
HAL Id: hal-00816034
https://inria.hal.science/hal-00816034

Submitted on 19 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

UBIQUEST, For Rapid Prototyping of Networking
Applications

Ahmad Ahmad Kassem, Christophe Bobineau, Christine Collet, Etienne
Dublé, Stéphane Grumbach, Fuda Ma, Lourdes Martinez, Stéphane Ubéda

To cite this version:
Ahmad Ahmad Kassem, Christophe Bobineau, Christine Collet, Etienne Dublé, Stéphane Grumbach,
et al.. UBIQUEST, For Rapid Prototyping of Networking Applications. IDEAS 2012 - International
Database Engineering & Applications Sysmposium, Aug 2012, Prague, Czech Republic. pp.187-192,
�10.1145/2351476.2351498�. �hal-00816034�

https://inria.hal.science/hal-00816034
https://hal.archives-ouvertes.fr

UBIQUEST, For Rapid Prototyping of

Networking Applications

Ahmad Ahmad-Kassem
3
, Christophe Bobineau

2
, Christine Collet

2
, Etienne Dublé

1
,

Stéphane Grumbach
3
, Fuda Ma

4
, Lourdes Martinez

2
, Stéphane Ubéda

3

1
CNRS,

2
Grenoble Institute of Technology,

3
INRIA,

4
INSA-Lyon

{Christophe.Bobineau, Christine.Collet}@grenoble-inp.fr
fuda.ma@insa-lyon.fr

{etienne.duble,Lourdes-Angelica.Martinez-Medina}@imag.fr,
{ahmad.ahmad_kassem, Stephane.Grumbach,stephane.ubeda}@inria.fr

ABSTRACT

An UBIQUEST system provides a high level programming
abstraction for rapid prototyping of heterogeneous and distributed
applications in a dynamic environment. Such a system is
perceived as a distributed database and the applications interact
through declarative queries including declarative networking
programs (e.g. routing) and/or specific data-oriented distributed
algorithms (e.g. distributed join). Case-Based Reasoning is used
for optimization of distributed queries when as there is no prior
knowledge on data (sources) in networking applications, and
certainly no related metadata such as data statistics.

Categories and Subject Descriptors

H.2 DATABASE MANAGEMENT [Languages, Systems and
Software]: Query languages, Query optimisation and processing,
Rule-based program execution, Distributed databases, Distributed
systems, Reasoning, Information networks

General Terms

Your general terms must be any of the following 16 designated
terms: Algorithms, Management, Measurement, Documentation,
Performance, Design, Economics, Reliability, Experimentation,
Security, Human Factors, Standardization, Languages, Theory,
Legal Aspects, Verification.

Keywords

Declarative networking, programming abstraction, case-based
distributed query optimization.

1. INTRODUCTION

The trend towards ubiquitous computing is accelerated with –
particularly, wireless networking – technologies interconnecting
an increasing number of heterogeneous (mobile and wearable,
energy constrained, personalized) devices that generate large
amounts of data. These devices are autonomous, either, static or
mobile and present constraints such as energy or communication
capabilities. They usually take part in dedicated ad hoc networks,
where applications deployment, configuration and management
are tedious and require significant human involvement and expert
knowledge.

In [1] we introduce our vision of a new high-level programming
abstraction based on the emerging and promising declarative
networking approach and declarative data manipulation
expressions. Declarative networking is an emerging data-centric
approach where the distributed environment is perceived as a
distributed database and the applications interact through
declarative queries [19, 17, 16]. This approach has been pursued
at the network layer with the use of recursive query languages
initially proposed to express communication network algorithms
such as routing protocols [17] and declarative overlays [16]. It has
been further pursued in [15], where execution techniques for
Datalog are proposed. Distributed query languages thus provide
new means to express complex network problems such as node
discovery [22], route finding, path maintenance with quality of
service [4], topology discovery, including physical topology [3],
etc. The declarative networking approach is well-adapted to social
systems (e.g. games, social networks, sharing), where data is
pushed or pulled with incomplete knowledge in a dynamic
environment.

Also declarative query languages have already been used in the
context of ad-hoc networks. Several systems for sensor networks,
such as TinyDB [18] or Cougar [8] have been proposed. They use
the relational model to represent device (sensor) features and
application data; they offer SQL-like languages to express data
manipulation. These systems also address solutions to perform
efficient data dissemination and query processing. In both cases, a
distributed query execution plan is computed in a centralized
manner considering the network topology and the capacities of the
constrained nodes, which optimizes the placement of sub-queries
in the network [8, 18]. Declarative methods have been used also
for unreliable data cleaning based on spatial and temporal
characteristics of sensor data [14].

