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Abstract. Complex expressions, as used in mathematics and logics, ac-
count for a large part of human knowledge. It is therefore desirable to
allow for their representation in RDF and for their exploration through
semantic search. We propose an RDF vocabulary that fulfills three ob-
jectives. The first objective is the accurate representation of expressions
in standard RDF, so that expressive mathematical search is made pos-
sible. We here propose a syntactic extension of Turtle and SPARQL for
the concise notation of such expressions. The second objective is the
automated generation of expression labels that are close to usual mathe-
matical notations (e.g., infix operators, symbols). The third objective is
the compatibility with existing practice and legacy data in the Seman-
tic Web community for the representation of expressions and structures
(e.g., OWL/RDF, SPIN). We illustrate the use of this vocabulary on
mathematical search using SEWELIS, a tool for the guided exploration
and edition of RDF graphs, and discuss the benefits compared to state-
of-the-art in mathematical search.

1 Introduction

Complex expressions account for a large part of human knowledge. Common
instances of expressions are mathematical equations, logical formulae, regular
expressions, or parse trees of natural language sentences. In the domain of the
Semantic Web [5], they can be OWL axioms [11], SWRL rules [16], or SPARQL
queries [14]. Tt is therefore desirable to allow for their representation in RDF [12]
so that they can be mixed with other kinds of knowledge. For example, it should
be possible to describe a theorem by its author, its discovery date, its informal
description as a text, and its formal description as a mathematical and logical
expression, all in RDF. An expected advantage of the formal representation of
expressions is the ability to search those expressions by their content, which is
known as mathematical search [3,7,17,10,1]. For example, we may wish to retrieve
all expressions that are an integral in some variable x and whose body contains
the sub-expression z2. Correct answers are Ik 2?2 + 1dz and Ik y? — ydy. This
example exhibits two difficulties in mathematical search. The first difficulty is
to take into account the nested structure of expressions, e.g., the fact that the



sub-expression 22 must be in the scope of the integral. The second difficulty is to

abstract over the name of bound variables, e.g., the fact that the above variable x
that is bound by the integral [ dz can be renamed as y without changing the
meaning of the expression.

The approaches that consist in applying textual search methods by lineariz-
ing expressions [10] cannot correctly account for the above difficulties [17].
In the above example, a textual search would have false positives such as
[2xdx = 22 + ¢ (22 is not in the scope of /), and would have false nega-
tives such as [ y? —ydy (y instead of z). On the contrary, the approaches based
on a structured query language [1,7,3] correctly account for the above difficul-
ties by reasoning directly on the structure of expressions, and by using jokers as
place-holders for variables and sub-expressions. In the language defined in [1],
the query \int ...$172... d$1 returns the correct answers to the above ques-
tion. However, those query languages are limited to mathematical expressions,
and are not interoperable with Semantic Web languages.

The need for representing expressions in RDF has already been felt in var-
ious situations, but to our knowledge, no generic solution has been proposed.
A well-known example is the representation of complex classes in OWL ontolo-
gies [11]. To this purpose, the OWL vocabulary defines a number of “syntactic”
classes (e.g., owl:Restriction) and properties (e.g., owl:onProperty). The fact
that they are mixed with “semantic” classes (e.g., owl:Class) and properties
(e.g., owl:equivalentClass) is a frequent cause for confusion among beginners,
which indicates that it would be beneficial to separate the representation of
complex expressions from assertions. Another example of a vocabulary that de-
fines “syntactic” classes and properties is SPIN SPARQL Syntax [15], defined for
the representation of SPARQL queries. OWL/RDF and SPIN follow the same
principles, and therefore offer a good basis for generalization.

In this paper, we propose an RDF vocabulary for expressions that fulfills
three objectives. The first objective (Section 2) is the accurate representation of
expressions in standard RDF, so that expressive structured search (e.g., mathe-
matical search) is made possible. We also propose a syntactic extension of Turtle
and SPARQL syntaxes for a more concise notation of descriptions and queries.
The second objective (Section 3) is the generation of expression labels that are
close to usual mathematical notations (e.g., infix operators, symbols). This is im-
portant for Semantic Web tools because expressions are generally represented by
blank nodes, and because it would be tedious to manually attach a label to every
expression and sub-expression. The third objective (Section 4) is the backward
compatibility of systems using our expression vocabulary with existing practice,
and legacy data, in the Semantic Web community (e.g., OWL/RDF, SPIN). This
implies that legacy data need not be changed in order to benefit from the ad-
vantages of our vocabulary, in particular the generation of labels. We illustrate
(Section 5) those advantages on mathematical search using SEWELIS [2], a tool
for the guided exploration and edition of RDF graphs, and show (Section 6)
that this approach is competitive w.r.t. expressiveness, displays more natural
representations of expressions, and offers the guided construction of queries.



