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Abstract

Patient-speci�c cardiac modelling can help in understanding pathophysiology and predict therapy e� ects. This re-
quires the personalization of the geometry, kinematics, electrophysiology and mechanics. We use the Bestel-Clément-
Sorine (BCS) electromechanical model of the heart, which provides reasonable accuracy with a reduced parameter
number compared to the available clinical data at the organ level. We propose a preliminary speci�city study to de-
termine the relevant global parameters able to di� erentiate the pathological cases from the healthy controls. To this
end, a calibration algorithm on global measurements is developed. This calibration method was tested successfully
on 6 volunteers and 2 heart failure cases and enabled to tune up to 7 out of the 14 necessary parameters of the BCS
model, from the volume and pressure curves. This speci�city study con�rmed domain-knowledge that the relax-
ation rate is impaired in post-myocardial infarction heart failure and the myocardial sti� ness is increased in dilated
cardiomyopathy heart failures.

Keywords: Computer Model - Cardiac Mechanics - Speci�city Analysis - Parameter Calibration

1. Introduction

The clinical understanding and treatment of cardio-
vascular diseases is highly complex. For each patient,
cardiologists face issues in classifying the pathology,
choosing the therapy or selecting suitable patients. In
order to provide additional guidance to cardiologists,
many research groups are investigating the possibility
to plan such therapies based on biophysical models of
the heart (Kerckho� s, 2010). The hypothesis is that one
may combine anatomical and functional data to build
patient-speci�c cardiac models that could have the po-
tential to predict the bene�ts of di� erent therapies. Car-
diac electromechanical simulations are based on com-
putational models that can represent the heart geometry,
motion and electrophysiology patterns during a cardiac
cycle with su� cient accuracy. Integration of anatom-
ical, mechanical and electrophysiological information
for a given subject is essential to build such models.

Several approaches for the past 20 years have been
developed to describe and simulate the cardiac func-
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tion, including cardiac mechanics and electrophysiol-
ogy (Humphrey et al., 1990; Hunter et al., 1997; Nash,
1998; Bestel et al., 2001; Sachse, 2004). They di� er in
their choice of hyperelastic material, electrophysiolog-
ical properties or electromechanical coupling. In this
paper the Bestel-Clément-Sorine (BCS) model (Bestel
et al., 2001), further improved by (Chapelle et al., 2012)
is used. It showed good accuracy and predictive power
under di� erent pacing conditions in terms of haemo-
dynamics (Sermesant et al., 2012), without being over-
parametrized for the available data.

The simulation becomes patient-speci�c after sev-
eral levels of personalization: geometrical (a compu-
tational mesh is built from patient-speci�c anatomical
images (SSFP sequence of MRI)), kinematic (the mo-
tion of the cardiac structure is estimated from cine-MR
images (McLeod et al., 2012; Sermesant et al., 2006)),
electrophysiological (the depolarization and repolariza-
tion times are extracted from electrocardiograms (Relan
et al., 2011)) and mechanical (the mechanical parame-
ters of the model are locally tuned so that the simulation
behaves in accordance to patient-speci�c datasets).

The latter inverse problem has been tackled by di� er-
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ent authors. For instance, (Xi et al., 2011) and (Liu and
Shi, 2009) estimate the passive material sti� ness with
data assimilation methods while (Wang et al., 2009)
use Sequential Quadratic Programming. (Moireau and
Chapelle, 2011) as well as (Chabiniok et al., 2011)
estimate the contractility parameters using Reduced
Unscented Kalman Filtering. (Sundar et al., 2009)
and (Delingette et al., 2011) rather use adjoint data as-
similation methods.

These methods are e� cient to estimate some model
parameters from the local motion and therefore open
the possibility to help diagnosis and therapy planning.
However, such algorithms are dependent on the initial
range of parameter values since it is often necessary to
be close to the solution for the algorithm to converge
towards a meaningful local solution. The choice of the
parameters to estimate and their initial calibration have
therefore a great impact for the personalization. More-
over, these methods give a distribution of the parame-
ters along the myocardium which is almost impossible
to analyze in order to classify or understand the patholo-
gies. A global estimation of the parameters based on the
global indices used in the clinical domain can therefore
give additional guidance to the cardiologists.

