Learning and comparing functional connectomes across subjects
Gaël Varoquaux, R. Cameron Craddock

To cite this version:
Gaël Varoquaux, R. Cameron Craddock. Learning and comparing functional connectomes across subjects. NeuroImage, Elsevier, 2013, 80, pp.405-415. <10.1016/j.neuroimage.2013.04.007>. <hal-00812911>

HAL Id: hal-00812911
https://hal.inria.fr/hal-00812911
Submitted on 13 Apr 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Learning and comparing functional connectomes across subjects

Gaël Varoquaux, R. Cameron Craddock

Parietal project-team, INRIA Saclay-île de France
INSERM, U992
CEA/Neurospin bât 145, 91191 Gif-Sur-Yvette
Child Mind Institute, New York, New York
Nathan Kline Institute for Psychiatric Research, Orangeburg, New York

Abstract

Functional connectomes capture brain interactions via synchronized fluctuations in the functional magnetic resonance imaging signal. If measured during rest, they map the intrinsic functional architecture of the brain. With task-driven experiments they represent integration mechanisms between specialized brain areas. Analyzing their variability across subjects and conditions can reveal markers of brain pathologies and mechanisms underlying cognition. Methods of estimating functional connectomes from the imaging signal have undergone rapid developments and the literature is full of diverse strategies for comparing them. This review aims to clarify links across functional-connectivity methods as well as to expose different steps to perform a group study of functional connectomes.

Keywords: Functional connectivity, connectome, group study, effective connectivity, fMRI, resting-state

1. Introduction

Functional connectivity reveals the synchronization of distant neural systems via correlations in neurophysiological measures of brain activity [14, 37]. Given that high-level function emerges from the interaction of specialized units [110], functional connectivity is an essential part of the description of brain function, that complements the localizationist picture emerging from the systematic mapping of regions recruited in tasks [101]. However, while there exists a well-defined standard analysis framework for activation mapping that enables statistically-controlled comparisons across subjects [39], group-level analysis of functional connectivity still face many open methodological challenges. Deriving a picture of a single subject’s functional connectivity is by itself not straightforward, as the brain comprises a myriad of interacting subsystems and its connectivity must be decomposed into simplified and synthetic representations. An important view of brain connectivity is that of distributed functional networks depicted by their spatial maps [31]. Another no less important and complementary view is that of connections linking localized functional modules depicted as a graph [17]. This representation of brain connectivity is often called the functional connectome [102] and is the focus of intense worldwide research efforts as it holds promises of new insights in cognition and pathologies [13, 30, 45].

The purpose of this paper is to review methodological progress in the estimation of functional connectomes from blood oxygenation level dependent (BOLD) based functional magnetic resonance imaging (fMRI) data and their comparisons across individuals. It does not attempt to be exhaustive, as the field is wide and moving rapidly, but details specific tools and guidelines that, in the experience of the authors, lead to controlled and powerful inter-subject comparisons. The paper is focused on functional connectomes in contrast to structural connectomes, as the inference of functional connectivity requires important statistical modeling considerations that are vastly different from the complications involved with estimating structural connectivity. While the notion of functional connectomics is often associated with the study of resting state [13], the methods presented in this paper are also relevant for task-based studies. On the other hand, the paper has a focus on fMRI; although the core concepts presented can be applied to magnetoencephalography (MEG) or electroencephalography (EEG) [103], additional specific problems such as source reconstruction must be considered [93].

“Functional connectivity” is defined as a measure of synchronization in brain signals [35]. More generally, it is interesting as a window on underlying synchrony on neural processes [63]. By “functional connectome”, here we specifically denote a graph representing functional interactions in the brain, where the term “graph” is taken in its mathematical sense: a set of nodes connected together by edges. Graph nodes (brain regions) correspond to spatially-contiguous and functionally-coherent patches of gray matter and edges describe long-range synchronizations between nodes that are putatively subtended by large fiber pathways [68]. A graph can be weighted or not, and is completely equivalent to its adjacency matrix, a

*Corresponding author

Preprint submitted to Elsevier
April 13, 2013
symmetric matrix tabulating the connection weights between each pair of nodes. Functional-connectivity graphs are used to represent evoked activity, as in task-response studies [72], as well as ongoing activity, present in the absence of specific tasks or in the background during task and often studied in so-called resting state experiments [83]. Another important notion that arises from the study of distributed modes of brain function is that of specialized functional networks [31]. With our definition of the functional connectome, functional networks are not directly building blocks of the connectome but appear as a consequence of the graphical structure [116, 117].

