N
N

N

HAL

open science

Concurrent Flexible Reversibility

Ivan Lanese, Michaél Lienhardt, Claudio Antares Mezzina, Alan Schmitt,

Jean-Bernard Stefani

» To cite this version:

Ivan Lanese, Michaél Lienhardt, Claudio Antares Mezzina, Alan Schmitt, Jean-Bernard Stefani. Con-
current Flexible Reversibility. 22nd European Symposium on Programming, ESOP 2013, Mar 2013,

Rome, Italy. pp.370-390, 10.1007/978-3-642-37036-6_ 21 . hal-00811629

HAL Id: hal-00811629
https://inria.hal.science/hal-00811629
Submitted on 10 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/hal-00811629
https://hal.archives-ouvertes.fr

Concurrent Flexible Reversibility™

Ivan Lanese!, Michael Lienhardt?, Claudio Antares Mezzina®, Alan Schmitt?,
and Jean-Bernard Stefani*

! Focus Team, University of Bologna/Inria, Italy lanese@cs.unibo.it
2 PPS Laboratory, Paris Diderot University, France 1ienhard@cs.unibo.it
3 SOA Unit, FBK, Trento, Italy mezzina@fbk.eu
4 Inria, France alan.schmitt@inria.fr, jean-bernard.stefani@inria.fr

Abstract. Concurrent reversibility has been studied in different ar-
eas, such as biological or dependable distributed systems. However, only
“rigid” reversibility has been considered, allowing to go back to a past
state and restart the exact same computation, possibly leading to diver-
gence. In this paper, we present croll-7, a concurrent calculus featuring
flexible reversibility, allowing the specification of alternatives to a com-
putation to be used upon rollback. Alternatives in croll-w are attached to
messages. We show the robustness of this mechanism by encoding more
complex idioms for specifying flexible reversibility, and we illustrate the
benefits of our approach by encoding a calculus of communicating trans-
actions.

1 Introduction

Reversible programs can be executed both in the standard, forward direction as
well as in the backward direction, to go back to past states. Reversible program-
ming is attracting much interest for its potential in several areas. For instance,
chemical and biological reactions are typically bidirectional, and the direction
of execution is fixed by environmental conditions such as temperature. Simi-
larly, quantum computations are reversible as long as they are not observed.
Reversibility is also used for backtracking in the exploration of a program state-
space toward a solution, either as part of the design of the programming language
as in Prolog, or to implement transactions. We are particularly interested in the
use of reversibility for modeling and programming concurrent reliable systems.
In this setting, the main idea is that in case of an error the program backtracks
to a past state where the decisions leading to the error have not been taken yet,
so that a new forward execution may avoid repeating the (same) error.
Reversibility has a non trivial interplay with concurrency. Understanding this
interplay is fundamental in many of the areas above, e.g., for biological or reliable
distributed systems, which are naturally concurrent. In the spirit of concurrency,
independent threads of execution should be rolled-back independently, but causal
dependencies between related threads should be taken into account.

* This work has been partially supported by the French National Research Agency
(ANR), projects REVER ANR 11 INSE 007 and PiCoq ANR 10 BLAN 0305.

2 Ivan Lanese et al.

This form of reversibility, termed causal consistent, was first introduced by
RCCS [12], a reversible variant of CCS. RCCS paved the way to the definition of
reversible variants of more expressive concurrent calculi [9, 20, 22, 24]. This line
of research considered rigid, uncontrolled, step-by-step reversibility. Step-by-step
means that each single step can be undone, as opposed, e.g., to checkpointing
where many steps are undone at once. Uncontrolled means that there is no hint as
to when to go forward and when to go backward, and up to where. Rigid means
that the execution of a forward step followed by the corresponding backward step
leads back to the starting state, where an identical computation can restart.

While these works have been useful to understand the basics of concurrent
reversibility in different settings, some means to control reversibility are required
in practice. In the literature four different forms of control have been proposed:
relating the direction of execution to some energy parameter [3], introducing
irreversible actions [13], using an explicit rollback primitive [19], and using a
superposition operator to control forward and backward execution [26].

With the exception of [26], these works have causally consistent reversibility
but exhibit rigid reversibility. However, rigid reversibility may not always be the
best choice. In the setting of reliable systems, for instance, rigid reversibility
means that to recover from an error a past state is reached. From this past state
the computation that lead to the error is still possible. If the error was due to a
transient fault, retrying the same computation may be enough to succeed. If the
failure was permanent, the program may redo the same error again and again.

Our goal is to overcome this limitation by providing the programmer with
suitable linguistic constructs to specify what to do after a causally consistent
backward computation. Such constructs can be used to ensure that new forward
computations explore new possibilities. To this end, we build on our previous
work on roll-m [19], a calculus where concurrent reversibility is controlled by the
roll v operator. Executing it reverses the action referred by v together with all the
dependent actions. Here, we propose a new calculus called croll-7, for compen-
sating roll-7, as a framework for flexible reversibility. We attempt to keep croll-w
as close as possible to roll-7 while enabling many new possible applications. We
thus simply replace roll-m communication messages a{P) by messages with al-
ternative a(P) + ¢(Q). In forward computation, a message a(P) + ¢(Q) behaves
exactly as a(P). However, if the interaction consuming it is reversed, the origi-
nal message is not recreated—as would be the case with rigid reversibility—but
the alternative ¢(Q) is released instead. Our rollback and alternative message
primitives provide a simple form of reversibility control, which always respects
the causal consistency of reverse computation. It contrasts with the fine-grained
control provided by the superposition constructs in [26], where the execution of
a CCS process can be constrained by a controller, possibly reversing identified
past actions in a way that is non-causally consistent.

Our contributions are as follows. We show that the simple addition of alter-
natives to roll-w greatly extends its expressive power. We show that messages
with alternative allow for programming different patterns for flexible reversibil-
ity. We show that croll-m can be used to model the communicating transactions

Concurrent Flexible Reversibility 3

of [14]. Notably, the tracking of causality of croll-w is more precise than the
one in [14], thus allowing to improve on the original proposal by avoiding some
spurious undo of actions. Additionally, we study some aspects of the behavioral
theory of croll-7, including a context lemma for barbed congruence. This allows
us to reason about croll-w programs, in particular to prove the correctness of the
encodings of primitives for flexible reversibility and of the transactional calculus
of [14]. Finally, we present an interpreter, written in Maude [11], for a small
language based on croll-7.