The authors develop here a solution to both issues.
First, since personalizing an electromechanical model
requires a close initialization of the main parameters,
our contribution optimizes the widely used manual cal-
ibration that precedes personalization algorithms (see
Fig.1 for a description of the usual personalization
pipeline). This calibration, tested on 6 volunteers cases
and two heart failure cases, managed to tune 7 out of
the 14 BCS model parameters with 12% relative errors.
Then, the developed calibration algorithm based on the
Unscented Transform (Julier and Uhlmann, 1997), as-
sesses some space-invariant parameters from the vol-
ume and pressure evolution, leaving other parameters
�xed to a standard value . The calibrated global pa-
rameters are then compared and lead to a preliminary
speci�city study to determine which of the 7 parame-
ters are speci�c for the classi�cation of the two heart
failure cases.

The next section develops the Bestel-Clément-Sorine
model (Chapelle et al., 2012) and its physiological
meaning before describing the calibration method. The
results section �rst includes some simulation results
which prove that the model behaves in adequacy with
the literature. Finally, the speci�city study is performed
using calibration results on the volunteer and control
cases brie�y described in (Marchesseau et al., 2012b).

2. Materials and Methods

2.1. Imaging and Interventional Data Acquisition

We demonstrate the application of the proposed
method on cardiac MRI data, including both SSFP se-
quence for anatomical description and cine-MRI for
motion tracking. Both volunteer and patient data
were acquired at the Division of Imaging Sciences &
Biomedical Engineering at King's College London, UK,
as part of studies that were ethically approved.

2.1.1. Volunteer Study
This study includes extensive multi-modality imag-

ing of volunteers from which six healthy cases were
used. All datasets consist of sequences of 4D
cine-MRI with a spatial resolution of approximately
1.5� 1.5� 7mm3 and a temporal resolution of around 30
ms (30 images per cardiac cycle), that cover the ventri-
cles entirely. Volunteers were aged 28± 5 years, with-
out clinical history of cardiac diseases. This dataset was
made available to the research community for the STA-
COM'2011 challenge, see (Tobon-Gomez et al., 2011)
for details regarding the data acquisition of this study.

2.1.2. Patient Study
We also used here two pathological cases from a

combined imaging and endocardial mapping study con-
cerning patients selected for CRT (Ginks et al., 2011).
They were both characterized by a large QRS, due to a
Left Bundle Branch Block (LBBB), and a small ejec-
tion fraction, due to the asynchronous contraction of the
left ventricle and classi�ed in NYHA class III (NYHA
classes stand for the stages of heart failure according to
the New York Heart Association). The �rst patient had a
left ventricle ejection fraction of 25% and su� ered from
signi�cant mechanical dysynchrony, with a QRS dura-
tion of 154ms (normal QRS is less than 120ms). This
patient is referred to as post myocardial infarction heart
failure (post-MI HF). The second patient had a left ven-
tricle ejection fraction of 18% and a QRS duration of
200ms. This patient su� ered furthermore from severe
dilated cardiomyopathy heart failure (DCM HF).

High quality cardiac anatomical and functional data
were acquired with MRI, such as myocardial shape,
wall motion and infarct sites, with a spatial resolution
of approximately 1:5 � 1:5 � 7mm3 and a temporal res-
olution of around 30ms. Electro-anatomical data was
also obtained from catheter-based measurements that
are guided using X-ray �uoroscopy with a spatial res-
olution of less than a centimetre and a temporal res-
olution close to a millisecond. Acute haemodynamic
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Figure 1: Complete electromechanical personalization pipeline. Our contribution does not deal with the local personalization
step.

data was acquired using a high �delity (200 Hz) pres-
sure sensor to measure left ventricular pressure. This
data was registered in space using the developed XMR
registration (Rhode et al., 2005).

2.1.3. Clinical Data Pre-Processing
Three di� erent steps are needed before any mechan-

ical personalization can be performed: extraction of
the myocardium geometry, estimation of the patient's
cardiac motion and personalization of the electrophysi-
ological propagation.

Geometry Personalization
To personalize the geometry from images, two methods
were used. For the pathological cases, we combined
a semi-interactive segmentation of the myocardium
from the cine-MRI data at end-diastolic phase to create
the 3D geometry using CardioViz3D1, and a manual
correction from the SSFP sequence to include the four
valves. Alternatively, we used Philips automatic cardiac
segmentation (Ecabert et al., 2011) tool in GIMIAS 2

to extract the ventricles from the SSFP sequence and
then recreate a binary mask of the myocardium, for the
healthy cases. We then used Cgal3 to create tetrahedral
meshes. In the electromechanical model presented in

1CardioViz3D is an open source software for the processing, sim-
ulation and visualization of cardiac data. It is available at http://www-
sop.inria.fr/asclepios/software/CardioViz3D/