The paper is organized as follows. First we discuss estimation of functional connectomes. This part, akin to a first-level analysis in standard activation mapping methodology, is not in itself a group-level operation, but it is a critical step for inter-subject comparison. In a following section, we discuss several strategies for comparing connectomes across subjects. Finally we discuss the links between the representation of brain connectivity as graphs of functional connectivity and more complex models, such as effective-connectivity models.

2. Estimating functional connectomes

Here we discuss the inference of connectomes from functional brain imaging data. We start with preprocessing considerations, followed by the choice of nodes i.e. regions, signal extraction, and the estimation of graphs.

2.1. Preprocessing considerations

In addition to standard preprocessing performed for task-based analysis (slice-timing correction, realignment, spatial normalization, and possibly smoothing), connectivity-based analysis requires additional denoising to separate intrinsic activity from confounding signals. This process involves regressing time series capturing sources of structured noise from the fMRI data. Physiological noise due to cardiac and respiration are two important components from a principal components analysis of high-variance signals (CompCor [7]). Head motion induced signal fluctuations are accounted for by incorporating movement parameters [31, 41, 67]. The global mean time series has been proposed as an additional noise regressor that appears to improve the spatial specificity of connectivity results [31, 32]. This practice has become controversial since the global signal regression introduces negative correlations [19, 77, 90]. Removing these sources of nuisance in addition to linear trends results in more contrasted correlation matrices that improve the delineation of functional structures (fig. 2).

Filtering to remove high frequencies is often performed, based on the initial observation that fluctuations implicated in resting-state functional connectivity are predominately slower than 0.1 Hz [14, 23]. While high-pass and low-pass filtering decrease the impact of some confounds, recent studies have shown that connectivity is present across the full spectrum of observed frequencies [99, 113]. Regressing out a good choice of confound signals is more specific than frequency filtering, and in our experience gives more contrasted correlation matrices [2]. In addition, the recent developments of very rapid acquisition protocols prevent aliasing of the physiological noise with the neural signal and give access to more specific noise confounds than traditional low-TR sequences [16].

It is important to keep in mind that the proposed correction strategies are approximate and not definitive techniques. This has become particularly apparent for head motion with reports that micromovements on the scale of ≤ 0.2 mm can induce artefactual group-level findings even when motion is accounted for in preprocessing [82, 92, 112]. Special care must be taken to adequately control for residual impact of head motion in the group model [92, 112].

2.2. Defining regions

The choice of regions of interests (ROIs) that define the nodes of the graphs can be very important both in the estimation of connectomes and for group comparison [119]. Unsurprisingly, simulations have shown that extracting signal from ROIs that did not match functional units would lead to erroneous graph estimation [100]. Different strategies to define suitable ROIs coexist. While dense parcellation approaches cover a large fraction of the brain [1, 8, 25, 116, 119], this coverage can be traded off to focus on some specific regions, in favor of increased functional specificity and thus better differentiation across networks [28, 46, 114]. In addition, while ROIs are most often defined as a hard selection of voxels, it is also possible to use a soft definition, attributing weights as with probabilistic atlases, or spatial maps of functional networks extracted from techniques such as independent component analysis (ICA) [57, 99].

Regions from atlases. Atlases can be used to define full-brain parcellations. Popular choices are the Automatic Anatomic Labeling (AAL) atlas [111], which benefits from

1 In neuroimaging, the term network is sometimes used to denote a graph of brain function. To disambiguate the notion of segregated spatial mode [31] from that of connectivity graphs, we will purposely restrict its usage in this paper.

2 Note that naive use of filtering can induce spurious correlations [26].
an SPM toolbox, or the ubiquitous Talaraich-Tournoux atlas [107]. However, these atlases suffer from major shortcomings; namely i) they were defined on a single subject and thus do not reflect inter-subject variability, and ii) they focus on labeling large anatomical structures and do not match functional layout—for instance only two regions describe the medial part of the frontal lobe in the AAL atlas. Multi-subject probabilistic atlases such as the Harvard-Oxford atlas distributed with FSL [98] or the sulci-based structural atlas used in [116] mitigate the first problem, and the high number of regions defined using sulci also somewhat circumvent the second problem (see fig. 1).