[ a math:Integral ;

rdf:_1
[ a math:Plus ;
rdf:_1
[ a math:Power ;
rdf:_1 _:x1 ;
rdf: 2 21 ;
rdf: 2 11 ;
rdf:_2 _:x1 ]
_:x1 rdfs:label "x" .

Fig. 1. RDF representation of the expression [ z* + 1dz: graphical (a), Turtle (b).

2 Representation of Expressions in RDF

An RDF dataset is a graph whose nodes are resources (URIs, blank nodes, and
literals), and whose edges are triples (s,p,0). In a triple (s,p,0), p is an RDF
property that plays the role of predicate, and states a relationship from the
subject s to the object o. In order to represent mathematical expressions in RDF,
we rely on the fact that every expression can be represented as an abstract syntax
tree, and hence as a graph. A side-advantage of graphs compared to syntax trees
is the possibility to share sub-expressions.

Syntax tree leaves, i.e. atomic expressions, can be symbols, values, and vari-
ables; and syntax tree nodes, i.e. compound expressions, are labeled by symbols
(e.g., operators, quantifiers). Symbols naturally map to URIs, and values map
to RDF literals. To account for the fact that distinct variables may have the
same name, and that variables are not accessible out of their scope, we choose to
represent variables as blank nodes, whose label is the variable name. The same
choice has been made in SPIN. It remains to define the representation of com-
pound expressions. A compound expression is completely defined by the node
label, which we call constructor, and the sequence of sub-expressions, which we
call arguments. We propose to represent a compound expression as an RDF con-
tainer with the constructor as a class in place of rdf:Seq, rdf:Bag, or rdf:Alt. In
this way, each constructor defines a subclass of rdfs:Container. Assuming the
namespace expr: for our expression vocabulary, we introduce expr:Constructor
as the class of constructors, i.e. the class of container types. This representation
is close to what is done in OWL/RDF or SPIN, except that membership prop-
erties rdf:_n are used for the arguments instead of ad-hoc properties. Section 4
explains how to reconcile the two approaches in practice.

Figure 1 shows the graphical and Turtle forms of the RDF representation
of the expression f 22 + 1dx. This expression includes mathematical operators



notation definition

C(E1,...,En) [aC; rdf: .1 Fy; ...; rdf:n B, ]
LB [ rdfs:member* E ]

LB [ rdfs:member+ E ]

is [ POy; ...; PO, 1|PO:; ...; PO,

Table 1. New notations for Turtle and/or SPARQL, and their definition.

math:Integrall (integral), math:Plus (addition) and math:Power (power), which
are all used as binary constructors. In the case of math:Integral, the second
argument plays the role of the binding variable of the integral. The expression
also includes the integer literals 1 and 2, as well as a blank node _:x1, labelled "x",
to represent the variable x. This representation correctly handles all the contents
of the expression while abstracting over possible variations in the presentation
(e.g., adding brackets, varying the notation for the integral). This representation
also makes it possible to distinguish different variables that have the same name
(e.g., in z 4+ [z dx) by using distinct blank nodes. Invariance to the renaming
of bound variables is addressed by separating the identity of the variable (as a
blank node), and its concrete name (as a label). Indeed, invariance to renaming
also applies to blank nodes: _:x1 can be replaced by _:x2.