2GIMIAS is a work�ow-oriented environment focused on biomed-
ical image computing and simulation (Larrabide et al., 2009)

3Cgal Computational Geometry Algorithms Library available at
http://www.cgal.org

Section2.2, �bre directions play an important role for
both electrophysiological and mechanical simulations.
There are several ways to generate realistic �bre
directions: by mapping an atlas onto the myocardium
geometry (Peyrat et al., 2007; Lombaert et al., 2011;
Toussaint et al., 2010) or by synthetically varying the
elevation angle (with respect to the short axis plane)
across the myocardium wall. In this paper, the �bres
were created synthetically with angles varying from
-70° on the epicardium to 0° at mid-wall to+70° on
the endocardium. A thorough sensitivity analysis
showed that changing extrema of elevation angles
in�uences the global motion of the myocardium but
much less the volume and pressure curves which are
the observations used in the calibration process.

Kinematics personalization
A non-rigid registration algorithm was applied to the
clinical 4D image sequences to �nd the deformation
�eld between the end diastolic image and each subse-
quent image. We used the incompressible Log-Domain
Demons (iLogDemons) developed by (Mansi et al.,
2011) which estimates a dense non linear transforma-
tion that best aligns a template image to a reference
image. Moreover, it allows to recover some components
of the twist motion of the myocardium by incorporating
an elastic regularizer and incompressible constraint into
the registration.

Electrophysiology personalization
To simulate the electrophysiological pattern of activ-
ity, an Eikonal model was solved for the depolarization
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time Td at each point of the mesh:v
q

r T t
dDr Td = 1.

v is the local electrical conduction velocity andD =
(1 � r)f 
 f + rI is the anisotropic conductivity ten-
sor which depends on the �bre orientationf and on an
anisotropic ratior. The solution of this electrophysi-
ological model was performed using Multi-Front Fast
Marching Method (Sermesant et al., 2007). The scars
tissue of post-MI HF was mapped onto the geometry
from Late Enhancement images and taken into account
during the electrophysiology personalization.

For healthy cases, no subject speci�c electrophysio-
logical data were acquired and therefore standard val-
ues were assumed (conduction velocity of 900mm/s
and anisotropic ratio of 0.1), the personalization of this
model requires to specify the onset of the electrical
propagation (corresponding to the extremities of the
Purkinje network, on both endocardiums close to the
apex). The Action Potential Duration required for the
mechanical simulation was calibrated from the volume
curves at the same time as the mechanical parameters
for the healthy cases. For the two LBBB cases, intracar-
diac non contact mappings allowed to estimate the on-
set of depolarization as well as electrical conductivities
(see (Relan et al., 2011) for further details).

2.2. The Bestel-Clément-Sorine Electromechanical
Model of the Heart

Our approach is based on the Bestel-Clément-Sorine
(BCS) model (Bestel et al., 2001) further improved
by (Chapelle et al., 2012). This choice is governed by
some good properties of the BCS model: It is based on
a multi-scale analysis, and is compatible with the laws
of thermodynamics (balance of energy may be written),
which is a useful property that leads to well-posed equa-
tions of motion (Krejci et al., 2006). We describe in this
section, the modelling used to represent the mechanical
behaviour of the heart.

2.2.1. Physiological Description
The myocardium is a multi-scale structure mainly

composed of myocytes (muscular cell) and extracellular
matrix. A myocyte is a cell which encloses subcellular
structures, sarcoplasm and myo�brils. A myo�bril is
divided into compartments called sarcomeres separated
by Z-discs. A sarcomere is composed of actin-myosin
�laments in which the binding and unbinding process
occurs to lead to the contraction.

At the organ level, the ventricles are �lled with blood
coming from the atria and ejected through the arteries,
with valves ensuring the proper circulation. The closing
and opening of these valves lead to four cardiac phases

(�lling, isovolumetric contraction, ejection and isovolu-
metric relaxation).

2.2.2. Hypotheses of the Model
In this section we list the di� erent modelling

hypotheses (initalic font) and the mathematical for-
mulation used to represent them, using the �nite strain
theory.

