Boltzmann probability of the target structure (which
is also the MFE structure) at vario®C-contents w.r.t. the length of the target (left), density of stacked base pairs (centre) and number of
unpaired nucleotides in loops (right).

3.6 Global sampling vs Local search vs Glocal RNA-SSDwhile this advantage becomes less evident wheGthe
approach contentincreases. Our experiments on high€rcontents (i.e. 50%

we estimate the impact of the design meth@nd above) showed that our glocal strategy and the local search

@pproach perform similarly. Similarly, we did not nd any clear

evidence that a global, local or glocal approach outperforms oth-

ers when we compare at the thermodynamical stability of the target

structure (data not shown).

To conclude this study,
odology on the performances. More precisely, we aim to determin
the merits of a global sampling approadchcaRNAtion ), com-
pared to a glocal procedurén¢aRNAtion + RNAinverse )
and a local search methodologgNA-SSD. To our knowledge,
RNA-SSD besidencaRNAtion , is the only software that imple-
ments an explicit control of th& C-content.

Here, we compare the running time and the sequence diversitt CONCLUSION
of the solutions produced by each software. In addition, we focu§n this article, we described a novel algorithimcaRNAtion
on the design of sequences with I@C-contents (30% and less) for the RNA 'secondary structure design problem
as they are almost impossible to design with classical software (Se&ar '

Figure 5). as its minimal free-energy fold. Implementing a global sampling

Figure 3 shows th_e running time O_f_ each software_. These dat%pproach, it optimizes af nity towards the target secondary stru-
demonstrate the ef ciency and scalability of our techniques. In par-

ticular. thi ts that rat has th tential t bcture, while granting the user full control over tlC-content of
icuar, this gure suggests that our strategy has the potential to bg, resulting sequences. This extended control does not necessarily
applied ef ciently for designing sequences on long (and dif cult)

induce additional computational demands, and we showed the linear
target secondary structures at I@&C-content— A task that could

. . . complexity of both the preprocessing stage and the generation of
have not been achieved before due time requirements. prextty brep 9 stag g

Next how in Fi 10 th identit hcandidate sequences for the design, allowing for the design of larger
ext, we show in Figure € average sequence dentity achl; \y 50 complex secondary structures in a matter of minutes on
4 single processor (e.9.28 mins for 100 candidate sequences for

a 1500nts 16s rRNA). We evaluated the method on a benchmark

i.e. the design
an RNA sequence adopting a prede ned secondary structure

low GC-contents (i.e. 10%)incaRNAtion  slightly outperforms
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Fig. 10: Sequence identity &ficaRNAtion andRNAinverse for 10 and30% of GC.

composed of target secondary structures extracted fronRhhé Chang, A. L., Wolf, J. J., and Smolke, C. D. (2012). Synthetic RNA switches as a tool
STRAND database. We observed good overall success rate, with for temporal and spatial control over gene express@urr Opin Biotechnql23(5),

i 679-88.
the notable exception of Very.IO\.N targ?t%-come.m Q'O%)’.and Ding, Y. and Lawrence, E. (2003). A statistical sampling algorithm for RNA secondary
a good to excellent entropy within designed candidates. Finally, we g cture predictionNucleic Acids Re1(24), 72807301,
implemented an hybrid approach, using Ri¢Ainverse software  Garcia-Martin, J. A., Clote, P., and Dotu, |. (2013). RNAiFold: A constraint pro-
as a post-processing step for unpaired regions. This approach grea-gramming algorithm for RNA inverse folding and molecular desigrournal of
tly increased the success rate of the method, allowing for the design Bicinformatics and Computational Biology