As this notation is rather verbose, we propose to extend the syntax of Turtle
and SPARQL with a few notations in order to allow for more concise descriptions
and queries (see Table 1). The first one is a functional notation for containers,
and hence for expressions, where the container type plays the role of the function,
and container elements play the role of arguments. The second and third one
are ellipsis notations to reach sub-expressions in queries, and rely on transitive
closures of the property rdfsmember, which is a super-property of the properties
rdf:_n. Those notations can be used everywhere blank nodes (and collections) can
be used. The last notation allows blank nodes, and hence the functional notation
and the ellipsis notation, to be used as a predicate-object list by prefixing it with
the keyword is. With this extension, which we name Turtle+/SPARQL+ in the
scope of this paper, the example in Figure 1 can be rewritten as follows.

math:Integral (math:Plus(math:Power(_:x1,2),1),_:x1)
_:x1 rdfs:1label "x"

In order to test the validity of our representation, we discuss the formulation
of SPARQL 1.1 queries [14] for a few representative examples of semantic search.
SPARQL variables are used to match arbitrary sub-expressions, and to state
equality constraints between several sub-expressions. This provides a way to solve
the difficulty related to the renaming of bound variable: it suffices to introduce a
SPARQL variable for each bound variable. For example, if we look for expressions
like [z?dz or [y?dy, we can use the following SPARQL+ query.

SELECT 7e WHERE { 7e is math:Integral(math:Power(?7x,2),7x) . }

1 .
We here assume a namespace math: for mathematical constructors.



The query in the introduction that retrieves the integrals in  whose body
contains the term 22 can then be expressed as follows, using the notation ...E. ..
(see Table 1) to express the relation from an expression to its sub-expressions.

SELECT 7e WHERE { 7e is math:Integral(...math:Power(?7x,2)...,7x)

This query returns the expressions [z?dz, [2? + ldz, [y® — ydy, but not
the expressions [z? + ydy and [ 2z dx = 2? + c. Now, starting from the same
example, assume that we want to retrieve the bodies of the integrals instead of
the integrals themselves. After a reformulation to introduce a variable for the
body of the integral, we obtain:

SELECT 7e WHERE {
?e is ...math:Power(?7x,2)...
math:Integral(7e, 7x)

}

This query looks for an expression that contains x2 as a sub-expression, and

that appears as the body (1st argument) of an integral whose binding variable
is (the same) z. As a conclusion, SPARQL 1.1 provides enough expressivity
to cover the needs of mathematical search, which is not surprising considering
that expressions are standard RDF graphs. A comparison with existing query
languages for mathematical search is given in Section 6.2.

3 Generation of Labels for Expressions

As the previous section shows, expressions make a heavy use of blank nodes.
Conversely, most blank nodes in existing RDF graphs can be seen as expressions:
e.g., complex classes in OWL/RDF, SPARQL syntax in SPIN, structures for
representing coordinates, intervals, measures. A difficulty with blank nodes is
that they are notoriously difficult to present in query results, and in Semantic
Web tools in general [8]. Literals have a direct representation, and URIs are
generally given a label. In fact, we see blank nodes as compound literals, whose
contents is defined by the tree of triples that start from the blank node, and ends
at URIs and literals. Like literals, blank nodes have no identity, which means
that two structurally equivalent blank nodes are interchangeable. In this view, it
is correct to represent a blank node by its contents, so that blank node identifiers
are completely avoided, except for circular structures, which have been shown to
be rare in practice [8]. Turtle provides a generic notation for blank node contents
(using square brackets [...]), and a custom notation for collections (using round
brackets (...)). Turtle+ additionally provides a concise notation for containers
and expressions, using the functional notation (see Table 1).

While the Turtle+ and SPARQL+ notations are much more con-
cise and readable than sets of triples full of blank node identifiers,
they are still far from the wusual mathematical notations for expres-
sions. For recall, the expression [ 22 4+ 1dz is represented in Turtlet as



math:Integral (math:Plus(math:Power(_:x1,2),1),_:x1). Note the neces-
sary blank node identifier for the variable because of a cycle in the RDF graph.
In case expressions have to be parsed from files or user input, formal represen-
tations are necessary to allow machine-understanding, which is one of the main
objectives of Semantic Web languages. However, in the case where expressions
are only displayed to users, or can be manipulated through a point-and-click
user interface, less formal representations become possible.

We here propose a vocabulary to express annotations on constructors that
can be used by Semantic Web tools to generate natural representations of expres-
sions. The principle is that, when an expression has not been annotated explicitly
with a label, a label will automatically be generated for it as an aggregation of
the labels of its parts. The generated label need not be added to the store, but
can simply be generated dynamically by the tool, on the need. By default, the
functional notation is used, like in Turtle4+ but replacing the constructor and
the arguments by their label. Of course, the label of an argument can itself
be generated. Because those labels are only for display, all Unicode characters
can be used, including mathematical symbols (e.g., [ for math:Integral, + for
math:Plus, ~ for math:Power). Applying this to the above example generates the
label " [ (+("(x,2),1),x)" for the expression f 22+ 1dz.