- The contraction of the sarcomere can be de-
scribed, at the molecular scale, by the Huxley �lament
model (Huxley, 1957) and takes into account the Star-
ling e� ect.
Statistical mechanics allows to describe the contraction
at the macroscopic scale, resulting in a di� erential equa-
tion modeling the control of the active stress� c and sti� -
nesskc by an electrical inputu (Chapelle et al., 2012):

( �kc = � (j u j +� j �ec j)kc + n0k0 j u j+
�� c = � (j u j +� j �ec j)� c + �eckc + n0� 0 j u j+

(1)

where� is a constant related to the cross-bridge unbind-
ing due to the deformation rate,k0 and� 0 are respec-
tively the maximum sti� ness and contraction.n0 is a re-
duction factor that allows to take into accountthe Star-
ling e� ectby which the maximum contraction depends
on the �bre strainec. The control variableu is derived
from the electrical activation model and is a function
of the free calcium concentration only (Chapelle et al.,
2012). It is simpli�ed here under the form of a function
of time, by neglecting the variations in calcium dynam-
ics (see Fig.2):

8
>>><
>>>:

u(t) = kAT P for t 2 [Td; Td + APD]
u(t) = � kRS for t 2 [Td + APD; Tr ]
u(t) = 0 for t 2 [Tr ; Td + HP]

(2)

kAT P is the rate of the myosin ATPase activity con-
trolling the contraction rate andkRS is the rate of
sarcoplasmic reticulum calcium re-uptake controlling
the relaxation rate.Td andAPDare respectively the de-
polarization time and the action potential duration (time
during which the cell stays excited).Td is obtained by
a biophysical model of cardiac electrophysiology while
theAPD is calibrated from the volume curves.Tr is the
time at which the active relaxation ends and the passive
relaxation starts.

- The sliding of �laments creates friction in the sar-
comere.
The Cauchy stress tensor for the contraction� c is in

4



Figure 2:Active stress and potential over time

parallel with a viscosity element (cf Fig.3) which gives

� c = � c + � �ec (3)

- The Z-discs present an elastic behaviour, which
enables isometric contractions.
A linear elastic component having stress� s = Eses is in
series with the contractile component. Therefore, after
linearization of the equations presented by (Chapelle
et al., 2012), we obtain the small strain formulations
e1D = es + ec and� c = � s, wheree1D is the projection
of the Green-Lagrange deformation tensorE on the
�bre direction: e1D = fTEf.

- The extracellular matrix presents a passive hypere-
lastic behaviour.
Several authors (Holzapfel and Ogden, 2009; Wong
et al., 2008; Mazhari and McCulloch, 2000) consider
the myocardium as a whole to have an orthotropic be-
haviour (such as the Costa's law (Costa et al., 2001)),
taking into account both �bre and laminar sheets di-
rections. In this paper, we consider an isotropic be-
haviour described as a Mooney Rivlin material. Thus
globally, adding the elasticity of the Z-discs, the pas-
sive behaviour of myocardial tissue in the BCS model is
considered to be transversally isotropic.

An exponential hyperelastic material has been con-
sidered (Chabiniok, 2011) instead of Mooney-Rivlin but
with limited bene�ts due to its contraction behavior.
Orthotropic materials may be introduced in the future
by integrating recent work fromLombaert et al.(2011)
which estimates the laminar sheets direction on human
hearts.

The strain energy for Mooney Rivlin material is given
as:

We = c1(Ī1 � 3) + c2(Ī2 � 3) +
K
2

(J � 1)2 (4)

where c1; c2 are material parameters andK is the
Bulk modulus. The quantities̄I1 and Ī2 are the iso-
choric invariants of theCauchy-deformation tensor
C = r � Tr � , Ī1 = J� 2=3I1, Ī2 = J� 4=3I2 whereI1 = trC,
I2 = 1

2((trC)2 � trC2) andJ is the JacobianJ = detr � .

- The blood characteristics (�ow, pressure) can be
represented globally for each structure (atria, ventri-
cles, arteries).
The basic circulation model is represented in Fig.3 and
de�nes the four phases of the cardiac cycle, indepen-
dently for each ventricle as follows:

ˆ Filling: when the left (right) ventricular pressure
Pv is smaller than the left (right) atrial pressure
Pat, the mitral (tricuspid) valve is open and the left
(right) ventricle �lls up with blood.

ˆ Isovolumetric Contraction: after the contraction
started, when the ventricular pressure reaches the
atrial pressure, the mitral (tricuspid) valve close,
therefore all valves are closed.

ˆ Ejection: when the left (right) ventricular pressure
reaches the arterial pressure,Pv > Par, the aortic
(pulmonary) valve opens and the blood is ejected
from the ventricle.

ˆ Isovolumetric Relaxation: after the relaxation
started, when the left (right) ventricular pressure
drops below the arterial pressure, the aortic (pul-
monary) valve closes and therefore all valves are
closed.