Defining regions from the literature. Regions can be defined from previous studies, informally or with systematic meta-analysis. This strategy is used to define the main resting-state networks, such as the default mode network, but may also be useful to study connectivity in task-specific networks [14, 28, 47, 86]. The common practice is to place balls of a given radius, 5 or 10 mm, centered at the coordinates of interest. Given that functional networks are tightly interleaved in some parts of the cortex, such as the parietal lobe, care must be taken not to define too many regions that would overlap and lead to mixing of the signal.

FMRI-based function definition. Defining regions directly from the fMRI signal brings many benefits. First, it can capture subject-specific functional information. Second, it adapts to the signal at hand and its limitations, such as image distortions or vascular and movement artifacts that are isolated in ICA-like approaches. Lastly, incorporating functional information into regional definition will result in more homogenous regions that better represent connectivity present at the voxel level than anatomically-defined atlases such as AAL or Harvard-Oxford [25]. The simplest approach to define task-specific regions is to use activation maps derived from standard GLM-based analysis in a task-driven study (see for instance [81]). Regions are extracted by thresholding the maps, or using balls around the activation peaks. For resting-state studies, unsupervised multivariate analysis techniques are necessary. Clustering approaches extract full-brain parcellations [9, 25, 109, 121], and have been shown to segment well-known functional structures from rest data. Alternatively, decomposition methods, such as ICA [6], can unmix linear combinations of multiple effects and separate out partially-overlapping spatial maps that capture functional networks or confounding effects, as for instance with the presence of vascular structure in functional networks. At high model order, ICA maps define a functional parcellation [57]. Extracting regions from these maps requires additional effort as they can display fragmented spatial features and structured background noise, but incorporating sparsity and spatial constraints in the decomposition techniques leads to contrasted maps that outline many different structures [117] (see fig. 1).

Optimal number of regions. Defining an optimal number of regions to use for whole-brain connectivity analysis bears careful consideration. On one hand we desire a sufficiently large number of regions to guarantee that they are functionally homogeneous regions and adequately represent the connectivity information present in the data. On the other hand too many regions will render statistical inference challenging, result in an explosion in computational complexity, and interfere with the interpretability of observed connections. For functional parcellation, cross-validation methods can be employed to estimate an optimal number of regions based on homogeneity, the ability to reproduce connectivity information present at the voxel scale, and the ability to obtain the same parcellations from independent data [15, 25]. In general these metrics do not result in an obvious peak at a “best” number of regions, but instead offer a range over which the number of regions can be chosen based on the needs of the analysis at hand. Finally, it is important to keep in mind that there is no universally better parcellation and associated number of regions. From a practical standpoint, these choices will depend on the task at hand, and more fundamentally, a good description of brain function should cover multiple scales. Given that it is not clear that an optimal parcellation can be identified from the sample size of a typical study, randomized parcellation, as used in structural connectomes [124] or activation mapping [118], may also be considered.

2.3. Estimating connections

The concept of functional connectivity has been called elusive [51]: it has many mathematical instantiations al-
though in essence they all strive to extract simple statistics from functional imaging in order to characterize synchrony and communication between large ensembles of neurons. Here we choose to focus on second order statistics that can be related to Gaussian models, the simplest of which being the correlation matrix of the signals of the different ROIs.

Signal extraction. Given a set of graph nodes, the next step is to extract a representative time series for each node. To study intrinsic activity, e.g. with rest data, signal extraction can be achieved by either averaging the fMRI time series across the voxels in a region, or by taking the first eigenvariate from a principle components analysis of the time series [40]. Comparisons of these methods has shown that the eigenvariate method is more sensitive to function inhomogeneity [25] and exhibits worse test-retest reliability than averaging time series [128]. In addition, improved specificity to BOLD signal can be enforced by using only signal in voxels near gray-matter tissues. For this purpose, we suggest summarizing the signal in an ROI by a mean of the different voxels weighted by the subject-specific gray matter probabilistic segmentation, as output by e.g. SPM’s segmentation tool [4] or FSL’s FAST program [126].

