Compressed Sensing and Best Approximation from Unions of Subspaces: Beyond Dictionaries

Abstract : We propose a theoretical study of the conditions guaranteeing that a decoder will obtain an optimal signal recovery from an underdetermined set of linear measurements. This special type of performance guarantee is termed instance optimality and is typically related with certain properties of the dimensionality-reducing matrix M. Our work extends traditional results in sparse recovery, where instance optimality is expressed with respect to the set of sparse vectors, by replac- ing this set with an arbitrary finite union of subspaces. We show that the suggested instance optimality is equivalent to a generalized null space property of M and discuss possible relations with generalized restricted isometry properties.
Type de document :
Communication dans un congrès
21st European Signal Processing Conference (EUSIPCO 2013), Sep 2013, Marrakech, Morocco. 2013
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00812858
Contributeur : Rémi Gribonval <>
Soumis le : mardi 11 juin 2013 - 14:04:32
Dernière modification le : mardi 16 janvier 2018 - 15:54:22
Document(s) archivé(s) le : jeudi 12 septembre 2013 - 04:08:13

Fichier

EUSIPCO_Final.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00812858, version 2

Citation

Tomer Peleg, Rémi Gribonval, Mike E. Davies. Compressed Sensing and Best Approximation from Unions of Subspaces: Beyond Dictionaries. 21st European Signal Processing Conference (EUSIPCO 2013), Sep 2013, Marrakech, Morocco. 2013. 〈hal-00812858v2〉

Partager

Métriques

Consultations de la notice

1262

Téléchargements de fichiers

239