Outline. Section 2 gives an informal introduction to croll-7. Section 3 defines the
croll-m calculus, its reduction semantics, and it introduces the basics of its be-
havioral theory. Section 4 presents various croll-w idioms for flexible reversibility.
Section 5 outlines the croll-7w interpreter in Maude and the concurrent solution
for the Eight Queens problem. Section 6 presents an encoding and an analysis of
the TransCCS constructs from [14]. Section 7 concludes the paper with related
work and a mention of future studies. The paper includes short proof sketches
for the main results. We refer to the online technical report [18] for full proofs
and an additional example, an encoding of the transactional constructs from [2].

2 Informal Presentation

Rigid reversibility in roll-w. The croll-m calculus is a conservative extension of the
roll-7r calculus introduced in [19].> We briefly review the roll-m constructs before
presenting the extension added by croll-7. Processes in roll-7 are essentially pro-
cesses of the asynchronous higher-order m-calculus [27], extended with a rollback
primitive. Processes in roll-m cannot directly execute, only configurations can. A
configuration is essentially a parallel composition of tagged processes along with
memories tracking past interactions and connectors tracing causality informa-
tion. In a tagged process of the form k : P, the tag k uniquely identifies the
process P in a given configuration. We often use the term key instead of tag.

The uniqueness of tags in configurations is achieved thanks to the following
reduction rule that defines how parallel processes are split.

k:PlQ—)V’Clkg.k-<(k17]{?2)‘]{?12P|]€2:Q

In the above reduction, | is the parallel composition operator and v is the
restriction operator, both standard from the m-calculus. As usual, the scope of
restriction extends as far to the right as possible. Connector k < (k1, k2) is used
to remember that the process tagged by k£ has been split into two sub-processes
identified by the new keys k1 and ko. Thus complex processes can be split into
threads, where a thread is either a message, of the form a(P) (where a is a
channel name), a receiver process (also called a trigger), of the form a(X)v, P,
or a rollback instruction of the form roll k, where k is a key.

5 The version of roll-r presented here is slightly refined w.r.t. the one in [19].

4 Ivan Lanese et al.

A forward communication step occurs when a message on a channel can be
received by a trigger on the same channel. It takes the following form (roll-7 is
an asynchronous higher-order calculus).

(k1 :a(P)) | (k2 :a(X)py Q) — vk k: Q{""/x } | [us; K]

In this forward step, keys k1 and ko identify threads consisting respectively of
a message a(P) on channel a and a trigger a(X) >, @ expecting a message on
channel a. The result of the message input yields, as in higher-order =, the body
of the trigger () with the formal parameter X instantiated by the received value,
i.e., process P. Message input also has three side effects: (i) the tagging of the
newly created process Q{F*/x -} by a fresh key k; (ii) the creation of a memory
[; k], which records the original two threads,® p = (k1 : a(P)) | (ks : a(X)>, Q),
together with key k; and (iii) the instantiation of variable v with the newly
created key k (the trigger construct is a binder both for its process parameter
and its key parameter).

In roll-w, a forward computation, i.e., a series of forward reduction steps
as above, can be perfectly undone by backward reductions triggered by the
occurrence of an instruction of the form roll k, where k refers to a previously
instantiated memory. In roll-m, we have for instance the following forward and

backward steps, where M = (k1 : a(Q)) | (k2 : a(X) >, X | roll v):

M — vk . (k:Q|roll k)| [M;k] —
vk ks ks k< (kg,k4)|k32@|ki4:r0”k ‘ [M,k‘] — M

The communication between threads k; and ks in the first step and the split of
process k into k3 and k4 are perfectly undone by the third (backward) step.

More generally, the set of memories and connectors of a configuration M
provides us with an ordering <: between the keys of M that reflects their causal
dependency: k' <: k means that key k' has key k as causal descendant. Thus,
the effects of a rollback can be characterized as follows. When a rollback takes
place in a configuration M, triggered by an instruction k, : roll k, it suppresses
all threads and processes whose tag is a causal descendant of k, as well as all
connectors k' < (k1, ko) and memories m = [ky : 71 | ko : T2; k'] whose key k'
is a causal descendant of k. When suppressing such a memory m, the rollback
operation may release a thread k; : 7; if k; is not a causal descendant of k (at
least one of the threads of m must have k as causal antecedent if k' has k as
causal antecedent). This is due to the fact that a thread that is not a causal
descendant of k may be involved in a communication (and then captured into
a memory) by a descendant of k. This thread can be seen as a resource that is
taken from the environment through interaction, and it should be restored in
case of rollback. Finally, rolling-back also releases the content p of the memory
[u; k] targeted by the roll, reversing the corresponding communication step.

5 Work can be done to store memories in a more efficient way. We will not consider
this issue in the current paper; an approach can be found in [22].

Concurrent Flexible Reversibility 5

Flexible reversibility in croll-m. In roll-m, a rollback perfectly undoes a computa-
tion originated by a specific message receipt. However, nothing prevents the same
computation from taking place again and again (although not necessarily in the
same context, as independent computations may have proceeded on their own
in parallel). To allow for flexible reversibility, we extend roll-m with a single new
construct, called a message with alternative. In croll-, a message may now take
the form a(P) + C, where alternative C' may either be a message ¢(Q) + 0 with
null alternative or the null process 0. When the message receipt of k : a(P) +C
is rolled-back, configuration k : C' is released instead of the original k : a(P), as
would be the case in roll-7. (Only the alternative associated to the message in the
memory [u; k] targeted by the roll is released: other processes may be restored,
but not modified.) For example, if M = (k; : a(Q)+0) | (k2 : a(X) >, X | roll)
then we have the following computation, where the communication leading to
the rollback becomes disabled.

M —s vk.(k: Q| roll k) | [M;k] —
ka3k4.k< (kg,k4)|k’32@|]€4 : roIIk|[M,k] —
ki:0| (k2 :a(X)>y X |rolly)

We will show that croll-7 is powerful enough to devise various kinds of al-
ternatives (see Section 4), whose implementation is not possible in roll-m (cf.
Theorem 2). Also, thanks to the higher-order aspect of the calculus, the behav-
ior of roll-7 can still be programmed: rigid reversibility can be seen as a particular
case of flexible reversibility. Thus, the introduction of messages with alternatives
has limited impact on the definition of the syntax and of the operational seman-
tics, but it has a strong impact on what can actually be modeled in the calculus
and on its theory.

3 The croll-w Calculus: Syntax and Semantics

3.1 Syntax

Names, keys, and variables. We assume the existence of the following denumer-
able infinite mutually-disjoint sets: the set A" of names, the set K of keys, the
set Vi of key variables, and the set Vp of process variables. N denotes the set
of natural numbers. We let (together with their decorated variants): a, b, c range
over N; h, k,l range over K; u,v,w range over N'U K; v range over Vi; X,Y, Z
range over Vp. We denote by @ a finite set uy ... uy.