Studying connectivity from evoked activity with task-driven studies requires disambiguating task-specific connectivity effects from intrinsic connectivity mediated by shared neuromodulatory/task inputs, anatomical pathways, etc. In this regard, it can be beneficial to run a GLM-based first-level analysis, enforcing specificity of the measure extracted to the task. With slow event-related designs, task-specific functional connectivity can be captured in trial-to-trial fluctuations in the BOLD response, estimated using a GLM analysis with one regressor per trial [47, 75, 86]. This approach, known as beta-series regression, has been adapted for rapid event-related designs, using multiple GLMs to optimize deconvolution of each trial [76].

Correlation and partial correlations. Given ROIs defining the nodes of the functional-connectome graph, one needs to estimate the corresponding edges connecting them. Functional connectivity between the ROIs can be measured by computing the correlation matrix of the extracted signals. An important and often neglected point is that the sample correlation matrix, i.e. the correlation matrix obtained by plugging the observed signal in the correlation matrix formula, is not the population correlation matrix, i.e. the correlation matrix of the data-generating process. If the number of measurements was infinite, the two would coincide, however if this number is not large compared to the number of connections (that scales as the square of the number of ROIs), the sample correlation matrix is a poor estimate of the underlying population correlation matrix. In other words, the sample correlation matrix captures a lot of sampling noise, intrinsic randomness that arises in the estimation of correlations from short time series. Conclusions drawn from the sample correlation matrix can easily reflect this estimation error. Varoquaux et al. [116] and Smith et al. [100] have shown respectively on rest fMRI and on realistic simulations that a good choice of correlation matrix estimator could recover the connectivity structure, where the sample correlation matrix would fail. In general, the choice of a better estimate depends on the settings and the end goals [114, 117], however the Ledoit-Wolf shrinkage estimate [62] is a simple, computationally-efficient, and
parameter-less alternative that performs uniformly better than the sample correlation matrix [116, 117] and should always be preferred.

For the problem of recovering the functional-connectivity structure, i.e. finding which region is connected to which, sparse inverse covariance estimators have been found to be efficient [89, 100, 116]. The intuition for relying on inverse covariance rather than correlation stems from the fact that standard correlation (marginal correlation) between two variables a and b also capture the effects of other variables: strong correlation of a and b with a third variable c will induce a correlation between a and b. On the opposite, the inverse covariance\(^3\) matrix (also called precision matrix) captures partial correlations, removing the effect of other variables [71]. In the small sample limit, this removal is challenging from the statistical standpoint. This is why an assumption of sparsity, i.e. that only few variables need to be considered at a time, is important to estimate a good inverse covariance. Various estimation strategies exist for sparse inverse covariance, and have an impact on the resulting networks [116, 117]. The Graph Lasso (ℓ_1-penalized maximum-likelihood estimator) [34] is in general a good approach for structure recovery. In group studies, the ℓ_2 estimator [50, 116] is useful to impose a common sparsity structure across different subjects and achieve better recovery of this common structure. Simply put, these approaches are necessary because estimation noise creates a background structure (see fig. 3); however, unlike in a univariate situation, the parameters are not independent, and the spurious background connections degrade the estimation of the actual connections. The sparse estimators make a compromise between imposing simpler models, i.e. with less connections, and providing a good fit to the data. This compromise is set via a regularization parameter which controls the sparsity of the estimate. A good procedure to choose this parameter is via cross-validation [116].

Network structure extracted. The correlation matrices and inverse-covariance matrices that we extract contain a lot of information on the functional structure of the brain. First, the correlation matrix (fig. 2) shows blocks of synchronized regions that can be interpreted as large-scale functional networks, such as the default mode network. Note that the split in networks is not straightforward. Different ordering of the nodes will reveal different networks. Indeed, because of the presence of hubs and interleaved networks, the picture in terms of segregated networks is not sufficient to explain full-brain connectivity [117]. Connectivity matrices, correlation matrices and inverse-covariance matrices, can be represented as graphs: nodes connected by weighted edges (inserts on fig. 2 and fig. 3). The inverse-covariance matrix, which captures partial correlations, appears then as extracting a backbone or core of the graph. While such structure has been used as a way to summarize anatomical brain connectivity graphs [49], here it has a clear-cut meaning with regard to the BOLD signal: it gives the conditional independence structure between regions [117]. In other words, regions a and b are not connected if the signal that they have in common can be explained by a third region c. In this light, the choice of nuisance regressors to remove confounding common signal is less critical with partial correlations than with correlations. Indeed, while with correlation matrices regressing out the global mean has a drastic effect (fig. 2 upper right and lower right), on inverse covariance it only changes the resulting matrices very slightly (fig. 4).