Many mathematical operators use different notations than the functional
notation: e.g., infix notation such as x + 1, prefix notation such as sin =,
postfix notations such as n!, and mixfix notations such as [ 22 dxz. How-
ever, those notations can lead to ambiguities, and brackets must be in-
serted according to priority levels of operators. For example, in the expression
math:Div(math:Plus(1,math:Power(_:x,2)),_:x), brackets are necessary around
the addition, but not around the power, according to usual priorities. There-
fore, the minimal bracketing of the expression leads to the label "(1 + x"2)/x".
Without the brackets, the expression would be misinterpreted by humans, and
adding superfluous brackets would make the expression label less readable for
humans.

We propose to describe constructors with all the necessary information to
generate natural labels in a generic way, i.e. for all kinds of notations. The nec-
essary information comprises the template, the priority level of the constructor,
and for each argument, the expected priority level plus additional information
depending on the kind of the argument (see below). A template is a string where
the markers _1, ..., _n are placeholders for the (generated) labels of arguments.
For example, a template for the addition is "_1 + _2". If arguments are placed
in order, the generic marker _ can be used instead: e.g., "_ + _". Alternately,
the templace could be defined as an XML literal instead of a string, e.g., using
the MathML [9] presentation language for rendering in a browser. Priority levels
are often defined as integers. However, for interoperability and readability, we
propose to define them as URIs that belong to the class expr:PriorityLevel.
We introduce two predefined priority levels in our vocabulary: expr:atomLevel as
the highest priority level, and expr:topLevel as the lowest priority level. Priority
levels can be ordered through the property expr:hasPriorityQOver: e.g., the triple



expr:atomlLevel expr:hasPriorityOver expr:topLevel holds. For common math-
ematics, we assume the following priority levels, ordered by increasing prior-
ity (partial): expr:topLevel, math:equallevel, math:plusLevel, math:timesLevel,
math:powerLevel, expr:atomLevel. Each constructor argument is described by an
expected priority level. For example, because the addition is a left associative
operator with priority level math:plusLevel, its left argument has math:plusLevel
as expected priority, and its right argument has math:timesLevel as expected
priority. An expression inherits the priority level of its constructor. Then, when
the priority level of an argument is not higher than the expected priority level
(e.g., math:plusLevel instead of math:timesLevel), brackets are added around the
label of the argument before insertion into the template of the constructor. By
default, round brackets are used, but a template with one place holder (e.g.,
"{_}" for curly brackets) can be associated to a priority level through the prop-
erty expr:brackets. Finally, some constructors expect a variable number of sub-
expressions. For example, the standard RDF constructors (e.g., rdf:Seq(1,2,3))
can have an arbitrary number of arguments; and we can imagine a constructor
math:Average that takes an RDF collection as an argument (e.g., math:Average ((3
7 5))). In those cases, we need to specify a separator between sub-expressions,
and the expected priority level applies to collection elements.

We once more demonstrate the reflexive capabilities of Semantic Web lan-
guages by using RDF expressions to represent the description of notations for
constructors! Indeed, a notation description is the association of several pieces of
information that do not make sense in isolation. Instead of a tedious definition
of the constructors involved in those notation definitions, we resort to a number
of self-explanatory examples (comments below).
math:Plus expr:notation expr:Notation("_ + _",math:plusLevel,

rdf:Seq(expr:0ne(math:plusLevel) ,expr:0ne(math:timesLevel)))
math:Times expr:notation expr:Notation("_ _",math:timesLevel,
rdf:Seq(expr:0One(math:timesLevel) ,expr:0One(math:powerLevel)))
math:Power expr:notation expr:Notation("_"_",math:powerLevel,
rdf :Seq(expr:0One (expr:atomLevel) ,expr:0One(math:powerLevel)))
math:Sin expr:notation expr:Notation("sin _",math:plusLevel,
rdf:Seq(expr:0One(math:timesLevel)))
math:Fact expr:notation expr:Notation("_!",math:powerLevel,
rdf : Seq(expr:0One (expr:atomLevel)))
math:Integral expr:notation expr:Notation("j’, d_",expr:atomLevel,
rdf :Seq(expr:0One(math:plusLevel) ,expr:0ne(expr:atomLevel))
math:Average expr:notation expr:Notation("avg(.)",expr:atomLevel,
rdf:Seq(expr:Collection("," ,math:plusLevel)))
rdf :Bag expr:notation expr:Notation("{_}",expr:atomLevel,
rdf:Seq(expr:Many (", ",math:plusLevel)))