To model those phases we apply the valve model intro-
duced by (Sainte-Marie et al., 2006). It gives a relation
between the blood �ow leaving the ventricle (q) and the
atrial, ventricular and aortic pressures:

q =

8
>>><
>>>:

Kat(Pv � Pat) for Pv � Pat

Kiso(Pv � Pat) for Pat < Pv � Par

Kar(Pv � Par) + Kiso(Par � Pat) for Pv > Par
(5)

whereKat and Kar correspond to linear laws andKiso

relaxes the usual isovolumetric constraint (q = 0). With
this de�nition, Kiso is much smaller thanKat and Kar.
The aortic pressure is computed following the four-
element Windkessel model described in (Stergiopulos
et al., 1999). This Windkessel model depends on four
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Figure 3:Full electromechanical and circulation model. (Left)We is the strain energy of the extracellular matrix considered here
as an isotropic material, associated with a dissipative term� . u is a control variable which is driven by changes in transmembrane
potential. It controls the contraction stress� c. � deals with the friction in the sarcomere whileEs is a linear spring to enforce
elasticity of the Z-discs (titin). (ec; � c), (es; � s) and (e1D; � 1D) are respectively the strain and stress of the linear spring, the
contraction and the �bre. (Right) Circulation model in the �lling phase for the left ventricle.

parameters: the peripheral resistanceRp, the character-
istic time� , the characteristic resistanceZc and the total
arteria inertanceL. The initial and asymptotic arterial
pressures also in�uence the model. The evolution of
atrial pressure is de�ned analytically as two sigmoids
and depends on an initial and a maximum pressure that
are set from the literature (Scḧa� er and Schmidt, 1999).

- The heart motion is constrained by its surrounding
structures, namely the aorta, the pulmonary artery and
the atria, as well as the pericardium that surrounds the
myocardium.
First, the heart mesh is attached at the level of the four
valve annuli limiting the ventricles. To allow some
valve motion, isotropic linear springs connect the valve
vertices to their initial end-diastolic positions. We de-
�ne a unique sti� ness matrixK = kbId wherekb is the
isotropic sti� ness andId is the identity matrix. There-
fore the force is de�ned for each node asFi = K(Qi � Pi)
wherePi is the initial position andQi is the current po-
sition. A value of 50Pa was chosen for the sti� ness
kb so as to allow a small displacement of the valves.
This constraint has a noticeable impact on the motion
of the myocardium, but not as much on the global in-
dices of the volume and pressure. Second, we de�ne a
�xed pericardium surface surrounding the myocardium
which limits the ventricle displacements: whenever an
epicardium vertex collides with the pericardial surface,

a force is applied to this vertex preventing its penetra-
tion. The pericardium is de�ned as an o� set surface
of the epicardium at end-diastole with a �xed distance
(� 2mm). This collision constraint enables to limit the
radial motion but does not impact the global volume or
pressure evolution.

2.3. Sensitivity Analysis of Global Outputs to the Model
Parameters

In order to select the most signi�cant parameters
given the available data, a sensitivity analysis was per-
formed in (Marchesseau et al., 2012a). We studied the
in�uence of each active, passive and valve model pa-
rameter on the volume and the pressure in the ventri-
cle. We varied the parameters one by one between the
ranges given in Table.1. This represents about 160 sim-
ulations for each ventricles. From this sensitivity analy-
sis, we can conclude than 7 parameters are more signif-
icant than the others to characterize the global volume
and pressure indices: the maximum contractility� 0, the
contraction ratekatp, the relaxation ratekrs, the active
viscosity component� , the main sti� ness parameterc1,
the bulk modulusK and the peripheral resistanceRp.
Relevant curves are presented Fig.4 and Fig.5.
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Table 1:Ranges of parameter values explored in the sensitivity analysis.

Notation Parameter Name Min - Max

� 0 (MPa) Max Contraction 4� 10
k0 (MPa) Max Sti� ness 3� 9
kAT P (s� 1) Contraction Rate 5� 20
kRS (s� 1) Relaxation Rate 5� 60
Es (MPa) Linear Modulus 3� 15
� Cross-bridges Unfasten Rate 0 � 0:8
� (MPa:s) Viscosity 0:07� 0:6
c1; c2 (kPa) Mooney Rivlin Modulus 7� 20
K (MPa) Bulk Modulus 6� 25
� (s) Wind. Charact. Time 0:4 � 2
Rp (MPa:m� 3:s) Wind. Periph. Resistance 30� 300
Zc (MPa:m� 3:s) Wind. Charact. Resistance 1� 10
L (kPa:s2:m� 3) Wind. Total Art. Inertance 1� 100

(a) � 0 (b) kAT P (c) � (d) K

Figure 4:Volume evolution (inmL) over time (ins) for the left ventricle, with varying parameters.