There have been debates on whether to regress out certain signals, such as the global mean, as it induces negative correlations [19, 32, 77], and these may seem surprising: one network appears as having opposite fluctuations to another. However, correlation between two signals only takes its meaning with the definition of a baseline. A simple picture to explain anti-correlations between two regions is the presence of a third region, mediating the interactions. Using this third region as a baseline would amount to estimate partial correlations in the whole system. Using inverse-covariance matrices or partial correlations to understand brain connectivity makes the interpretation in terms of interactions between brain regions easier and more robust to the choice of confounds.

3. Comparing connectivity

We now turn to the problem of comparing functional connectivity across subjects or across conditions.

3.1. Detecting changing connections

First, we focus on detecting where the connectivity matrices estimated in the previous section differ.

\(^3\)Covariance and correlation matrices differ simply by the fact that a covariance matrix captures the amplitude of a signal, via its variance, while a correlation matrix is computed on standardized (zero mean, unit variance) signals.
Mass-univariate approaches. The most natural approach is to apply a linear model to each coefficient of the connectivity matrices [47, 64]. This approach is similar to the second-level analysis used in mass-univariate brain mapping, and gives rise to many of the well-known techniques used in such a context, such as the definition of a second-level design, with possibly the inclusion of confounding effects, and statistical tests (T tests or F tests) on contrast vectors. Importantly, in order to work with Gaussian-distributed variables, it is necessary to apply a Fisher Z transform to the correlations. Note that in these settings, the Ledoit-Wolf estimator [62] is often a good choice to estimate the correlation matrix, as it is parameter-free and gives good estimation performance without imposing any restrictions on the data. For hypothesis testing, correcting for multiple comparison can severely limit statistical power, as the number of tests performed scales as the square of the number of regions used. Controlling for the false discovery rate (FDR) mitigates this problem. Alternatively, as the assumptions underlying the Benjamini-Hochberg procedure [10] for the FDR can easily be broken, non-parametric permutations-based tests give reliable approaches. In particular, the max-T procedure [42, 79] is interesting to avoid the drastic Bonferroni correction when controlling for multiple comparison in family-wise error rate.

Accounting for distributed variability. A specific challenge of connectivity analysis is that the connectivity strength between different regions tends to covary. For instance, with resting-state data, functional networks comprising many nodes can appear as more or less connected across subjects (see for instance fig. 5, showing variability in a control population at rest). In other words, non-specific variability is distributed across the connectivity graph, and it is structured by the graph itself. This observation brings the natural question of whether second-level analysis should be performed on correlation matrices, inverse-covariance matrices, or another parametrization that would disentangle effects and give unstructured (white) residuals. While inverse-covariance matrices show less distributed fluctuations than correlation matrices, they capture a lot of background noise, as partial correlations are intrinsically harder to estimate. Preliminary work [114] suggests performing statistical tests on residuals of a parametrization intermediate between correlation matrix and inverse covariance matrix, as it can decouple effects and noise.

Taking a different stance on distributed variability, the “network-based statistics” approach [122] draws from the hypothesis that if, in a second-level analysis, an effect is detected on a connection that lies in a network of strongly connected nodes, a large sub-network is likely to carry an effect. Thus, they adapt cluster-level inference to connectivity analysis, in order to mitigate the curse of multiple comparisons.

3.2. Comparing network summary statistics

Both the multiple comparison issue and the network-level distributed variability are a plague to edge-level comparison of connectomes. A possible strategy to circumvent these difficulties is to perform comparisons and statistical testing at the level of the network, rather than the individual connection.