Syntaz. The syntax of the croll-m calculus is given in Figure 1. Processes, given
by the P, @ productions, are the standard processes of the asynchronous higher-
order m-calculus [27], except for the presence of the roll primitive, the extra
bound tag variable in triggers, and messages with alternative that replace roll-7
messages a(P). The alternative operator + binds more strongly than any other
operator. Configurations in croll-m are given by the M, N productions. A config-
uration is built up from tagged processes k : P, memories [u; k|, and connectors

6 Ivan Lanese et al.

PQ:=0| X |vaP | (P|Q)]| a(X)>yP | a(P)=C | rollk | roll y
M,N:=0|vuM | (M|N) | Ek:P | [uk] | k=< (ki,ke) C:=a(P)+0] 0
po= (k1 :a(P)+C) | (k2:a(X)>y Q)
a,b,ce N XY, ZeVp vV u,v,we NUK hk,lek

Fig. 1. Syntax of croll-w

k < (k1,k2). In a memory [u; k|, we call u the configuration part of the memory
and k its key. P denotes the set of croll-m processes and C the set of croll-m con-
figurations. We let (together with their decorated variants) P, @, R range over P
and L, M, N range over C. We call thread a process that is either a message with
alternative a(P)=+C, a trigger a(X)>, P, or a rollback instruction roll k. We let 7
and its decorated variants range over threads. We write [[;c; M; for the parallel
composition of configurations M; for each ¢ € I (by convention [[;c; M; = 0 if
I =0), and we abbreviate a(0) to a.

Free identifiers and free variables. Notions of free identifiers and free variables
in croll-w are standard. Constructs with binders are of the following forms: va. P
binds the name a with scope P; vu. M binds the identifier v with scope M; and
a(X) >y P binds the process variable X and the key variable v with scope P.
We denote by £fn(P) and £n(M) the set of free names and keys of process P and
configuration M, respectively. Note in particular that fn(k : P) = {k} U £n(P),
fo(roll k) = {k}. We say that a process P or a configuration M is closed if it
has no free (process or key) variable. We denote by P.; and C.; the sets of closed
processes and configurations, respectively. We abbreviate a(X)., P, where X is
not free in P, to a>, P; and a(X) >, P, where v is not free in P, to a(X) > P.

Remark 1. We have no construct for replicated processes or internal choice in croll-7r:
as in the higher-order w-calculus, these can easily be encoded.

Remark 2. In the remainder of the paper, we adopt Barendregt’s Variable Convention:
if terms t1, . .., t, occur in a certain context (e.g., definition, proof), then in these terms
all bound identifiers and variables are chosen to be different from the free ones.

3.2 Reduction Semantics

The reduction semantics of croll-7 is defined via a reduction relation —, which
is a binary relation over closed configurations (— C Cg x C¢;), and a structural
congruence relation =, which is a binary relation over configurations (= C CxC).
We define configuration contexts as “configurations with a hole e”, given by
the grammar: C == e | (M | C) | wvu.C. General contexts G are just
configurations with a hole e in a place where an arbitrary process P can occur.
A congruence on processes or configurations is an equivalence relation R that

Concurrent Flexible Reversibility 7

(EPARC) M |[N=N | M (E.PARA) My | (M | Ms) = (M | My) | Ms
(ENLM)M |0=M (E.NEWN) vu.0 =0
(E.NEWC) vu.vv. M = vv.vu. M (E.NEWP) (vu. M) | N =vu.(M | N)
(Ea)M =« N = M=N (E.TAGC) k < (k1,k2) =k < (k2, k1)

(E.TAGA) vh. k< (h, ks) | h < (k‘l,kg) =vh.k < (k1,h) ‘ h < (k‘z,ks)

Fig. 2. Structural congruence for croll-7.

(S.Com) p=(k1:a(P)=C) | (k2 : a(X) >y Q2)
|)

(k1 :a(P)+C) | (k2 : a(X) >y Qo) — vk. (k: Qa{™" /x2}) | 13 K]
(S.TacN) k:va.P — va.k: P
(STAGP) k: P | Q — vki ko k < (ki ko) | k1 : P k2 Q

<N complete(N | [u; k] | (kr : roll k)) u' = xtr(u)

S.RoLL
(8ot N [K] | (b voll £) — 7 | Nin
M — N M=M M — N’ N =N
(S.07X) —— (S.Eqv)
C[M] — C[N] M—N

Fig. 3. Reduction rules for croll-7

is closed for general or configuration contexts: PRQ = G[P]RG[Q] and
MRN = C[M]RC|N].

Structural congruence = is defined as the smallest congruence on configu-
rations that satisfies the axioms in Figure 2, where ¢t =, t' denotes equality of
t and ¢’ modulo a-conversion. Axioms E.PARC to E.a are standard from the
m-calculus. Axioms E.TAGC and E.TAGA model commutativity and associativ-
ity of connectors, in order not to have a rigid tree structure. Thanks to axiom
E.NEwC, vu. A stands for vuy ... up. Aif 4 =wuy ... up.

Configurations can be written in normal form using structural congruence.

Lemma 1 (Normal form). Given a configuration M, we have:
M =vi. [[k Py |] Jlmas k) |] R < (ki BT
i J l

The reduction relation — is defined as the smallest binary relation on closed
configurations satisfying the rules of Figure 3. This extends the naive semantics of

8 Ivan Lanese et al.

roll-m introduced in [19],” and outlined here in Section 2, to manage alternatives.
We denote by = the reflexive and transitive closures of —.

Reductions are either forward, given by rules S.CoM, S. TAGN, and S. TAGP,
or backward, defined by rule S.ROLL. They are closed under configuration con-
texts (rule S.CTX) and under structural congruence (rule S.EQV). The rule for
communication S.CoM is the standard communication rule of the higher-order
m-calculus with the side effects discussed in Section 2. Rule S. TAGN allows re-
strictions in processes to be lifted at the configuration level. Rule S. TAGP allows
to split parallel processes. Rule S.ROLL enacts rollback, canceling all the effects
of the interaction identified by the unique key k, and releasing the initial con-
figuration that gave rise to the interaction, where the alternative replaces the
original message. This is the only difference between croll-7 and roll-7: in the lat-
ter, the memory p was directly released. However, this small modification yields
significant changes to the expressive power of the calculus, as we will see later.

The rollback impacts only the causal descendants of k, defined as follows.

Definition 1 (Causal dependence). Let M be a configuration and let Ty
be the set of keys occurring in M. Causal dependence <:p; is the reflexive and
transitive closure of <pr, which is defined as the smallest binary relation on Tyy
satisfying the following clauses:

—k <y K if k< (k1,ke) occurs in M with k' = ky or k' = ka;
— k <y K if a thread k : P occurs (inside p) in a memory [; k'] of M.

