O. Bernard and J. Gouzé, Closed loop observers bundle for uncertain biotechnological models, Journal of Process Control, vol.14, issue.7, pp.765-774, 2004.
DOI : 10.1016/j.jprocont.2003.12.006

URL : https://hal.archives-ouvertes.fr/inria-00071676

G. Bitsoris, Stability analysis of non-linear dynamical systems, International Journal of Control, vol.23, issue.3, pp.699-711, 1983.
DOI : 10.1016/0005-1098(73)90025-3

P. Borne, M. Dambrine, W. Perruquetti, and J. Richard, Vector Lyapunov functions: nonlinear, time-varying, ordinary and functional differential equations, Advances in Stability Theory, pp.13-49, 2003.

C. Briat, O. Sename, and J. Lafay, Design of LPV observers for LPV time-delay systems: an algebraic approach, International Journal of Control, vol.37, issue.9, pp.1533-1542, 2011.
DOI : 10.1080/00207170210123833

URL : https://hal.archives-ouvertes.fr/hal-00641562

C. Califano, L. A. Marquez-martinez, and C. H. Moog, On the observer canonical form for Nonlinear Time???Delay Systems, Proc. 18th IFAC World Congress, 2011.
DOI : 10.3182/20110828-6-IT-1002.00729

URL : https://hal.archives-ouvertes.fr/hal-00584322

A. Churilov, A. Medvedev, and A. Shepeljavyi, Mathematical model of non-basal testosterone regulation in the male by pulse modulated feedback, Automatica, vol.45, issue.1, pp.45-78, 2009.
DOI : 10.1016/j.automatica.2008.06.016

M. Dambrine, Contribution à l'étude des systèmes à retards, 1994.

M. Dambrine and J. Richard, Stability Analysis of Time-Delay Systems, Dynamic Systems and Applications, pp.405-414, 1993.

M. Darouach, Linear functional observers for systems with delays in state variables, IEEE Transactions on Automatic Control, vol.46, issue.3, pp.491-496, 2001.
DOI : 10.1109/9.911430

A. Fattouh, O. Sename, and J. M. Dion, ROBUST OBSERVER DESIGN FOR TIME-DELAY SYSTEMS: A RICCATI EQUATION APPROACH, Theory and Practice of Control and Systems, pp.35-753, 1999.
DOI : 10.1142/9789814447317_0072

E. Fridman, Descriptor Discretized Lyapunov Functional Method: Analysis and Design, IEEE Transactions on Automatic Control, vol.51, issue.5, pp.890-897, 2006.
DOI : 10.1109/TAC.2006.872828

E. Fridman and U. Shaked, Input???output approach to stability and -gain analysis of systems with time-varying delays, Systems & Control Letters, vol.55, issue.12, pp.55-1041, 2006.
DOI : 10.1016/j.sysconle.2006.07.002

A. Germani, C. Manes, and P. Pepe, A state observer for nonlinear delay systems, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171), pp.355-360, 1998.
DOI : 10.1109/CDC.1998.760699

J. Gouzé, A. Rapaport, and Z. Hadj-sadok, Interval observers for uncertain biological systems, Ecological Modelling, vol.133, issue.1-2, pp.45-56, 2000.
DOI : 10.1016/S0304-3800(00)00279-9

D. Greenhalgh and Q. J. Khan, A delay differential equation mathematical model for the control of the hormonal system of the hypothalamus, the pituitary and the testis in man, Nonlinear Analysis: Theory, Methods & Applications, vol.71, issue.12, pp.71-925, 2009.
DOI : 10.1016/j.na.2009.01.031

P. Habets and K. Peiffer, Attractivity Concepts and Vector Lyapunov Functions, Proc. 6th Int. Conference on Nonlinear Oscillations, Pozna, pp.35-52, 1972.

W. M. Haddad and V. Chellaboina, Stability theory for nonnegative and compartmental dynamical systems with time delay, Systems & Control Letters, vol.51, issue.5, pp.355-361, 2004.
DOI : 10.1016/j.sysconle.2003.09.006

J. K. Hale, Theory of Functional Differential Equations, 1977.
DOI : 10.1007/978-1-4612-9892-2

E. Kamke, Zur Theorie der Systeme gew??hnlicher Differentialgleichungen. II., Acta Mathematica, vol.58, issue.0, pp.57-85, 1932.
DOI : 10.1007/BF02547774

V. Kolmanovskii and A. Myshkis, Introduction to the Theory and Applications of Functional Differential Equations, 1999.
DOI : 10.1007/978-94-017-1965-0

V. M. Matrosov, Vector Lyapunov Functions in the Analysis of Nonlinear Interconnected System, Symp. Math, pp.209-242, 1971.