As far as we know there is no system that integrates in a uniform
way, network aspects, middleware and data management.
UBIQUEST merges declarative programing languages and query
languages for specifying data manipulations and distributed
algorithms. Furthermore, these languages are used to intentionally
express the destinations of messages, for naming and accessing
data in the context of networks and dynamic environments.

The work presented in this paper describes the architecture and
components of an UBIQUEST system – http://ubiquest.imag.fr –
that implements this approach.

It is a sort of a large distributed database system that provides a
unified view of "objects" handled in networks and applications. It
blurs the borders between network, operating system and
middleware layers. However, from the data management point of
view it should provide a means (i) to localize data (mobile
applications) or define the scope of a query, (ii) to consume, filter

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
IDEAS12 2012, August 8-10, Prague [Czech Republic]
Editors: Bipin C. Desai, Jaroslav Pokorny, Jorge Bernardino

Copyright ©2012 ACM 978-1-4503-1234-9/12/08 $15.00.

187

and aggregate data (continuous queries), (iii) to consider query
operators that may correspond to programs, (iv) to optimize query
even when no metadata or statistics are available. For that, we use
Case-Based Reasoning (CBR) – learning the cost of query plans
(cases) while executing them – and pseudo-random query plan
generation when classical optimization techniques are
inappropriate.

The paper is organized as follows. Section 2 gives an overview of
our approach based on an example unifying data and networks
management functions. It defines an UBIQUEST system as a set
of interconnected UBIQUEST nodes. Section 3 presents the
architecture of an UBIQUEST node and details its components.
Section 4 focuses on the execution engines that perform program
execution and global query evaluation. Section 5 presents our
proof of concepts as a platform for simulating UBIQUEST
systems. Finally, Section 6 concludes the paper and discusses
future work.

2. UBIQUEST DATA-CENTRIC

APPROACH

With declarative networking, the network is abstracted as a large
distributed database providing unified view of "objects" handled
by both networks and applications. Such a database stores
information about the declarative programs, routers configuration,
states and characteristics of the network. Rule-based programs
usually correspond to network operations or protocols triggered
by data updates. Rules are evaluated over local data and may
communicate updates to other nodes in the network using
communication primitives.

The UBIQUEST approach merges the strengths of two areas (i)
databases, and (ii) declarative networking. With this approach a
programmer can specify the behaviour of the system / application
(the what) rather than having to describe the details of the system
(the how). This allows going one step further in the overlapping
approaches, for example with destinations of messages resulting
of a query.

An UBIQUEST system runs on a set of computing devices
interconnected through a wireless network (cf. Fig. 1). Every
device embeds a virtual machine in charge of data management,
processing queries (data selection and updates) and messages
propagation. A message is the unit of communication among
UBIQUEST nodes. It has two main parts: (i) networking

information (e.g. logical destination, next hop, TTL) and (ii) a
payload where the content of the message (i.e. queries or items) is
embedded.

All exchanges between nodes related to communication protocols,
to resource discovery or to any other applicative aspects are
carried out by queries and data. This blurs the traditional
distinction between communication middleware and application
layers. Queries are defined using either rule-based languages (e.g.
for network data query expressions or distributed algorithms) or
declarative query languages (e.g. for querying application data
with a global point of view). For a detailed presentation of these
languages refer to [1].

Query optimization is based on CBR-based approach and pseudo-
random query plan generation. This means that we learn the cost
of query plans (cases) while executing them. These cases are
reused for generating plans for further similar queries. If there is
no convenient case, we use classical heuristics and random choice
(e.g. when there is no statistics for join ordering and selection of
algorithms) to generate query plans.

Figure 1. An UBIQUEST System

To illustrate our approach, let us consider an application
concerning a virtual world game divided in areas and having some
avatars that are located within a single area at a time (see Fig. 2).
The objective of the game may be social interaction or team
fighting; this does not matters for understanding the example.
Every node of an UBIQUEST system has information on its own
avatars and their neighbors (avatars located in the same area).
Data location is thus application driven.

Figure 2. Application scenario

Such information is stored in an Itemset data structure of type:

Positions(Avatar avatar{key}, Int Area, NodeID owner)

For example, at node D the Position itemset has two items:

showing that the node is the owner of the Grey avatar which is in
the area 2; also the Blue avatar is in the same area but owned by
node I. The Positions table at node I contains the same tuples
(Fig. 2).