If the configuration M is clear from the context, we write k <: k" for k <:ps k'.

A backward reduction triggered by roll k involves all and only the descen-
dants of key k. We ensure they are all selected by requiring that the configuration
is complete, and that no other term is selected by requiring k-dependence.

Definition 2 (Complete configuration). A configuration M is complete,
denoted as complete(M), if, for each memory [u; k] and each connector k' <
(k, k1) or k' < (ki,k) that occurs in M there exists in M either a connector
k < (h1,h2) or a tagged process k : P (possibly inside a memory).

A configuration M is k-dependent if all its components depend on k.

Definition 3 (k-dependence). Let M be a configuration such that:

M = v [Tier (ki 2 B) [Tieslngs kil | Ther ki < (b, K') with k & a.
Configuration M is k-dependent, written k <: M by overloading the notation for
causal dependence among keys, if for every i in I U J U L, we have k <:p; k;.

Rollback should release all the resources consumed by the computation to be
rolled-back which were provided by other threads. They are computed as follows.

" We extend the naive semantics instead of the high-level or the low-level semantics
(also defined in [19]) for the sake of simplicity. However, reduction semantics corre-
sponding to the high-level and low-level semantics of roll-7 can similarly be specified.

Concurrent Flexible Reversibility 9

Definition 4 (Projection). Let M be a configuration such that:
M = v [lier (ki « Pi) | [Lieslky © Ry [K] 2 Tiiks] | Ther ke < (kp, K') with
k ¢ u. Then:

Mék:I/ﬁ.(H k;/ 2Rj/) | (H ;/// :Tj//)

j/eJ/ j//eJ//
where J' ={j € J | k £:ki} and J" ={j € J | k £: k}}.

Intuitively, M4 consists of the threads inside memories in M which are not
dependent on k.

Finally, and this is the main novelty of croll-7, function xtr defined below
replaces messages from the memory targeted by the roll by their alternatives.

Definition 5 (Extraction function).

xtr(M | N) = xtr(M) | xtr(N) xtr(k:a(P)+C)=k:C
xtr(k:a(X)>, Q) =k:a(X)>, Q

No other case needs to be taken into account as xtr is only called on the
contents of memories.

Remark 3. Not all syntactically licit configurations make sense. In particular, we ex-
pect configurations to respect the causal information required for executing croll-m
programs. We therefore work only with coherent configurations. A configuration is co-
herent if it is obtained by reduction starting from a configuration of the form vk.k : P
where P is closed and contains no roll A primitive (all the roll primitives should be of
the form roll 7).

3.3 Barbed Congruence

We define notions of strong and weak barbed congruence to reason about croll-7
processes and configurations. Name a is observable in configuration M, denoted
as M lq, it M =va. (k:a(P)+C) | N, with a € 4. We write MR, where R is
a binary relation on configurations, if there exists N such that M RN and N .
The following definitions are classical.

Definition 6 (Barbed congruences for configurations). A relation R C
Cet X Cep on closed configurations is a strong (respectively weak) barbed simula-
tion if whenever M R N,

— M|, implies N |, (respectively N =|,);
— M — M’ implies N — N’ (respectively N = N') with M"RN’.

A relation R C Cy % C is a strong (weak) barbed bisimulation if R and R~*
are strong (weak) barbed simulations. We call strong (weak) barbed bisimilarity
and denote by ~ (=) the largest strong (weak) barbed bisimulation. The largest
congruence for configuration contexts included in ~ (=) is called strong (weak)
barbed congruence, denoted by ~. (=.).

10 Ivan Lanese et al.

The notion of strong and weak barbed congruence extends to closed and open
processes, by considering general contexts that form closed configurations.

Definition 7 (Barbed congruences for processes). A relation R C Py %
P.i on closed processes is a strong (resp. weak) barbed congruence if whenever
PRQ, for all general contexts G such that G[P] and G[Q)] are closed configura-
tions, we have G[P] ~. G[Q] (resp. G[P] =~. G[Q]).

Two open processes P and @ are said to be strong (resp. weak) barbed con-
gruent, denoted by P ~% Q (resp. P =2 Q) if for all substitutions o such that
Po and Qo are closed, we have Po ~. Qo (resp. Po ~. Qo).

Working with arbitrary contexts can quickly become unwieldy. We offer the
following Context Lemma to simplify the proofs of congruence.

Theorem 1 (Context lemma). Two processes P and Q are weak barbed con-
gruent, P =% Q, if and only if for all substitutions o such that Po and Qo are
closed, all closed configurations M, and all keys k, we have: M | (k : Po) ~ M |

(k: Qo).

The proof of this Context Lemma is much more involved than the corresponding
one in the m-calculus, notably because of the bookkeeping required in dealing
with process and thread tags. It is obtained by composing the lemmas below.

The first lemma shows that the only relevant configuration contexts are par-
allel contexts.

Lemma 2 (Context lemma for closed configurations). For any closed
configurations M, N, M ~. N if and only if, for all closed configurations L,
M| L~ N |L. Likewise, M =, N if and only if, for all L, M | L~ N | L.

Proof. The left to right implication is immediate, by definition of ~.. For the
other direction, the proof consists in showing that R = {(C[M], C[N]) | VL, M |
L ~ N | L} is included in ~. The weak case is identical to the strong one. O

We can then prove the thesis on closed processes.

Lemma 3 (Context lemma for closed processes). Let P and Q be closed
processes. We have P =, @Q if and only if, for all closed configuration contexts
C and k & fu(P,Q), we have Clk : P] = Clk : Q].

Proof. The left to right implication is clear. One can prove the right to left
direction by induction on the form of general contexts for processes, using the
factoring lemma below for message contexts. a

Lemma 4 (Factoring). For all closed processes P, all closed configurations M
such that M{¥ /x} is closed, and all c,t,k, k' & £n(M, P), we have

M{"/x} mc ve,t ko, ko M{®/x} | ko : t{Yp) | ko : Y

where Yp =t(Y)> (¢c>P) | (YY) | Y.

Concurrent Flexible Reversibility 11

‘We then deal with open processes.

Lemma 5 (Context lemma for open processes). Let P and Q be (possibly
open) processes. We have P =2 Q if and only if for all closed configuration
contexts C, all substitutions o such that Po and Qo are closed, and all k &
fn(P,Q), we have Clk : Po] = Clk : Qo.

Proof. For the only if part, one proceeds by induction on the number of bindings
in 0. The case for zero bindings follows from Lemma 3. For the inductive case,
we write P[e] for a process where an occurrence of 0 has been replaced by e, and
we show that contexts of the form P = a(R) | a(X) > IP’[e] where a is fresh and
P = a(R) | a(X)>, P[] where a is fresh and X never occurs in the continuation
actually enforce the desired binding.