(a) � 0 (b) kRS (c) c1 (d) Rp

Figure 5:Pressure evolution (inkPa) over time (ins) for the left ventricle, with varying parameters.

2.4. Parameters Calibration Based on Unscented
Transform

Once selected, the sensitive parameters are calibrated
from global measurements. We chose the ventricular
volume and pressure curves as main observations to
perform the calibration as they are important physiolog-
ical indices and can be captured by few quantities: the

minimum volumeVmin, the maximum and minimum
of the �ow (qmax andqmin respectively) and indices on
the ventricular pressure such as the maximum pressure
Pmax, and the extrema of its derivative (dP=dtmax and
dP=dtmin).

To calibrate the model, we use the algorithm derived
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from the Unscented Transform (Julier and Uhlmann,
1997). The proposed algorithm �nds a set of parameters
Xnew that minimize the di� erence between the measured
observationZobs and the predicted observationZ̄. It is
explained as follows: LetZ be the vector of observa-
tions, here

Z = [Vmin; qmax; qmin; Pmax; dP=dtmax; dP=dtmin]

and X the parameter vector which has meanX0, co-
varianceCX and dimensionn. We set the covariance
asCX = Cov(X;X) by estimating the minimal and the
maximal value of each parameter with a trial and er-
ror approach. We compute observationsZ i� from the
2n + 1 sets of parametersX i� = [x1; x2; :::;xi + � si ; :::]
around the mean valueX0 where� 2 f� 1; 0; 1gandsi is
an uncertainty function of the covariancesi = 

p
CXi,

with  the scaling parameters. The mean observation is
set asZ̄ =

P
i;� ! i� Z i� with some weights! i� described

by (Wan and Van Der Merwe, 2000). Finally we derive
the covariance matrix as:

Cov(X;Z) =
X

i�

! i� (X i� � X0) (Z i� � Z̄)T (6)

The new set of parametersXnew found to match the ob-
servationsZobs is

(Xnew � X0) = Cov(X;Z) Cov(Z;Z)� 1 (Zobs � Z̄) (7)

where

Cov(Z;Z) =
X

i�

! i� (Z i� � Z̄) (Z i� � Z̄)T : (8)

This algorithm is very simple to implement and runs in
one iteration to giveXnew. Another simulation is neces-
sary to obtain the resulting observationZnew. The algo-
rithm is illustrated in Fig.6.

2.5. Speci�city Analysis

The calibration algorithm is used to compare the esti-
mated parameters between volunteer and heart failure
cases. Both volunteer and pathological data include
the MRI sequences. From the kinematic personaliza-
tion, we registered all images to the end diastolic im-
age. Then, image transformations, stored as displace-
ment �elds, were applied to the end-diastolic tetrahedral
mesh to estimate the volume of the ventricles over time.
Moreover, the heart failure cases data includes the pres-
sure curves, therefore all 6 observations were available:
the minimum volumeVmin, the extrema of the outward
�ow Qmin andQmax, the maximum pressurePmaxand the

X 0 

X i 

Z i 

Z 

2n +1 
simulations Z 0 

X -i 

Z -i 

Set of parameters Observations 

Z 
obs 

X 
new Unscented Transform 

Figure 6:Schematic representation of the Unscented Trans-
form algorithm

extrema of its derivativedP=dtmin anddP=dtmax. Volun-
teer data included only MR images, so only the volume
evolution is available. Therefore standard pressure in-
dices were imposed on the volunteers so that the same
calibration technique could be performed on control and
pathological cases. From this comparison, conclusions
can be extracted on which parameter is speci�c to the
type of disease. Results of this study are presented in
Sec.3.3. The calibration of theAPDenabled a better �t
of the cardiac phases but is not considered here for the
speci�city analysis.