Constructors are linked to notations through the property expr:notation.
This allows for the definition of several notations for a same constructor, differing
the choice to tools and users. The constructor expr:Notation takes as arguments
the template, the priority level, and a sequence of argument descriptions. There



are three kinds of arguments: one expression, many expressions, a collection of
expressions. Examples of generated labels from those definitions are: "[ x"2 +
1 dx","(a+b)’2=a2+2ab+ b 2" "avg(3,7,5)", "{1, 3, 3, 8}".

4 Compatibility with Legacy RDF Structures

Blank nodes and “syntactic” classes and properties have been used in a number
of circumstances for representing structures in RDF. For example, in OWL/RDF
an existential restriction Ir.C' is represented by a combination of the class
owl:Restriction, and the properties owl:onProperty and owl:someValuesFrom, i.e.
the blank node [ a owl:Restriction ; owl:onProperty r ; owl:someValuesFrom
C 1. A universal restriction Vr.C' is represented similarly, using the property
owl:allValuesFrom instead of owl:someValuesFrom. The same representation prin-
ciples are used for RDF collections with class rdf:List and properties rdf:first
and rdf:rest, for SPIN SPARQL syntax, and in other circumstances.

OWL restrictions could equally well be represented as expressions, us-
ing our approach. Assuming the two constructors owl:Some and owl:All in
the OWL namespace, an existential restriction 3r.C' would be represented
as owl:Some(r,C), and a universal restriction Vr.C' would be represented as
owl:A11(r,C). Those representations are close to the OWL functional syntax?,
and are valid notations in Turtle+. A first advantage of expressions is that each
construct is defined by a single constructor URI instead of a combination of
classes and properties. A second advantage is a better separation between “se-
mantic” properties (e.g., owl:equivalentClass) and “syntactic” properties (e.g.,
owl:onProperty). In our expressions, the latter are only the container member-
ship properties rdf: n. A third advantage is that natural labels for expressions
can be generated in a more systematic way, as explained in Section 3. Indeed,
a system only needs to read the annotations of constructors, and needs not be
hard-coded w.r.t. an ad-hoc vocabulary. An advantage of OWL/RDF and similar
approaches is that arguments have a name instead of a position.

In order to fully reconcile legacy data and the naming of arguments with the
systematic generation of natural labels for expressions, we introduce implicit con-
structors. An implicit constructor does not occur explicitly in the RDF represen-
tation of expressions and structures, but it is mapped to a combination of syntac-
tic classes and properties, and it serves as a handle for the annotations about the
generation of labels. We introduce the class expr:ImplicitConstructor, a subclass
of expr:Constructor, to identify the set of implicit constructors. Then, assum-

ing an implicit constructor Cons, the expression Cons(F1, ..., E,) is mapped to
the blanknode [ a C ; P, E1 ; ... ; P, E, 1, where C is the implicit class of
Cons (optional), and (P, ..., P,) is the sequence of implicit properties of Cons.

We introduce the property expr:implicitClass to link an implicit constructor to
its implicit class; and we introduce the property expr:implicitProperties to link
an implicit constructor to the RDF sequence of implicit properties. For example,

2 http://www.w3.org/TR/owl2-syntax/#Functional-Style_Syntax



[

Pizza and hasTopping some MeatTopping and hasTopping some FishTopping

[ a owl:Class ;
owl:intersectionOf
( ex:Pizza
[ a owl:Restriction ;

2 owl:onProperty ex:hasTopping ;

owl:someValuesFrom ex:MeatTopping ]
[ a owl:Restriction ;

owl:onProperty ex:hasTopping ;

owl:someValuesFrom ex:FishTopping ] ) ]

owl:And( ( ex:Pizza

3 owl:Not (owl:Some (ex:hasTopping,ex:MeatTopping))

owl:Not (owl:Some (ex:hasTopping,ex:FishTopping)) ) )
4|"Pizza and not has topping some Meat and not has topping some Fish"

Table 2. Different notations of a complex OWL class: Manchester (1), Turtle (2),
Turtle+ (3), generated label (4).

owl:Some can be defined as an implicit constructor with the following Turtle+
statement.