For the if part, the proof is by induction on the number of triggers. If the
number of triggers is 0 then the thesis follows from Lemma 3. The inductive
case consists in showing that equivalence under substitutions ensures equivalence
under a trigger context. O

Proof (of Theorem 1). A direct consequence of Lemma 5 and Lemma 2. O

4 croll-m Expressiveness

4.1 Alternative Idioms

The message with alternative a(P) + C triggers alternative C' upon rollback.
We choose to restrict C' to be either a message with 0 alternative or 0 itself in
order to have a minimal extension of roll-w. However, this simple form of alter-
native is enough to encode far more complex alternative policies and constructs,
as shown below. We define the semantics of the alternative idioms below by
only changing function xtr in Definition 5. We then encode them in croll-7 and
prove the encoding correct w.r.t. weak barbed congruence. More precisely, for
every extension below the notion of barbs is unchanged. The notion of barbed
bisimulation thus relates processes with slightly different semantics (only xtr
differs) but sharing the same notion of barbs. Since we consider extensions of
croll-7r, in weak barbed congruence we consider just closure under croll-r con-
texts. By showing that the extensions have the same expressive power of croll-7,
we ensure that allowing them in contexts would not change the result. Every
encoding maps unmentioned constructs homomorphically to themselves. After
having defined each alternative idiom, we freely use it as an abbreviation.

Arbitrary alternatives. Messages with arbitrary alternative can be defined by
allowing C' to be any process). No changes are required to the definition of
function xtr. We can encode arbitrary alternatives as follows, where c is not free
in P,Q.

(a(P) + Q)aa = ve. a{(P)aa) + c{(Q)aa) =0 | c(X) > X

Proposition 1. P =, (P)., for any closed process with arbitrary alternatives.

12 Ivan Lanese et al.

R=Ri1UR2UR3UR4URsUId
Ri={(k:a(P)+Q|L,k: (vc.a{P)+c{Q)+0 | c(X)> X) | L)}
Re={{k:a(P)+Q|L,vckiksk < (ki,k2) | k1:a(P)=c(Q)+0]ks:c(X)>X|L)}
Rs={(vh.[k:a(P)+Q |k :a(X)py R;h] | L,

vekika bk < (ki,k2) | [k1: a{P) +c(Q)+0 |k :a(X) >y Ry D] | kot c(X)> X | L)}
Ra={{k:Q|L" vckikak < (ki,k2) | k1:c(Q)+0]ks:c(X)> X | L")}
Rs={(k:Q|L" vckikah.k < (ki,k2) | [k1:c{(Q)=0|ka:c(X)>X;h]|h:Q| L")}

Fig. 4. Bisimulation relation for arbitrary alternatives.

Proof. We consider just one instance of arbitrary alternative, the thesis will
follow by transitivity.

Thanks to Lemma 5 and Lemma 2, we only need to prove that for all closed
configurations L and k ¢ fn(P), we have k : a(P)+Q | L = k : (vc.a(P) +
c(@)Y+0|c(X)r> X) | L. We consider the relation R in Figure 4 and prove that
it is a weak barbed bisimulation. In every relation, L is closed and k ¢ fn(P).

In R, the right configuration can reduce via rule S.TagN followed by S.TagP.
These lead to Ry. Performing these reductions is needed to match the barb
and the relevant reductions of the left configuration, thus we consider directly
Rso. In R4 the barbs coincide. Rollbacks lead to the identity. The only possible
communication is on a, and requires L = L' | ¥’ : a(X) >, R. It leads to R,
where L = L' | R{"""/x ,}. In R3 the barbs coincide too. All the reductions
can be matched by staying in R3 or going to the identity, but for executing a
roll with key h. This leads to R4. From R4 we can always execute the internal
communication at ¢ leading to Rs. The thesis follows from the result below,
whose proof requires again to find a suitable bisimulation relation.

Lemma 6. For each configuration M k-dependent and complete such that k', t,
kl,]{ig ¢ fn(M) we have M e l/kj/tkl ko k < (k‘l,k‘g) | []431 : t<Q> =C | ko :

HX) > Ry K] | M{¥ [} -

Proofs concerning other idioms follow similar lines, and can be found in the
online technical report [18].

A particular case of arbitrary alternative a(P) + @ is when @ is a message
whose alternative is not 0. By applying this pattern recursively we can write
a1 {P)) ...+ ap(Py,) + Q. In particular, by choosing a; = --- = a, and P| =
.-+ = P, we can try n times the alternative P before giving up by executing Q.

Endless retry. We can also retry the same alternative infinitely many times, thus
obtaining the behavior of roll-m messages. These messages can be integrated into
croll-w semantics by defining function xtr as the identity on them.

(@(P))er = v£.Y | al(P)er) = (Y)Y =HZ) > Z | a{(P)er) = t(Z)

Concurrent Flexible Reversibility 13

Proposition 2. P =, (P)., for any closed process with roll-m messages.
As corollary of Proposition 2 we thus have the following.

Corollary 1. croll-m is a conservative extension of roll-m.

Triggers with alternative. Until now we attached alternatives to messages. Sym-
metrically, one may attach alternatives to triggers. Thus, upon rollback, the
message is released and the trigger is replaced by a new process.

The syntax for triggers with alternative is (a(X) >y Q) +b(Q’) + 0. As for
messages, we use a single message as alternative, but one can use general pro-
cesses as described earlier. Triggers with alternative are defined by the extract
clause below.

xtr(k: (a(X)p, Q)+b(Q)+0)=Fk:b(Q")+0

Interestingly, messages with alternative and triggers with alternative may coex-
ist. The encoding of triggers with alternative is as follows.

((a(X)py Q)+b{(Q)+0) o = ved.C+d=0 | (coya(X)>(Q)at) | (d>b{(Q)ar)=0)

Proposition 3. P ~. (P)a for any closed process with triggers with alterna-
tive.

4.2 Comparing croll-w and roll-m

While Corollary 1 shows that croll-7 is at least as expressive as roll-w, a natural
question is whether croll-7 is actually strictly more expressive than roll-7 or not.
The theorem below gives a positive answer to this question.

Theorem 2. There is no encoding (e) from croll- to roll-w such that for each
croll-mt configuration M :

1. if M has a computation including at least a backward step, then (M) has a
computation including at least a backward step;
2. if M has only finite computations, then (M) has only finite computations.