3. Results

3.1. Forward Simulation of the Bestel-Clément-Sorine
Model

The simulations were performed on a laptop PC with
a Intel Core Duo processor at 2.80Hz and took around
10 minutes per cardiac cycle for meshes with approxi-
mately 80,000 tetrahedra. The time steps were set de-
pending on the cardiac cycles and the number of im-
ages (for instancedt = 7:75ms for 30 images and a
heart period of 0.93s). A sensitivity study on the mesh
quality and the time step showed that the chosen val-
ues lead to a good trade-o� between computation time
and accuracy. An example of resulting curves for the
pressure and the volume in the left ventricle is given
in Fig. 7 including the four cardiac phases. The mesh
and the electrophysiological mapping used for this sim-
ulation are also presented in Fig.7. With this exam-
ple, the power developed by the heart can be computed
as P = � VL � PvL � 1:3W which is in the range of
[1W;2W] usually referenced in the literature. More-
over, e� ects of preload (increase of the atrial pressure),
afterload (increase of the aortic pressure) and inotropy
(increase of the contraction rate) on Pressure-Volume
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Figure 7: (Left) Mesh and electrophysiological isochrones. (Right) Pressures and volumes curves resulting from the simulation
of one cardiac cycle, for the left ventricle.

(a) Inotropy (b) Preload (c) Afterload

Figure 8:Independent increase of inotropy, preload and afterload (red loop), in comparison with the normal loop (blue). Horizon-
tal dotted lines represent normal aortic systolic and diastolic pressures while dashed lines represent the slopes of the end-systolic
pressure-volume relationship.

loops were studied. Fig.8 shows the results of these
tests, which are in agreement with (Klabunde, 2011).

3.2. Calibration Results on Healthy and Pathological
cases

The proposed calibration algorithm was then applied
on the volunteers and the two Left Bundle Branch

Block (LBBB) cases after performing kinematics and
electrophysiology personalization, for the parameter
vectorX = [� 0; katp; krs; �; c1; K;Rp] with initial value
of the parametersX0 = [7;15;35;0:28;80;13;100].
A calibration on the left ventricle only was performed
due to the di� culty to segment and register the right
ventricle leading to unreliable volume curves.
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The relative errors between the real observations
Zobs and the simulated observationsZnew are shown on
Fig.11, before and after calibration. A comparison of
the simulated mesh and the MRI sequence for the LBBB
post-MI HF case is presented Fig.12. It shows that the
calibration gives satisfactory results and can therefore
be used for the preliminary speci�city study. Di� er-
ences noticed on images b) and c) are primarily due to
the registration (observation) errors, the calibration er-
rors and also the model hypotheses (e.g. constant pa-
rameters over the myocardium). Fig.9 shows the mea-
sured, reference and estimated volume curves on one
volunteer and Fig.10 shows the results of the LBBB
post-MI HF case.

Figure 9:Results of the calibration technique on real data for
one healthy volunteer.

3.3. Preliminary Speci�city Analysis

A box plot in Fig. 13 presents the results of all
volunteer cases on parameter values normalized by
X0 through their �ve-number summaries: the smallest
value, lower quartile, median (red), upper quartile, and
largest value. We can easily see that for some model pa-
rameters, the values obtained for the pathological cases
are outliers compared to the values of the volunteers. In
more details, it shows that the post-MI HF case has a re-
duced peak contractility and an impaired relaxation (re-
duced relaxation rate). It is in agreement with medical
knowledge about myocardial infarction impact on dias-
tole, for instance such decrease of the relaxation rate
was evaluated in ischemic dog hearts (Williams et al.,

Figure 10:Results of the calibration technique on real data
for post-MI HF case.

�������������������	

��

�
���	��������� �����

�� ��

Figure 11:Relative errors on the observations of the 6 vol-
unteers and the two LBBB cases.
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(a) t = 0 ms (b) t = 190 ms (c) t = 410 ms (d) t = 720 ms

(e) t= 0 ms (f) t = 190 ms (g) t = 410 ms (h) t = 720 ms

Figure 12:Short axis and long axis views of the simulated mesh on top of the MR images at di� erent moments of the cardiac
cycle (heart period= 930 ms) for LBBB post-MI HF case.

1980). The dilated cardiomyopathy patient with heart
failure has also a reduced peak contractility with a much
higher myocardial sti� ness. This is also in agreement
with the literature, where such di� erences in myocardial
sti� ness have been observed in DCM patients (Bortone
et al., 1989). We also observe a smaller aortic resistance
in this case, which is a desired e� ect of the vasodilator
treatment the DCM patient had undergone.

Therefore this preliminary study could assess
- the small relaxation ratekrs as a characteristic of
post-MI heart;
- the high sti� nessc1 and bulk modulusK as a possible
clue of severe dilated cardiomyopathy;
- the small contractility� 0 as a possible indication of
heart failures.