Such a Positions table is actually a fragment of a virtual table that
maintains the information on all the avatars, giving for each of
them, the area in which it is and its owner node. The virtual global
Positions table for our application example is:

Considering this global view, the query to select all avatars in the
virtual world and the zone where they are located is:

SELECT Area, Avatar FROM Positions;

This query can be posed at any node and the system will globally
execute it. Alternatively, for restricting the scope of the query at a
node level, one has to use the keyword LOCAL indicating that the
query has to be evaluated over local data only.

188

Let us now assume that the Yellow avatar, owned by node G, is
moved from area 7 (where avatar Green owned by node J is
localized) to area 8 where the Red avatar (node E) is localized.
The Positions table after this operation follows:

The movement is coded by several updates executed at node
G (owner of Yellow) for cleaning area 7, changing the Area
attributes of the avatar and finally for storing the new area
exploration. The first update for cleaning the area 7 is:

Delete from Positions

Where Area = (Local Select Area from Positions

 where Avatar = 'Yellow')

 and Area not in (Local Select Area from Positions

where Avatar <> 'Yellow' and Owner = SELF)

 Stored on SELF;

The keyword LOCAL indicates that the subquery has to be
evaluated by the node over local data only. The sub-queries are
local and the delete operation too as it concerns only data stored
on SELF. Such a query is executed at the node level and processed
in a distributed way with the following principles:
1. No centralized control. Query processing is performed in

an environment that is highly dynamic, and has to adapt to
and recover from the network evolution. The control needs
to be fully distributed over the network.

2. Scarce metadata. The network being highly dynamic, there
is no stable knowledge on the data organization. Resource
discovery is combined with networking protocols.

3. Everything in the database. The network management is
done through queries.

3. UBIQUEST NODE

An UBIQUEST node is a device equipped with an UBIQUEST
Virtual Machine (UBIQUEST VM) complemented with a Device
wrapper that allows device/VM interaction (see Fig 3). The
UBIQUEST VM is composed of: (i) a Local DMS, (ii) an
UBIQUEST API, and (iii) an UBIQUEST Engine comprising sub-
engines in charge of evaluating global queries, executing rule-
based programs, maintaining sensed data and the list of physical
neighboring nodes.

3.1 Local DMS and UBIQUEST API

The Local DMS stores and manages data as Itemsets: application
data (e.g. sensed data), network data (e.g. routing tables, neighbor
table), rule-programs (e.g. distributed algorithms that can be
dynamically loaded/removed to/from the system), and internal
data (e.g. device specific data) used for running other UBIQUEST
VM components.

The UBIQUEST API manages all interactions between the
UBIQUEST Engines and the rest of the world: local applications,
device sensors and other UBIQUEST VM through message
exchange.

As shown in Fig. 3, the API is composed of: (I) the Application

API, in charge of the interaction with applications running on the
local node, (ii) the Reception and Emission modules to deal with
message exchange among UBIQUEST nodes, (iii) the Sensing

API that locally stores data coming from sensors embedded in the

Figure 3. UBIQUEST node components

physical device, and (iv) the Payload Dispatcher, which manages
Payload exchange among UBIQUEST VM sub-components.

The Application API module validates DLAQL queries/updates
submitted by applications, and translates them into an internal
representation before sending them to the UBIQUEST Engine for
evaluation. The Reception Module receives messages from other
UBIQUEST nodes and decides if the payload of the incoming
message has to be treated locally. It checks if the local node is
part of the logical destination of the message. This process may
involve interaction with the UBIQUEST Engine to resolve
intentional expressions of logical destinations (i.e. destination
expressed using a query). Finally, the Reception Module sends the
Payload of the message to the Payload Dispatcher to treat it, if
the local node is one of the destinations, or forward the message to
other destinations through the Emission Module, if not.

Using Payload, logical destinations and a ProgramId identifying
a dissemination protocol, the Emission Module builds a new
message, invokes the UNIQUEST Engine to compute the
immediate physical destination(s) from the logical ones, and sends
the message over the network.

The Payload Dispatcher maintains a record of the identifiers of
payloads that are currently executed at the node. This allows
determining if a received payload was already executed, and thus
avoids loops. When it receives payloads from the Application API,
it generates a new identifier for registering. When it receives
payloads from the Reception Module, the Payload is forwarded to
the UBIQUEST Engine for treatment.