F. Mazenc, S. Niculescu, and O. Bernard, Exponentially Stable Interval Observers for Linear Systems with Delay, SIAM Journal on Control and Optimization, vol.50, issue.1, pp.286-305, 2012.
DOI : 10.1137/100812124

URL : https://hal.archives-ouvertes.fr/hal-00761603

M. Moisan, O. Bernard, and J. Gouzé, Near optimal interval observers bundle for uncertain bioreactors, Automatica, vol.45, issue.1, pp.291-295, 2009.
DOI : 10.1016/j.automatica.2008.07.006

URL : https://hal.archives-ouvertes.fr/hal-01109396

A. Papachristodoulou, M. M. Peet, and S. Niculescu, Stability analysis of linear systems with time-varying delays: Delay uncertainty and quenching, 2007 46th IEEE Conference on Decision and Control, pp.2117-2122, 2007.
DOI : 10.1109/CDC.2007.4434764

P. Pepe and Z. Jiang, A Lyapunov???Krasovskii methodology for ISS and iISS of time-delay systems, Systems & Control Letters, vol.55, issue.12, pp.1006-1014, 2006.
DOI : 10.1016/j.sysconle.2006.06.013

W. Perruquetti, Sur la Stabilité et l'Estimation des Comportements Non Linéaires, Non Stationnaires, Perturbés, 1994.

W. Perruquetti and J. P. Richard, Connecting Wazewski's condition with Opposite of M-Matrix: Application to Constrained Stabilization, Dynamic Systems and Applications, pp.81-96, 1995.

W. Perruquetti, J. Richard, and P. Borne, Vector Lyapunov functions : recent developments for stability, robustness, practical stability and constrained control, Nonlinear Times & Digest, issue.2, pp.227-258, 1995.

T. Raïssi, D. Efimov, and A. Zolghadri, Interval State Estimation for a Class of Nonlinear Systems, IEEE Transactions on Automatic Control, vol.57, issue.1, pp.260-265, 2012.
DOI : 10.1109/TAC.2011.2164820

M. A. Rami, U. Helmke, and F. Tadeo, Positive observation problem for linear time-delay positive systems, Proc. Mediterranean Conf. Control & Automation (MED '07), pp.1-6, 2007.

J. Richard, Time-delay systems: an overview of some recent advances and open problems, Automatica, vol.39, issue.10, pp.39-1667, 2003.
DOI : 10.1016/S0005-1098(03)00167-5

O. Sename and C. Briat, OBSERVER-BASED H??? CONTROL FOR TIME-DELAY SYSTEMS : A NEW LMI SOLUTION, Proc. 6th IFAC Workshop on Time Delay Systems, 2006.
DOI : 10.3182/20060710-3-IT-4901.00020

URL : https://hal.archives-ouvertes.fr/hal-00083415

R. Sipahi, S. Niculescu, C. Abdallah, W. Michiels, and A. K. Gu, Stability and Stabilization of Systems with Time Delay, IEEE Control Systems, vol.31, issue.1, pp.38-65, 2011.
DOI : 10.1109/MCS.2010.939135

URL : https://hal.archives-ouvertes.fr/hal-00664367

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, of Surveys and Monographs, 1995.
DOI : 10.1090/surv/041

A. Seuret, T. Floquet, J. Richard, and S. K. Spurgeon, Observer design for systems with nonsmall and unknown time-varying delay, Proc. IFAC Workshop on Time Delay Systems, 2007.
URL : https://hal.archives-ouvertes.fr/inria-00179798

A. P. Tchangani, M. Dambrine, and J. P. Richard, Stability, attraction domains, and ultimate boundedness for nonlinear neutral systems, Mathematics and Computers in Simulation, vol.45, issue.3-4, pp.3-4, 1998.
DOI : 10.1016/S0378-4754(97)00108-0

H. Tokumaru, N. Adachi, and T. Amemiya, Macroscopic stability of interconnected systems, Proc. of IFAC 6th World Congress, pp.44-48, 1975.

G. Zheng, J. P. Barbot, D. Boutat, T. Floquet, and J. Richard, On Observation of Time-Delay Systems With Unknown Inputs, IEEE Transactions on Automatic Control, vol.56, issue.8, pp.56-1973, 2011.
DOI : 10.1109/TAC.2011.2142590

URL : https://hal.archives-ouvertes.fr/inria-00589916