The simulated Pressure-Volume diagrams are pre-
sented Fig.14and demonstrate the clear di� erences be-
tween volunteer cases and the heart failure cases.

4. Discussion

We presented the simulation of an electromechanical
model of the heart with a complexity compatible with
clinical data and a preliminary speci�city analysis based

Figure 13:Box plot showing the median and variance of the
parameters for seven healthy cases. The values are normalized
by the mean parameterX0. The red and blue dots represent the
parameters of the pathological cases.
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Figure 14:Simulated Pressure-Volume diagrams after calibration.

on global parameter calibration from volume and pres-
sure indices.

4.1. The Bestel-Clément-Sorine model

The choice of this model to characterize the mechan-
ical behaviour of the heart has been justi�ed in several
ways. First, the hypotheses that constitute the model
are all physiologically relevant and do not input anya
priori knowledge on the observations (for instance the
pressure). Also, the model depends on only 14 global
parameters from which 7 were easily tuned from global
indices of the volume and pressure curves. The ratio be-
tween the number of sensitive parameters and the total
number of parameters is therefore good, which con�rms
the quality of this model for such application. More-
over, tests on preload, afterload and inotropy changes
demonstrated that the model behaves in agreement with
literature in such conditions (Klabunde, 2011). Finally,
the preliminary study gave results in agreement with
medical knowledge and literature proving once more the
physiological behavior of this model. The authors be-
lieve that this model, one of the most complex models
that have been personalized (Sermesant et al., 2012), �ts
the requirements to represent pathological and healthy
cardiac behaviors while being compact enough for per-
sonalization.

The �ber �eld was simpli�ed in this work due to its
small impact on the 1D measurements. However, in fu-
ture work, the 3D local motion will be studied therefore
the creation of the �ber �eld will be improved using the
now available human atlasLombaert et al.(2011).

4.2. From Global Calibration to Regional Personaliza-
tion Methods

We proposed in this paper a calibration algorithm
based on the Unscented Transform that allowed us to
tune 7 global parameters from volume and pressure
curves, with a mean relative error of 11%, in one itera-
tion. Several iterations were tested and did not improve
the results which shows that the model cannot �t the
registered curve better than what we found. This can
be due to registration or/and modelling errors. More-
over, the goal of the calibration is to automatically and
quickly initialize global parameters before regional per-
sonalization, therefore a more complex algorithm would
not only lead to similar results but would probably be
less applicable to that many cases.

Since the calibration requires only to run several sim-
ulations in parallel to estimate these parameters fol-
lowed by one additional simulated cycle to verify the re-
sults, it can easily be used as a preprocessing step before
the application of more sophisticated personalization al-
gorithms. Moreover, the method gives good results us-
ing the same initial valueX0 and the same sigma points
for all the cases, which decreases the preprocessing time
and enables a comparison of the calibrated parameters.
However, results for the pathological cases could be im-
proved by a better choice of the initial valueX0. Study-
ing more cases would help in de�ning the proper initial
values in the di� erent pathological cases.

Moreover, volume and pressure curves provide basic
information about the cardiac cycle. A larger set of pa-
rameters could be personalized by adding global or even
regional motion indices such as radial, longitudinal or
circumferential displacements or strains in the ventri-
cles or AHA segments (de�ned by the American Heart
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Association). Further work will include these indices,
using data assimilation methods from di� erent imaging
modalities (tagged-MRI or cine-MRI).

4.3. Speci�city Study

A preliminary study showed that results on patholog-
ical cases versus control cases were coherent with med-
ical knowledge of the studied diseases. We can there-
fore give a �rst set of speci�c parameters to characterize
these heart failure cases. In our cases, a small relaxation
rate was found speci�c to ischemic heart failures, and
a high passive sti� ness was speci�c to a severe dilated
cardiomyopathy. Moreover, the results con�rmed that a
small contractility is expected in heart failure cases. Ad-
ditional pathological cases and observation quantities
are required to further develop and validate the speci-
�city study.

5. Conclusion

To conclude, we proposed an e� cient calibration
algorithm that enabled to assess up to 7 global phys-
iological parameters of the Bestel-Clément-Sorine
model. Moreover, the performed preliminary speci-
�city study gave results in accordance with the medical
�ndings for dilated cardiomyopathy and ischemic
heart failure cases. The authors believe that these
techniques, once further validated, could help in
classifying and detecting cardiac pathologies, as well
as providing a �rst step for further local personalization.
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