When a payload is not in the record, the Payload Dispatcher
generates a new identifier, registers the payload and transfers it to
the corresponding engine. If the identifier is in the records, the
payload dispatcher transfers it to the corresponding engine
instance according to the query/result type and the payload
identifier. If the message contains several destinations, the
payload dispatcher sends it to the emission module, which
constructs a message and propagates it over the network using a
program (dissemination protocol) selected by the UBIQUEST
Engine (Communication Module).

3.2 Sensing and Topology Engines

These two modules are autonomous and react to changes in the
environment detected by the device and signaled through the
Device Wrapper. The Sensing Engine gets the measures coming
from physical sensors embedded in the device (e.g. temperature,
location) and stores these values in corresponding itemsets. These
itemsets are predefined and adopt a common structure (e.g.
itemset Temperature(NodeId {key}, value)). The Topology
Engine is responsible of updating the Link itemset, defined as

189

Link(NodeId {key}, Neighbor {key}) according to physical
network connections that are established or removed. The Link
itemset is mandatory and is sufficient to permit communication
among nodes.

3.3 Communication Module

The Communication Module has two different roles: (i) determine
if the local node is part of the logical destination of incoming
messages, and (ii) determine what is(are) the next hop(s) to
transmit a message to a logical destination.

The logical destination of a message is either expressed
extensionally using a list of node identifiers, either expressed
intentionally using a query returning node identifiers, or expressed
by a combination of both. If it is expressed extensionally,
determining if the local node takes part in the logical destination
of a message is straightforward. In the other case, the
Communication Module asks the Distributed Query Engine to
solve the intentional destination (i.e. obtain extensional
destinations) before deciding.

To determine the next hop(s) for propagating a message, the
Communication Module selects a propagation program and
invokes the Rule Program Engine to execute it. The default
propagation program simply do broadcasting to all neighbors (i.e.
the next hops correspond to all items of the Link itemset). Other
propagation programs may be written by developers (e.g. by
exploiting and maintaining a routing table) and may be
automatically selected by the Communication Module.

3.4 DQE Engine

The Distributed Query Engine is responsible of executing global –
DLAQL queries. The DLAQL language extends the well-known
SQL2 data manipulation language to conform to the data
distribution policy of UBIQUEST. This means that a DLAQL
expression may explicitly indicate on which UBIQUEST node
data has to be stored. The role of the DQE Engine is to build and
execute efficient local query execution plans according to a given
cost function (expressed as a combination of real cost parameters).
Execution plans are composed of classical physical operators
(implementing algebraic operations) and specific operators to
invoke program or propagate subqueries. Efficient execution plans
are selected using a combination of Case-Base Reasoning and
pseudo-random query plan generation.

The Distributed Query Engine is composed of: (i) a Query

Scheduler, (ii) a Query Optimizer and (iii) an Execution Engine.
The Query Scheduler rewrites a global query into a set of sub-
queries and schedules their evaluation (e.g. a global UPDATE
query is decomposed into a sequence of SELECT, DELETE and
INSERT sub-queries to read the old value, delete it and insert the
new value). Moreover, this module rewrites a query considering
local and distant Itemset fragments generating a query (or set of
queries) equivalent to the original one.

The Query Optimizer is based on the Case-Based Reasoning
(CBR) approach as in [22]. It proposes to retrieve and adapt query
plans using the experiences gained from the execution of past
similar queries. When no knowledge is available it randomly
generates query plans using classical heuristics [13, 23].

3.5 Rule Program Engines

The Rule Program Engine is in charge of executing rule-based
declarative programs exploited for specifying distributed
algorithms (e.g. networking protocols, sub-query execution). The

engine selects which rules have to be triggered and execute them
over the local data. The rule execution may involve local data
storage or emission to neighborhood.

The proposed Netlog and Questlog rule-based programing
languages extend Datalog with communication primitives, as well
as aggregation and non-deterministic constructs which are
standard in network applications. The computation of rule
programs is local, and the result can be either stored locally on an
UBIQUEST node on which the rules run, or sent to other nodes.

The Rule Program Engine receives payloads from the Payload

Dispatcher and has to treat their Contents containing either items
(new facts or query results) or predicates corresponding to
queries.

If a Content contains facts, the Rule Program Engine identifies
which rule-program has to be triggered by comparing new facts
with predicates in the rule body (Netlog). Then, it retrieves the
corresponding rules from the DMS and evaluates them in forward
chaining mode till a fix point is reached.

If a Content contains a predicate corresponding to a query
(Questlog), the Rule Program Engine identifies which rule-
program has to be triggered by comparing the predicate with rule
head, then it retrieves the corresponding rules from the DMS and
evaluates them in backward chaining till the full query result is
computed.