Proof. Consider configuration M = vk.k : @+b=+0 | a>-roll . This configuration
has a unique possible computation, composed by one forward step followed by
one backward step. Assume towards a contradiction that an encoding exists and
consider (M]). (M) should have at least a computation including a backward
step. From roll-7 loop lemma [19, Theorem 1], if we have a backward step, we
are able to go forward again, and then there is a looping computation. This is
in contrast with the second condition of the encoding. The thesis follows. a

The main point behind this result is that the Loop Lemma, a cornerstone of
roll-m theory [19] capturing the essence of rigid rollback (and similar results
in [9, 20, 22, 24]), does not hold in croll-w. Naturally, the result above does not
imply that croll-w cannot be encoded in HOx or in m-calculus. However, these
calculi are too low level for us, as hinted at by the fact that the encoding of
a simple reversible higher order calculus into HO7 is quite complex, as shown
in [20].

14 Ivan Lanese et al.

Qi £ (acti(zi) > p7;<i, 1> - ... %pi<i, 8> *f1<0> =0 ‘
(pi(x1) Dy, actiy1(0) | fix1(2) > roll i | oki(wi) > ... ok;(wi—1)>lei(xi) +0 |

H;;ll ¢j(yj) > if err(xi,y;) then roll v; else ok;{0) +0))

err((z1,22), (y1,92)) £ (@1 =91 Va2 =12 Vo1 — y1| = |z2 — 32|)

Fig. 5. The i-th queen

5 Programming in croll-7

A main goal of croll-7 is to make reversibility techniques exploitable for appli-
cation development. Even if croll-7 is not yet a full-fledged language, we have
developed a proof-of-concept interpreter for it. To the best of our knowledge, this
is the first interpreter for a causal-consistent reversible language. We then put the
implementation at work on a few simple, yet interesting, programming problems.
We detail below the algorithm we devised to solve the Eight Queens problem [4,
p. 165]. The interpreter and the code for solving the Eight Queens problem
are available at http://proton.inrialpes.fr/ mlienhar/croll-pi/implem,
together with examples of encodings of primitives for error handling, and an
implementation of the car repair scenario of the EU project Sensoria.

The interpreter for croll-m is written in Maude [11], a language based on both
equational and rewriting logic that allows the programmer to define terms and
reduction rules, e.g., to execute reduction semantics of process calculi. Most
of croll-n’s rules are straightforwardly interpreted, with the exception of rule
S.RoLL. This rule is quite complex as it involves checks on an unbounded num-
ber of interacting components. Such an issue is already present in roll-w [19],
where it is addressed by providing an easier to implement, yet equivalent, low-
level semantics. This semantics replaces rule S.ROLL with a protocol that sends
notifications to all the involved components to roll-back, then waits for them to
do so. Extending the low-level semantics from roll-w to croll-m simply requires
the application of function xtr to the memory targeted by the rollback. We do
not detail the low-level semantics of croll-m here, and refer the reader to [19] for
a detailed description in the setting of roll-r. Our Maude interpreter is based on
this low-level semantics, extended with values (integers and pairs) and with the
if-then-else construct. It is fairly concise (less than 350 lines of code).

The FEight Queens problem is a well-known constraint-programming probem
which can be formulated as follows: how to place 8 queens on an 8 x 8 chess
board so that no queen can directly capture another? We defined an algorithm
in croll-w where queens are concurrent entities, numbered from 1 to 8, all exe-
cuting the code schema shown in Figure 5. We use x to indicate a pair of integer
variables (x1,x2), and replicated messages !¢;(x) =0 to denote the encoding of a
parallel composition of an infinite number of messages ¢;(x) =0 (cf. Remark 1).

The queens are activated in numeric order. The i-th queen is activated by
messages on channels act; from its predecessor. When a queen is activated it

Concurrent Flexible Reversibility 15

looks for its position by trying sequentially all the positions in the i-th row
of the chess board. To try a position, it sends it over channel p; and checks
whether the position conflicts with the choices of the other queens. This is done
by computing (in parallel) err(x;,x;) for each j < ¢. If a check fails, roll ~;
rolls-back the choice of the position. The alternatives mechanism allows to try
the next position. If no suitable position is available, the choice of position of
the previous queen is rolled-back (possibly recursively) by the communication
over f;. If instead the check succeeds, it generates a message on channel ok;.
When there are exactly ¢« — 1 messages on the channel ok;, the queen commits
its position on c;.

6 Asynchronous Interacting Transactions

This section shows how croll-w can model in a precise way interacting transac-
tions with compensations as formalized in TransCCS [14]. Actually, the natural
croll-m encoding improves on the semantics in [14], since croll-7 causality tracking
is more precise than the one in TransCCS, which is based on dynamic embedding
of processes into transactions. Thus croll-m avoids some spurious undo of actions,
as described below. Before entering the details of TransCCS, let us describe the
general idea of transaction encoding.

We consider a very general notion of atomic (but not necessarily isolated)
transaction, i.e., a process that executes completely or not at all. Informally, a
transaction [P, @], with name 7 executing process P with compensation () can
be modeled by a process of the form:

[P,Qly=vac.a+c+0] (a>y P)| (c>Q)

Intuitively, when [P, Q] is executed, it first starts process P under the rollback
scope . Abortion of the transaction can be triggered in P by executing a roll .
Whenever P is rolled-back, the rollback does not restart P (since the message
on a is substituted by the alternative on ¢), but instead starts the compensation
process @. In this approach commit is implicit: when there is no reachable roll -,
the transaction is committed. From the explanation above, it should be clear that
in the execution of [P, Q],, either P executes completely, i.e., until it reaches
a commit, or not at all, in the sense that it is perfectly rolled-back. If P is
ever rolled-back, its failed execution can be compensated by that of process Q.
Interestingly, and in contrast with irreversible actions used in [13], our rollback
scopes can be nested without compromising this all-or-nothing semantics.

Let us now consider an asynchronous fragment of TransCCS [14], removing
choice and recursion. Dealing with the whole calculus would not add new diffi-
culties related to rollback, but only related to the encoding of such operators in
higher-order 7. The syntax of the fragment of TransCCS we consider is:

Pi=0|vaP | (P|Q) |a|aP | cok | [PryQ]

Essentially, it extends CCS with a transactional construct [P Q], executing a
transaction with body P, name k and compensation), and a commit operator
co k.

16 Ivan Lanese et al.

k ¢ fn(R)

(REND) (b QI TR — [P Ror Q|]

(R-Comm) @|a.P — P

(R-Co) [PlcokrrQ] — P (R-AB) [Prr Q] — @
and is closed under active contexts va. e, o | Q and [e>, Q], and structural congruence.

Fig. 6. Reduction rules for TransCCS

The rules defining the semantics of TransCCS are given in Figure 6. Struc-
tural congruence contains the usual rules for parallel composition and restriction.
Keep in mind that transaction scope is a binder for its name k, thus k& does not
occur outside the transaction, and there is no name capture in rules R-Co and
R-Emb.