Network integration. Marrelec et al. [69] introduce the use of entropy and mutual information as a measure of network-level functional integration. Gaussian entropy can be seen as a simple metric to generalize correlation or variance to multiple nodes (see [3] §2.5.2 and §7.5). Indeed, let us consider 3 nodes: \(a\), \(b\) and \(c\). Their correlation structure is captured by three correlation coefficients: \(\rho_{ab}\), \(\rho_{bc}\) and \(\rho_{ac}\). Summarizing these by their mean, as might seem natural, discards the relationship between the signals, while using the integration metric, defined as the Gaussian entropy, tells us how much two signals can be

\[\text{Gaussian entropy} = \frac{1}{2} \log(1 - \rho_{ab} \rho_{bc} \rho_{ac})\]

\[\text{Mutual information} = H(a) + H(b) + H(c) - H(a, b, c)\]

\[\text{Network integration} = \int \text{Gaussian entropy} \, \text{Mutual information}\]

See [116] for simplified formulas for network integration and mutual information.

\[\text{See } \text{http://en.wikipedia.org/wiki/Fisher_transformation or [3] section 4.2.3 for mathematical arguments.}

\[\text{See [116] for simplified formulas for network integration and mutual information.}\]
combined to form the third (see fig. 6). Cross-entropy—or mutual information—[69] measures the amount of cross-talk between two systems in a similar way as Gaussian entropy is used to measure the integration of a brain system. The functional-connectivity structure, or its representation in the form of a correlation matrix, can thus be characterized via the integration and cross-talk of some of its sub-systems. This approach gives a simplified representation with a small number of metrics that can be compared across subjects.

Graph-topological metrics. Functional connectivity graphs have been found to display specific topological properties[6] that are characteristic of small-world networks [1, 17, 91, 103]. These networks display excellent transport properties: although they have a relatively small number of connections, any two regions of the brain are well connected. Another interesting consequence of their specific topology is the resilience it gives the system to attacks such as resulting from brain lesions [1]. This overall structure of functional-connectivity graphs can be summarized by a few metrics, such as the average path length between any two nodes, the local clustering coefficients, or the node degree centrality [87]. Given that pathologies without a localized focus, such as schizophrenia, are thought to have a global impact on brain connectivity [5, 65], the graph-topological metrics are promising markers to perform inter-subject comparison. Such an approach is appealing as it is not subject to multiple comparison issues. However, it has been criticized as giving a fairly unspecific characterization of the brain and being fragile to noise [54]. Another caveat is that these properties are not specific to brain function: correlation matrices display small-world properties such as local clustering by construction. Indeed, if two nodes are strongly correlated to a third, they are highly likely to be correlated to each other [123]. This observation highlights the need for well defined null-hypothesis [88, 123], but also for controlled recovery of brain functional connectivity going beyond empirical correlation matrices, as discussed in the previous section.

![Figure 6](image-url) Two different correlation matrices with the same average correlation, but with very different integration values. Indeed, the matrix on the left was chosen to represent three signals a, b and c as different from each other as possible, given $p_{ab} + p_{bc} + p_{ac} = 1.35$; it thus has a small integration value. On the opposite, for the matrix on the right, signal b can almost be fully recovered by combining signals a and c; the matrix thus has a large integration value.

3.3. Predictive Modeling

Predictive modeling is concerned with learning (or fitting) a model that is capable of predicting information from unseen data [80]. In the context of connectomes, predictive modeling can extract connectivity-based biomarkers of disease diagnosis, prognosis, or other phenotypic outcomes [24, 27]. The accuracy of a predictive model provides a measure of the amount of information present in the connectome about the phenotypic measure being evaluated [58, 59]. When combined with reproducibility, prediction accuracy provides a metric for evaluating experimental trade-offs for data acquisition, preprocessing, and analysis [60, 106]. Multivariate predictive models are attractive in connectomics because they are sensitive to dependencies between features and avoid the need to correct for multiple comparisons since the significance of an entire pattern is evaluated using a single statistical test. Additionally, modern predictive modeling techniques draw from the statistical learning literature, which specifically addresses high dimensional datasets with few observations. Predictive modeling has been successfully applied to identify connectome-based biomarkers of Alzheimer’s disease [104], depression [24, 125], schizophrenia [18, 94], autism [2], ADHD [127], aging [27], as well as to classify mental operations [85, 95]. The growing interest for applying predictive modeling to connectivity analysis was highlighted by the ADHD200 Global Competition, in which the object was to identify a connectivity-based biomarker of ADHD [108]. Recent work has illustrated the utility of predictive modeling for deriving connectivity models at the individual level [22].