owl:Some a expr:ImplicitConstructor ;
expr:implicitClass owl:Restriction ;
expr:implicitProperties
rdf :Seq(owl:onProperty,owl:someValuesFrom)

From there, it is easy to get any of the three main syntaxes for OWL restrictions
as generated labels. For the functional syntax, it is enough to define a label on
constructor owl:Some: e.g., "some(child,Doctor)". For the Manchester syntax?,
owl:Some has to be defined as a right-associative infix operator, like the power
operator: e.g., "child some Doctor". For the DL syntax, it has instead to be
defined as a mixfix operator with template "3_._": e.g., "Ichild.Doctor".
Tables 2, 3, and 4 compare different notations of three complex expressions
in three different languages: OWL, SPARQL, and ingredient descriptions (the
latter example is adapted from [5], p. 42). In each table, the first line is the na-
tive syntax of the language (Manchester syntax for OWL, English for ingredient
descriptions). The second line is the Turtle notation of the RDF representation
(OWL/RDF for OWL, SPIN for SPARQL). The third line is the Turtle4 func-
tional notation assuming that the “syntactic” classes are used as constructors,
like for owl:Some above. The fourth line is the generated label assuming that im-
plicit constructors have been defined, and that appropriate notations have been
associated to them. Note how the generated label can be made very similar to
the native syntax. For the OWL Manchester syntax, owl:And has a collection
argument whose separator is " and ", owl:Not is defined as a prefix operator,
and owl:Some is defined as a right associative infix operator. Those constructors

3 http://www.co-ode.org/resources/reference/manchester_syntax/



[

SELECT ?x WHERE { ?x ex:age 7age . FILTER (7age < 18) }

[ a sp:Select ;
sp:resultVariables (_:x) ;
sp:where ([ a sp:TriplePattern ;
sp:subject _:x ;
sp:predicate ex:age ;
9 sp:object _:age ]
[ a sp:Filter ;
sp:expression [ a sp:1lt ;
sp:argl _:age ;
sp:arg2 18 1 1) 1
_:x a sp:Variable ; sp:varName "x" .
_:age a sp:Variable ; sp:varName "age" .

sp:Select((_:x),
(sp:TriplePattern(_:x,ex:age,_:age)
3 sp:Filter(sp:1t(_:age,18))))
_:x is sp:Variable("x")
_:age is sp:Variable("age")
4|"SELECT ?x WHERE { ?x has age 7age . FILTER (7age < 18) }"
Table 3. Different notations of a complex SPARQL query: SPARQL (1), Turtle (2),
Turtle+ (3), generated label (4).

are given increasing priority. For SPIN SPARQL queries, sp:Select has two col-
lection arguments whose separators are the space, sp:TriplePattern simply uses
the template "_ _ _ .", sp:1t is defined as an infix operator, and sp:Variable
is defined as a prefix operator with template "?_". The priority level for atomic
graph patterns uses the template "{ _ }" as brackets instead of the default round
brackets. For the ingredient description, ex:Ingredient uses the template " 2 of
_1" to reverse the order of arguments, and ex:Measure simply concatenates the
value and the unit.

5 Application to Mathematical Search in SEWELIS

We illustrate the use of RDF expressions and their generated labels on mathe-
matical search. In Section 2, we have shown our representation of expressions al-
lows for the expressive search of expressions and sub-expressions, using SPARQL
as the query language. However, writing queries has a number of difficulties for
end-users: (1) syntax errors (what is the grammar of the query language?), (2)
vocabulary errors (which are the available URIs, classes and properties?), and
(3) lack of control on the amount of results (too few or too many). Another
difficulty is that it is difficult to conciliate a non-ambiguous syntax, and natural
notations. Our extension of Turtle and SPARQL with the functional notation for
expressions is an improvement over explicit blank nodes, but it is still far from
usual mathematical notations. Ideally, we would like the syntax of generated



[

1 1b of green mango

[ a ex:Ingredient ;
ex:ingredient ex:GreenMango ;
ex:amount [ a ex:Measure ;

ex:value 1 ;
ex:unit ex:1b ] ]

3lex: Ingredient (ex:GreenMango,ex:Measure(1,ex:1b))
4|"1 1b of green mango"

Table 4. Different notations of an ingredient description: English (1), Turtle (2), Tur-
tle+ (3), generated label (4).

labels for expressions, as presented in Section 3, but this is incompatible with
the hand-writing and machine-parsing of queries.