A croll-w transaction [P, @], as above has explicit abort, specified by roll ~,
where +y is used as the transaction name, and implicit commit. TransCCS takes
different design choices, using non-deterministic abort and programmable com-
mit. Thus we have to instantiate the encoding above.

Definition 8 (TransCCS encoding). Let P be a TransCCS process. Its en-
coding (o)) in croll-m is defined as:

(va. P); = va. (P), (P @) = (P | (@) (@¢=a
(a.P): = av> (P): (col)y =1(X)>0 (o): =0

([P > QI)e = [(PDs | Kroll) [1(X) > X, ()]

Since in croll-m only configurations can execute, the behavior of P should be
compared with vk. k : (P);.

In the encoding, abort is always possible since at any time the only occurrence
of the roll in the transaction can be activated by a communication on /. On the
other hand, executing the encoding of a TransCCS commit disables the roll
related to the transaction. This allows to garbage collect the compensation, and
thus corresponds to an actual commit. Note, however, that in croll-7 the abort
operation is not atomic as in TransCCS since the roll related to a transaction
first has to be enabled through a communication on I, disabling in this way
any possibility to commit, and then it can be executed. Clearly, until the roll is
executed, the body of the transaction can continue its execution. To make abort
atomic one would need the ability to disable an active roll, as could be done
using a (mixed) choice such as (roll k) + (I > 0). In this setting an output on
[would commit the transaction. Adding choice would not make the reduction
semantics more difficult, but its impact on behavioral equivalence has not been
studied yet.

The relation between the behavior of a TransCCS process P and of its transla-
tion (P); is not immediate, not only because of the comment above on atomicity,
but also because of the approximate tracking of causality provided by TransCCS.

Concurrent Flexible Reversibility 17

TransCCS tracks interacting processes using rule (R-EMB): only processes inside
the same transaction may interact, and when a process enters the transaction it
is saved in the compensation, so that it can be restored in case of abort. How-
ever, no check is performed to ensure that the process actually interacts with
the transaction code. For instance, a process @ | a.P may enter a transaction
[@>k R] and then perform the communication at a. Such a communication would
be undone in case of abort. This is a spurious undo, since the communication
at a is not related to the transaction code. Actually, the same communication
could have been performed outside the transaction, and in this case it would not
have been undone.

In croll-7 encoding, a process is “inside” the transaction with key k if and only
if its tag is causally dependent on k. Thus a process enters a transaction only by
interacting with a process inside it. For this reason, there is no reduction in croll-7
corresponding to rule (R-EMB), and since no process inside the transaction is
involved in the reduction at a above, the reduction would not be undone in case
of abort, since it actually happens “outside” the transaction. Thus our encoding
avoids spurious undo, and computations in croll-7 correspond to computations in
TransCCS with minimal applications of rule (R-EMB). These computations are
however very difficult to characterize because of syntactic constraints. In fact,
for two processes inside two parallel transactions k; and ks to interact, either &k
should move inside ko or vice versa, but in both the cases not only the interacting
processes move, as minimality would require, but also all the other processes
inside the same transactions have to move. Intuitively, TransCCS approximates
the causality relation, which is a dag, using the tree defined by containment.
The spurious reductions undone in TransCCS can always be redone so to reach
a state corresponding to the croll-m one. In this sense croll-m minimizes the set
of interactions undone.

We define a notion of weak barbed bisimilarity ;=2., relating a TransCCS
process P and a croll-7 configuration M. First, we define barbs in TransCCS by
the predicate Pl,, which is true in the cases below, false otherwise.

ala Vb.Ply if PlaAa#b
PPy, if Pl,VP Ly [PorQlla if Plaha#k

Here, differently from [14], we observe barbs inside the transaction body, to have
a natural correspondence with croll-w barbs.

Definition 9. A relation R relating TransCCS processes P and croll-m config-
urations M is a weak barbed bisimulation if and only if for each (P, M) € R:

1. if Ply then M =,

2. if M, then P =|,;

3. if P — Py is derived using rule (R-AB) then M — M’', P, = P» and
PyRM;

4. if P — Py is derived without using rule (R-AB) then M = M’ and
PIRM;

5. if M — M’ then either: (i) PRM' or (ii) P — Py and PPRM' or (iii)
M —s M", P —s P, and P,RM".

18 Ivan Lanese et al.

Weak barbed bisimilarity ~.. is the largest weak barbed bisimulation.

The main peculiarities of the definition above are in condition 3, which captures
the need of redoing some reductions that are unduly rolled-back in TransCCS,
and in case (iii) of condition 5, which forces atomic abort.

Theorem 3. For each TransCCS process P, Pi~¢r vk.k : (P):.

Proof. The proof has to take into account the fact that different croll-7 configura-
tions may correspond to the same TransCCS process. In particular, a TransCCS
transaction [P Q] is matched in different ways if @ is the original compensation
or if part of it is the result of an application of rule (R-EMB).

Thus, in the proof, we give a syntactic characterization of the set of croll-r
configurations (P)? matching a TransCCS process P. Then we show that vk. k :
(P): € (P)?, and that there is a match between reductions of P and the weak
reductions of each configuration in (P)?. The proof, in the two directions, is by
induction on the rule applied to derive a single step. a

7 Related Work and Conclusion

We have presented a concurrent process calculus with explicit rollback and min-
imal facilities for alternatives built on a reversible substrate analogous to a Lévy
labeling [5] for concurrent computations. We have shown by way of examples
how to build more complex alternative idioms and how to use rollback and al-
ternatives in conjunction to encode transactional constructs. In particular, we
have developed an analysis of communicating transactions proposed in Tran-
sCCS [14]. We also developed a proof-of-concept interpreter of our language and
used it to give a concurrent solution of the Eight Queens problem.

Undo or rollback capabilities in sequential languages have a long history (see
[21] for an early survey). In a concurrent setting, interest has developed more
recently. Works such as [10] introduce logging and process group primitives as
a basis for defining fault-tolerant abstractions, including transactions. Ziarek et
al. [28] introduce a checkpoint abstraction for concurrent ML programs. Field
et al. [16] extend the actor model with checkpointing constructs. Most of the
approaches relying instead on a fully reversible concurrent language have already
been discussed in the introduction. Here we just recall that models of reversible
computation have also been studied in the context of computational biology, e.g.,
[9]. Also, the effect of reversibility on Hennessy-Milner logic has been studied
n [25]. Several recent works have proposed a formal analysis of transactions,
including [14] studied in this paper, as well as several other works such as [23, 6, 8]
(see [1] for numerous references to the line of work concentrating on software
transactional memories). Note that although reversible calculi can be used to
implement transactions, they offer more flexibility. For instance, transactional
events [15] only allow an all-or-nothing execution of transactions. Moreover, no
visible side-effect is allowed during the transaction, as there is no way to specify
how to compensate the side-effects of a failed transaction. A reversible calculus
with alternatives allows the encoding of such compensations.