Technically, predictive modeling is a supervised machine learning problem where a target to be predicted—e.g. age, disease state, cognitive state— is available for each observation of the data. In the context of comparing connectomes, features used in the predictive model correspond to bivariate measures of connectivity [27, 85, 95], or any of the previously discussed graph summary metrics [18, 29]. The quality of a predictive model is determined by its prediction accuracy (or generalization ability) which is measured using one or more iterations of cross-validation. Cross-validation iteratively subdivides available data into a subset used for training the classifier and a dataset for evaluating classifier performance[6] [80]. The significance of achieved prediction accuracy can be assessed using permutation tests [44]. Predictive modeling approaches typically require the specification of several parameters, which may be chosen based on domain specific knowledge or requirements [21], determined using an analytical approach [20], or optimized using a second-level cross validation procedure [33].

6In the neuroscience world, these descriptions are grouped under the terms of "graph-theoretical approaches", however graph theory is an entire division of mathematics and computer science that is concerned with much more than topology of random graphs.

7Several strategies exist for performing cross-validation and the commonly used approach of using only a single observation for testing (leave-one-out cross-validation) results in highly variable estimates of prediction accuracy [33]. Alternative approaches such as (5 or 10)-fold cross-validation, or 0.632+ bootstrap should be preferred [33].
Although predictive modeling techniques are well suited for measuring whether information exists in the connectome about a phenotypic variable, they do not directly identify the connections that are most relevant to the prediction. This limitation can be somewhat mitigated by relying on previously described sparse inverse covariance estimation techniques to minimize the number of connections. Additionally, feature selection [48] can be performed by filtering out features based on their statistical relationship with the variable of interest [24, 94]. Importantly, it must be performed within cross-validation to avoid biasing estimates of prediction accuracy. The interpretation of connections used in predictive models and their relationship with a phenotypic outcome is difficult and requires insight into the mechanisms underlying the modeling approach. For linear models, the weights of the model are similar to the weights of an ordinary linear regression. If features are appropriately standardized prior to training, the magnitude of the weights can be interpreted to reflect the relative importance of the feature to the model, for instance the corresponding edge in the connectome. However, interpreting how the connections differ between classes or relate to a phenotypic variable can be more complicated given the multivariate nature of their involvement. Indeed, the inclusion or exclusion of a connection in the model can induce a change of the sign of another model weight [24]. It is perhaps most reasonable to adapt a conservative interpretation in which predictive modeling is used to identify candidate connections that are later tested in follow-up experiments better suited to elucidating their relationship to the variable of interest.

To conclude on predictive modeling with a practical note for connectome comparison, we would like to stress that while machine learning algorithms are powerful tools, they work best if they are provided with discriminant and noiseless features. In other words, as with all other connectome comparison methods, optimizing first-level analysis –subject-level connectome extraction– is paramount.

4. Beyond correlation, effective connectivity?

All the approaches that we have presented in this review are based on second-order statistics of the signal, in other words correlation analysis. Traditionally, these are defined as functional connectivity, defined as “temporal correlations between remote neurophysiological events” [35], and opposed to effective connectivity, i.e. “the influence one neural system exerts over another” [35]. To conclude this review, we would like to bridge the gap between these concepts, which in our eyes should be seen as a continuum rather than an opposition (this opinion is also expressed in [73]).

A first step to move from purely descriptive statistics to interaction models with functional connectivity analysis is to consider a correlation matrix as a Gaussian graphical model, i.e. a well-defined probabilistic model that describes observed correlations in terms of an independence structure and conditional relations [61, 117]. In such settings, the inverse covariance graph or the partial correlations are a measure of influence from one node to another, albeit undirected. Inferring directionality in a Gaussian model is impossible. Linear structural equation models (SEMs) [74] rely on a similar model that consists in specifying a candidate directed graphical structure. This structure constraints the covariance matrix of the signals and can thus be tested on observed data. In fact some forms of SEMs are known as “covariance structure models”. There is thus a strong formal link between correlation analysis in the framework of graphical models and SEMs: the former is undirected but fully exploratory, as it does not require the specification of candidate structure, while the latter is directed but confirmatory. This link has been exploited to specify candidate structures for SEMs using partial correlations [70]. More complex models, such as dynamical causal models (DCMs) [38] or Granger causality [43] require additional hypotheses such as non-linear couplings or time lags.