. . . . Hofacker, I. L., Fontana, W., Stadler, P. F., Bonhoeffer, S., Tacker, M., and Schuster, P.
of highly diverse candidates for almost all of the structures in our (1994). Fast folding and comparison of RNA secondary structiviesatshefteiir

benchmark, while largely preserving the targe®ad-content. Chemie 125, 167—188.
In the future, we would like to complement this study by fur- Levin, A, Lis, M., Ponty, Y., O'Donnell, C. W., Devadas, S., Berger, B., and Wal-
ther investigating the potential of hybrid local/global —gocal — disglihl, J. (2012). A global sampling approach to designing and reengineering rna

approaches. A global sampling approach would capture the positive Secondary structurelucleic Acids Resi0(20), 10041-52,

f desi ... f i d . hil Lyngsg, R. B., Anderson, J. W., Sizikova, E., Badugu, A., Hyland, T., and Hein, J.
aspects of design, optimizing af nity towards a given structure while (2012). Frnakenstein: multiple target inverse RNA foldi@MC Bioinformatics

allowing the speci cation of expressive systems of constraints. 13, 260.
Designed sequences would serve as a seed for a restricted lodalnty, Y. and Saule, C. (2011). A Combinatorial Framework for Designing (Pseu-
approach which, by breaking unwanted symmetries, would perform doknotted) RNA Algorithms.  InWABI - 11th Workshop on Algorithms in

. . . . . . Bioinformatics - 2011Saarbrucken, Allemagne.
the negative part of the deSIQn’ while Idea"y maintaining Obedlenc%einharz, V., Ponty, Y., and Waldighl, J. (2013). A linear inside-outside algorithm for

to the constraints. Another perspective of this work is the incorpora- - correcting sequencing errors in structured ma sequencéoteeding of the 17th

tion of the full Turner energy model, which should in principle yield  Annual International Conference on Research in Computational Molecular Biology

better designs for unpaired regions. (RECOMB 2013)

Rodrigo, G., Landrain, T. E., and Jaramillo, A. (2012). De novo automated design
of small RNA circuits for engineering synthetic riboregulation in living ce®soc
Natl Acad Sci U S A10938), 15271-6.
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5 SUPPLEMENTARY DATA

5.1 Benchmark other softwares

To evaluate the performances d&icaRNAtion , we bench-
mark a set of classical softwares lackigC-content control.
Those areRNAinverse , INFO-RNA, NUPACK:Design and
Frnakenstein
identity and frequency for sequences generated them.

5.2 BenchmarkincaRNAtion +RNAinverse

To emphasize the usefulness of processim@RNAtion  seque-
nces withRNAinverse , we present the number of structures for
which at least one sequence was generated with the desired MFE
Figure. 12

5.3 Limited impact on GC of local-search
postprocessing ofncaRNAtion  output

each class o6C-content, we reported the observ@€-content in

the sequence initially generated mcaRNAtion , and the obse-
rvedGC-content after th&NAinverse postprocessing (as de ned

in Section 2.3). Our results show that tB€-content is relatively
well conserved (less than 6% variation), with a general tendency of
the postprocessing step to bring B€-content back to 50%.

. We present in Fig. 11 the average sequence

GC-content (%) of designed sequences

TargetGC-content (%)| IncaRNAtion IncaRNAtion + RNAinverse
(Global) (Glocal)
10% 15% 21% % 6%
30% 30% 33% % 3%
n 50% 48% 49% % 1%
70% 71% 69% & 2%
90% 83% 78% & 5%

Table 1. ObservedGC-content of solutions returned dpcaRNAtion
(2nd column) and after the application of the local search postprocessing
(3rd column).

Since local search approaches tend to experience a bias towards
GC-rich regions, it could be expected that our glocal approach,
by postprocessing unpaired regions using a local search algorithm,

would suffer from such a drift. However, as summarized in Table 1

we observed that the local search heuristic used to design nucleoti-

des in loop regions has a very limited impact on@t@-content. For

10



Fig. 11: The average sequence identity and frequency for softwares wii@gbntent control.

Fig. 12: The rst row shows the number of structures for which one generated sequence has the structure as MFE when only using
IncaRNAtion . The second row shows when we prockgsmRNAtion  results withRNAinverse .
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