Concurrent Flexible Reversibility 19

With the exception of the seminal work by Danos and Krivine [13] on RCCS,
we are not aware of other work exploiting precise causal information as pro-
vided by our reversible machinery to analyze recovery-oriented constructs. Yet
this precision seems important: as we have seen in Section 6, it allows us to
weed out spurious undo of actions that appear in an approach that relies on a
cruder transaction “embedding” mechanism. Although we have not developed
a formal analysis yet, it seems this precision would be equally important, e.g.,
to avoid uncontrolled cascading rollbacks (domino effect) in [28] or to ensure
that, in contrast to [16], rollback is always possible in failure-free computations.
Although [10] introduces primitives able to track down causality information
among groups of processes, called conclaves, it does not provide automatic sup-
port for undoing the effects of aborted conclaves, while our calculus directly
provides a primitive to undo all the effects of a communication.

While encouraging, our results in Section 6 are only preliminary. Our con-
current rollback and minimal facilities for alternatives provide a good basis for
understanding the “all-or-nothing” property of transactions. To this end it would
be interesting to understand whether we are able to support both strong and
weak atomicity of [23]. How to support isolation properties found, e.g., in soft-
ware transactional memory models, in a way that combines well with these facil-
ities remains to be seen. Further, we would like to study the exact relationships
that exist between these facilities and the different notions of compensation that
have appeared in formal models of computation for service-oriented computing,
such as [6, 8]. It is also interesting to compare with zero-safe Petri nets [7],
since tokens in zero places dynamically define transaction scopes as done by
communications in croll-7.

From a practical point of view, we want both to refine the interpreter, and
to test it against a wider range of more complex case studies. Concerning the
interpreter, a main point is to allow for garbage collection of memories which
cannot be restored any more, so to improve space efficiency.

References

[1] M. Abadi and T. Harris. Perspectives on transactional memory. In CONCUR’09,
volume 5710 of LNCS. Springer, 2009.

[2] L. Acciai, M. Boreale, and S. Dal-Zilio. A concurrent calculus with atomic trans-
actions. In ESOP’07, volume 4421 of LNCS. Springer, 2007.

[3] G. Bacci, V. Danos, and O. Kammar. On the statistical thermodynamics of
reversible communicating processes. In CALCO 2011, volume 6859 of LNCS,
2011.

[4] W. W. Rouse Ball. Mathematical Recreations and Essays (12th ed.). Macmillan,
New York, 1947.

[5] G. Berry and J.-J. Lévy. Minimal and optimal computations of recursive pro-
grams. J. ACM, 26(1), 1979.

[6] R. Bruni, H. C. Melgratti, and U. Montanari. Theoretical foundations for com-
pensations in flow composition languages. In POPL’05. ACM, 2005.

[7] R. Bruni and U. Montanari. Zero-safe nets: Comparing the collective and indi-
vidual token approaches. Information and Computation, 156(1-2), 2000.

20

[8]

[9]
[10]

[11]

12)
13)
[14]
[15]

[16]

[17]

[18]

[19]
[20]
21]

[22]

23]
[24]
[25]

[26]

[27]

[28]

Ivan Lanese et al.

M. J. Butler, C.A.R. Hoare, and C. Ferreira. A trace semantics for long-running
transactions. In 25 Years CSP, number 3525 in LNCS. Springer, 2004.

L. Cardelli and C. Laneve. Reversible structures. In CMSB 2011. ACM, 2011.
T. Chothia and D. Duggan. Abstractions for fault-tolerant global computing.
Theor. Comput. Sci., 322(3), 2004.

M. Clavel, F. Durdn, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer, and J.F.
Quesada. Maude: specification and programming in rewriting logic. Theor. Comp.
Sci., 285(2), 2002.

V. Danos and J. Krivine. Reversible communicating systems. In CONCUR’0/,
volume 3170 of LNCS. Springer, 2004.

V. Danos and J. Krivine. Transactions in RCCS. In CONCUR’05, volume 3653
of LNCS. Springer, 2005.

E. de Vries, V. Koutavas, and M. Hennessy. Communicating transactions. In
CONCUR 2010, volume 6269 of LNCS. Springer, 2010.

K. Donnelly and M. Fluet. Transactional events. Journal of Functional Program-
ming, 18(5-6), 2008.

J. Field and C.A. Varela. Transactors: a programming model for maintaining
globally consistent distributed state in unreliable environments. In POPL’05.
ACM, 2005.

T. Harris, S. Marlow, S. L. Peyton Jones, and M. Herlihy. Composable memory
transactions. Commun. ACM, 51(8), 2008.

I. Lanese, M. Lienhardt, C. A. Mezzina, A. Schmitt, and J.-B. Stefani. Concurrent
flexible reversibility (TR). http://www.cs.unibo.it/"lanese/publications/
fulltext/TR-crollpi.pdf.gz, 2012.

I. Lanese, C. A. Mezzina, A. Schmitt, and J.-B. Stefani. Controlling reversibility
in higher-order pi. In CONCUR 2011, volume 6901 of LNCS. Springer, 2011.

I. Lanese, C. A. Mezzina, and J.-B. Stefani. Reversing higher-order pi. In CON-
CUR 2010, volume 6269 of LNCS. Springer, 2010.

G.B. Leeman. A formal approach to undo operations in programming languages.
ACM Trans. Program. Lang. Syst., 8(1), 1986.

M. Lienhardt, I. Lanese, C. A. Mezzina, and J.-B. Stefani. A reversible abstract
machine and its space overhead. In FMOODS/FORTE 2012, volume 7273 of
LNCS, 2012.

K. F. Moore and D. Grossman. High-level small-step operational semantics for
transactions. In POPL’08. ACM, 2008.

I. Phillips and I. Ulidowski. Reversing algebraic process calculi. J. Log. Algebr.
Program., 73(1-2), 2007.

I. Phillips and I. Ulidowski. A logic with reverse modalities for history-preserving
bisimulations. In EXPRESS 2011, volume 64 of EPTCS, 2011.

I. Phillips, I. Ulidowski, and S. Yuen. A reversible process calculus and the mod-
elling of the ERK signalling pathway. In Reversible Computation 2012, volume
7581 of LNCS, 2012.

D. Sangiorgi and D. Walker. The m-calculus: A Theory of Mobile Processes. Cam-
bridge University Press, 2001.

L. Ziarek and S. Jagannathan. Lightweight checkpointing for concurrent ML. J.
Funct. Program., 20(2), 2010.