Most importantly, more complex models can only be used to model interactions between a small number of nodes. This is not only due to a computational difficulty, but also to fundamental roadblocks in statistics: the complexity of the model must match the richness of the data. While injecting prior information can help model estimation, the more informative this prior is, the more fragile the inference becomes. The ongoing debate on the impact of hemodynamic lag on Granger-causality inference [96] is an example of such fragility. Note that although most of the theory underpinning correlation analysis (Gaussian graphical models) is based on a Gaussian assumption, the core results are robust to violations of this assumption [84].

It is tempting to favor more neurobiologically-inspired models that give descriptions close to our knowledge of the brain basic mechanisms, however, as George Box famously said, “all models are wrong; some models are useful”. Depending on the question and the data at hand, a trade-off should be chosen between complex models based on a biophysical description, and simple phenomenological models such as correlation matrices. In particular to model interactions between a large number of regions, as in full-brain analysis, and learn a large connectome, simple models are to be preferred. For more hypothesis-driven studies, such as the analysis of the mechanisms underlying a specific task, more complex models can be preferred, if rich data is available. Automatic choice of model is a difficult problem, however, cross-validation (as used in [25, 105, 116]) is a useful tool. The central principle of cross-validation is to test a model on different data than the data used to fit the model. Models too complex for the data available will fit noise in the data, and thus generalize poorly. The main benefit of cross-validation is that it is a non-parametric method which does not rely strongly on modeling assump-
5. Conclusion

Horwitz et al. [52] claimed almost 20 years ago that “the crucial concept needed for network analysis is covariance”. In our eyes, this still holds today. Estimation functional connectomes relies largely on fitting covariance models. Their comparison requires understanding how these covariances vary and finding metrics to capture this variability. The additional secret ingredient may be using confounds regressors in all statistical steps. A good choice of a small number of relevant regions facilitates connectome comparison. However, such a choice cannot yet be fully factored out via methods and must rely on neuroscientific expertise.

Methodological challenges to functional-connectome-based group studies arise from the dimensionality and the variability of the connectome. With the current tools, inter-subject comparison of connectomes comprising many nodes is limited by the difficulty of estimating high-dimensional covariance matrices and the loss of statistical power due to multiple comparisons. Better algorithms integrating powerful a priori information are required to push the limits of covariance estimation. Better characterization of inter-subject variability of connectomes [56] will help choosing parameterizations and invariants to avoid testing each edge for a difference, as this strategy inevitably leads to a needle in a haystack problem.

Reviewing methodological options to learn and compare connectomes highlights that there is currently no unique solution, but a spectrum of related methods and analytical strategies. More empirical results are required to guide the choices. However this diversity is probably unavoidable: a diffuse disease like schizophrenia will not lead to the same connectome modifications as a focal lesion. In statistical learning, “no free lunch” theorems [120] tell us that no strategy can perform uniformly better in all situations. In practice, the key to a successful analysis is to understand well the assumptions and interpretation of each option, in order to match the method to the question. Similarly, the idealized notion of an unique functional connectome to describe connections in brain function is probably an utopia, and various connectomes should be considered in different settings, such as the study of varying phenotypic conditions, or that of on-going activity versus activity related to specific tasks.

Acknowledgments

GV acknowledges funding from the NiConnect grant and the Dynamic Diaschisis project DEQ20100318254 from Fondation pour la Recherche Médicale, as well as many insightful discussions with Andreas Kleinschmidt on on-going activity and Bertrand Thirion on statistical data processing. RCC would like to acknowledge support by a NARSAD Young Investigator Grant from the Brain & Behavior Research Foundation. The authors would like to thank the anonymous reviewers for their suggestions, which improved the manuscript.

References