SEWELIS* is a Semantic Web tool for the exploration and edition of RDF
graphs that reconciles the expressivity of query languages, and the guided ex-
ploration of faceted search [4,13], a.k.a. Query-based Faceted Search (QFS) [2].
This means that users can reach complex queries (involving property paths and
cycles, disjunctions, and negations) without writing anything. Starting with the
empty query, users iteratively refine it by selecting classes, properties, resources,
and literals among suggestions given by SEWELIS. Unlike syntactic editors (e.g.,
SemanticCrystal [6], the SCRIBO Graphical Editor®), at each step of the inter-
active construction, a valid query is formed, and SEWELIS returns its results. A
key notion is the focus that determines the part of the query to be refined, and
the query variable to be used for results. Only and all relevant suggestions are
given so that the exploration is proven both safe (no dead-end, no empty result)
and complete (every safe query is reachable). Because of those strong properties,
writing queries becomes completely unnecesary, and it then becomes possible to
use any notation is prefered for queries.

We have integrated into SEWELIS the expression vocabulary for the rep-
resentation of expressions in descriptions and queries. The pretty-printing of
queries is based on the same principles as for the generation of labels, extended
to expression/graph patterns. The following list shows how the queries from
Section 2 are displayed in SEWELIS, along with their meaning for recall. The
underlined part represents the focus, and indicates which part of the query an-
swers are to be displayed.

— [ ?x°2 a7X: the integrals in x of z?;

— [ ...7X"2... d?X: the integrals in x whose body contains z? as a sub-
expression;
— [ ...?X°2... d?X: the bodies of the integrals in z that contains z? as a

sub-expression.

4 Visit SEWELIS’ page at http://www.irisa.fr/LIS/softwares/sewelis/.
5 http://wuw.scribo.ws/xwiki/bin/view/Blog/SparqlGraphicalEditor



cos2a=1-2sina"2
cos2a=cosa™~2-sina™2
cos52a=2cosa™~2-1
(ufw}'=(u'v-uwv') /w2
(1L/u)'=-u'fu~2
a™3-b~3=(a-b)(a~2+ab+ b"2)
a”3 + b3 = (a+b)a~2-a b+ b2}
(a-b)~2=a""2-2ab+b"2
(a-b)*3=a"3-3a"2b+2ab”2-b"3
(a+bj"2=a"2+2ab+b"2
@a+bf*3=a"3+3a*2b+ 2ab™2 4+ b"3

Fig. 2. The list of formulas containing a square, as displayed in SEWELIS.

We have applied SEWELIS on the exploration of a collection of 70 formu-
las taken from an official document® used for the French baccalaureate. Fig-
ure 2 shows the subset of those formulas that contain a square, as displayed in
SEWELIS. This list has been obtained as the answers to the query ...?°2...,
which can be reached in three navigation steps from the empty query: ...7...
(contains...), ...?7°7... (a power...), ...7°2... (of 2). Figure 3 shows a com-
plete screenshot of SEWELIS during the construction of a query. The query is
at the left, and states that the limit at positive infinity of something is equal to
something. The textfield marks the position of the focus, here on the body of
the 1imit constructor. The middle column suggests the possible constructors at
the focus, and the right column lists the possible expressions at the focus. The
latter therefore contains the answers of the current query with respect to the
focus. Note that no blank node identifier is displayed thanks to generated labels,
even though all expressions are blank nodes. Suggestions can also be found and
selected by auto-completion from the focus textfield. The next step for the user
could be to select one of those expressions, and then to move the focus after the
equal sign in order to discover the value of the limit for the chosen expression.

6 Related Work

We compare our approach first with other languages for representing mathemat-
ical expressions, and second with query languages for searching mathematical
expressions. The later are used for instance in proof assistants, such as Coq [3].
To the best of our knowledge, no existing approach allows for the guided explo-
ration of such expressions.

6.1 Representation Languages

The reference language for the representation of mathematical expressions is
MATHML [9], an XML dialect. In fact, MATHML defines two languages: a pre-

5 http://www.lyc-monod-clamart.ac-versailles.fr/IMG/pdf/FormulaireBac2003.pdf
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Fig. 3. A screenshot of SEWELIS where the current query retrieves the expressions
whose limit at positive infinity is equal to something.

sentation language, and a content language. Only the latter interests us because
it represents the logical structure of expressions, and avoids ambiguity problems
(e.g., the letter e that denotes either the Neperian constant or a variable) as well
as synonymy problems (e.g., x/y and % for division). The I*TEX language plays
the same role as the presentation language of MATHML, and therefore exhibits
the same problems.

