Blind Sensor Calibration in Sparse Recovery Using Convex Optimization

Abstract : We investigate a compressive sensing system in which the sensors introduce a distortion to the measurements in the form of unknown gains. We focus on blind calibration, using measures performed on a few unknown (but sparse) signals. We extend our earlier study on real positive gains to two generalized cases (signed real-valued gains; complex-valued gains), and show that the recovery of unknown gains together with the sparse signals is possible in a wide variety of scenarios. The simultaneous recovery of the gains and the sparse signals is formulated as a convex optimization problem which can be solved easily using off-the-shelf algorithms. Numerical simulations demonstrate that the proposed approach is effective provided that sufficiently many (unknown, but sparse) calibrating signals are provided, especially when the sign or phase of the unknown gains are not completely random.
Type de document :
Communication dans un congrès
SAMPTA - 10th International Conference on Sampling Theory and Applications - 2013, Jul 2013, Bremen, Germany. 2013
Liste complète des métadonnées

Littérature citée [10 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00813409
Contributeur : Cagdas Bilen <>
Soumis le : jeudi 25 avril 2013 - 14:46:17
Dernière modification le : mercredi 16 mai 2018 - 11:24:07
Document(s) archivé(s) le : vendredi 26 juillet 2013 - 04:04:09

Fichiers

sampta_cready.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00813409, version 2

Citation

Cagdas Bilen, Gilles Puy, Rémi Gribonval, Laurent Daudet. Blind Sensor Calibration in Sparse Recovery Using Convex Optimization. SAMPTA - 10th International Conference on Sampling Theory and Applications - 2013, Jul 2013, Bremen, Germany. 2013. 〈hal-00813409v2〉

Partager

Métriques

Consultations de la notice

1324

Téléchargements de fichiers

397