If a Content contains query results, these results are exploited to
continue query evaluation.

4. Query and rule-based program execution

4.1 Distributed Query Execution

As said in section 3.4, incoming global queries are rewritten by
the Scheduler as a sequence of queries that are to be evaluated in
correct order to produce the final result (e.g. evaluate
asynchronous subqueries before executing rewritten upper level
query). These queries generally contain access to local data and to
distant data, according to the horizontal fragmentation of global
itemsets. An optimal query plan has to be generated for each one
of these queries.

A query plan is a tree whose nodes are physical operators
corresponding to data manipulation. A root node corresponds to a
DLAQL command (i.e. SELECT, INSERT, DELETE, UPDATE),
intermediate nodes correspond to computation operators (e.g.
unions, joins, filter or aggregate), and leafs correspond to data
access operators: local DMS querying, sub-query emission to all
neighbors, or rule-based program invocation.

A case is generated for any (sub-)query expression Q evaluated on
a node. It is composed of the expression of Q, a query plan P for
Q and a set of cost parameter measures taken during the execution
of P. A case is stored in the local case base of the node. The
following example is a case for a query finding all avatars in area
7:

{Q = “Select Avatar from Positions where Area = 7”,

P = Union(DMS(σArea=7(Positions)),

SubQ(σArea=7(Positions))),

Cost = {Energy=0.5%, Time=12ms, Memory=2%, …}

}

The query plan P involves computation of a subquery on local
DMS (DMS operator) and emission of a global sub-query (SubQ
operator). Cost parameters are normalized when possible.
In our approach, the query plan generation is a recursive process.

190

The optimizer checks if the incoming query Q is known in the
case base, i.e. if there exist similar cases corresponding to this
query, select the best case/plan among them according to the
optimization objectives (i.e. minimizing the given cost function).
A similarity function to compare a case and a query has been
defined based on classification of query expressions (i.e. based on
DLAQL clauses, see [20]). If a plan is selected then it has to be
adapted to the current Q expression and to be executed, otherwise
a plan is generated using a pseudo-random approach. This
generation process applies classical heuristics and random choice
when missing metadata (e.g. statistics) is needed. For example, if
Q contains a set of join operations, it select randomly one join
operation and a corresponding algorithm (join operator) and return
a plan for this join operation involving two sub-queries. The same
process is applied recursively for every sub-query. An in depth
description of the optimization process is given in [20].

The Execution Engine executes a query plan P using the well-
known Iterator model [10] for the physical operators. It also
coordinates the local and distant sub-queries and constructs a final
result from sub-query results. During the execution, the cost
parameters (energy, time, memory etc.) are measured and a new
case is built.

4.2 Rule program execution

As we already explained the Rule Program Engine receives
payloads from the Payload Dispatcher and has to treat their
Contents containing either items (new facts or query results) or
predicates corresponding to queries.

In addition, the Rule Program Engine propagates new items or
new queries to other nodes, through the UBIQUEST API, and/or
stores new items in the DMS. The Engine has some additional
functions, such as timers, necessary for networking protocols, and
also uses optimization techniques, such as the triggering of rules
by new facts, which avoid unnecessary computations, when there
are no changes in the input of rules.

Let us assume the following simple routing table maintenance
protocol:

 �Route(SELF, dest, dest, 1) :- Link(SELF, dest).

 �Route(SELF, dest, neigh, l2) :- Link(SELF, neigh),

 Route(neigh, dest, _, l1), l2 := l1 + 1.

These rules will be executed if a new neighbor is discovered (i.e.
new item in the Link itemset). Satisfied rules involve local storage
and broadcasting of new facts (heads of the rules) to all neighbors
(� symbol). This is done via the Emission Module alone as the
destination is expressed extensionally (i.e. all neighbors). The
following sequence diagram describes the whole process:

4.3 Combining DLAQL queries and rule

programs

Going back to the evaluation of the query

Q = “Select Avatar from Positions where Area = 7”, as

Union(DMS(σarea=7(Positions)),

SubQ(σarea=7(Positions)));

One can figure out, this leads to useless sub-query evaluation. The
distant part (SubQ) is useless because the node locally stores its
avatar (localized in area 7) and its neighbors (i.e. in the same
area).
Such knowledge can be represented as rule-based programs
executing specific algorithms to solve these sub-queries. Here,
this program is the local identity where no sub-query is emitted:

 �Positions(_, area, _) ← Positions(_, area, _).
The DQE Engine may exploit this program to solve (part of) the
query Q, thanks to the correspondence table between queries and
programs. The following sequence diagram shows the interactions
among UBIQUEST node components for such an evaluation.