The (strict) content language of MATHML is based on a small number of
XML tags that encapsulate different types of expressions: <cn> (numbers), <ci>
(identifiers), <csymbol> (symbols), <cs> (strings), <apply> (applications of func-
tions and operators), <bind> and <bvar> (bindings). For example, the expression
Ik 22 dzx has the following MATHML representation:

<bind><csymbol>integral</csymbol>
<bvar><ci>x</ci></bvar>
<apply><csymbol>power</csymbol>
<ci>x</ci> <cn>2</cn>
</apply></bind>

RDF expressions are expressive enough to represent all MATHML contents.
Numbers and strings are naturally mapped to RDF literals of different datatypes
(e.g., xsd:integer for integers, xsd:string for strings). Symbols (e.g., functions,
operators, constants) are naturally mapped to URIs, ideally defined in standard
vocabularies. Identifiers are mapped to variables, i.e. blank nodes. Applications
(of a function to arguments) are mapped to RDF expressions, where the con-
structor represents the applied function, and elements represent passed argu-
ments. Finally, bindings are also mapped to expressions, where the binder (e.g.,
3,V, [) is the constructor, and the bound variable is a distinguished argument
that can only be filled with a variable. The Turtle+ representation of the above
example is therefore math:Integral (math:Power(_:x,2),_:x), where by convention,
the second argument of math:Integral is the bound variable. An advantage of
the RDF representation of expressions is its interoperability with a generalist
knowledge representation language, RDF. Compared to MATHML, this makes



it possible to freely mix mathematical knowledge and non-mathematical knowl-
edge by allowing RDF annotations on expressions and sub-expressions.

6.2 Query Languages

Letting aside the approaches based on textual search, whose limits have already
been exposed in the introduction, we find query languages that directly operate
on the logical structure of expressions. MathWebSearch [7] defines an XML query
language that extends MATHML. Its XML syntax makes it very difficult to use,
and its expressiveness is limited. For example, it cannot express the relation
between an expression and its sub-expressions (e.g., ...x"2... in SEWELIS).

The most advanced query language is from Altamimi and Youssef [1]. They
use an ASCII notation that is similar to XTEXnotation, and a set of 6 jokers that
can be used in place of: one or several characters, one or several atoms, one or
several expressions. Our approach has a higher expressiveness, and a number of
additional advantages for users. SPARQL has a higher expressiveness by offering
disjunction, negation, and the possibility to search for sub-expressions appearing
in some context. For example, it is possible to look for the bodies of integrals
in x that contain y* or y3, where y is not z: [...(not ?X)"(2 or 3)... d?X as
displayed in SEWELIS. The 6 kinds of jokers are covered by the combination
of: the empty pattern 7 (a universal joker), SPARQL variables for co-occurences
of a same sub-expression, ellipsis ... for reaching sub-expressions, and classical
queries for constraining the name and type of the atoms of expressions. An
additional advantage when using SEWELIS is that users do not need to master
the syntax of the query language because they are guided step after step in the
construction of queries. This comes with the guarantee of non-empty results.
Another advantage is that pretty-printing (UTF-8 characters, mixfix notations,
etc.) can be used for expressions and queries because query elements are selected,
not written.

7 Conclusion

We have proposed an RDF representation of expressions as containers that is
compatible with existing practice such as in OWL/RDF and SPIN, and that al-
lows for the expressive search of expressions based on their contents and context
of occurence. With a simple syntactic extension of Turtle and SPARQL, those
expressions can be noted in a concise and familiar way, i.e. in the functional no-
tation. By annotating expression constructors with notation descriptions, which
are expressions themselves, human-readable labels can be automatically gener-
ated for each expression. We have illustrated the representation and exploration
of expressions on mathematical search, and we have shown the benefits of our
approach compared to existing mathematical query languages. We hope that the
expression vocabulary that we have sketched in this paper will be improved by
the community, and adopted by Semantic Web tools. We believe that its scope
goes beyond mathematical expressions, as we have shown in this paper, and that
it is relevant to the representation of all kinds of structures and symbolic data.
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