5. SIMULATION PLATFORM

We develop a platform (see Fig. 6) facilitating the development
and monitoring of UBIQUEST applications. This platform offers
tools for editing and compiling rule-based programs, a allows the
simulation of network of UBIQUEST nodes.

The simulation platform has three main components:

• The Network Editor, which allows to build and simulate
a network with various UBIQUEST nodes;

• The Network Monitor, which allows to visualize and
interact with the network at run time; and

• The Node Monitor, which allows to monitor the activity
of and interact with individual nodes.

The Network Editor allows creating groups of nodes, displaying
the status of the nodes in each group and installing rule programs
on them. They can have different colors, radio range, and
characteristics, such as mobile or fixed. The system creates the
groups and displays the nodes on the left part of the screen. Each
node is listed and for each node one can see its identifier, address,
position and radio range.

The Network Monitor offers the view of the different groups of
nodes, represented by different shapes and different colors, and
the connections between them (if the nodes are located inside the
radio range of another node). Each node has a unique identifier.
The Network Monitor also allows to interact with the network, and
to modify its configuration before starting or during the
simulation, by moving nodes, changing their radio range, or
deleting edges or nodes for instance.

The Node Monitor exhibits information about the node selected by
the user, displayed on the right part of the screen. It contains six
tabs: Display itemset, Programs, Messages, API, DQE, and
Statistics. The Display itemset tab allows the user to choose an
Itemset existing in the DMS of the node and to display the values
of each items of this Itemset. It is important to notice that the
content is updated on the fly. For example, you can choose to
display the content of the Itemset "Route" to see all the routes
contained on the selected node. The next tab simply displays
which programs are installed on the node with the possibility for
the user to enable or disable them on this node. The Messages tab

PayloadDispatcherReceptionModule DQEEmissionModule Rule Engine DMSApplication API

Application

Query
Dispatch (Tag = DQE)

Execute Query Execute local subquery

Results

Dispatch (Tag=Emission)
Emit subquery

Dispatch (Tag=DQE)
Treat results

Execute Program

Results

Dispatch (Tag=AppAPI)

Return results
Results

PayloadDispatcherReceptionModule DQEEmissionModule Rule Engine DMSApplication API

Application

Query
Dispatch (Tag = DQE)

Execute Query Execute local subquery

Results

Dispatch (Tag=Emission)
Emit subquery

Dispatch (Tag=DQE)
Treat results

Execute Program

Results

Dispatch (Tag=AppAPI)

Return results
Results

191

Figure 4. UBIQUEST Simulation Platform

displays all messages received or sent by the node. If you click on
one message in particular, you can display its content. The API tab
permits to modify the content of the DMS of the selected node by
adding an item in one of the Itemsets of the node, or by submitting
queries expressed in DLAQL, as an application would do. The
DQE tab allows to monitor query execution by exploring the case
base (i.e. query families, query plans and measures of
computation cost), displaying the list of pending subqueries and
partial results for any of the queries running on the selected node.
The last tab shows some basic statistics about the node such as the
number of Select queries or Update queries done in the database
of the node.

We also developed a simulation and emulation environment for a
detailed analysis and evaluation of queries for a large class of
algorithms and protocols.

6. ACKNOWLEDGMENTS
This work has been supported by the ANR-09-BLAN-0131-01
UBIQUEST Project (http://ubiquest.imag.fr), financed by the
French National Research Agency (ANR).

7. REFERENCES
[1] A. Ahmad-Kassem, C. Bobineau, C. Collet, E. Dublé, S.

Grumbach, F. Ma, L. Martinez, S. Ubéda. A data-centric
approach for networking applications. In: DATA, (2012),
Rome, Italy.

[2] G. Alonso, E. Kranakis, C. Sawchuk, R. Wattenhofer and P.
Widmayer. Probabilistic protocols for node discovery in ad
hoc @multi-channel broadcast networks. In: Pierre, S.,
Barbeau, M., Kranakis, E. (eds.) ADHOC-NOW 2003. LNCS,
vol. 2865, Springer, Heidelberg, 2003.

[3] Y. Bejerano, Y. Breitbart, M. Garofalakis and R. Rastogi.
Physical topology discovery for large multi-subnet networks.
In: INFOCOM, 2003.

[4] Y. Bejerano, Y. Breitbart, A. Orda, R. Rastogi and Alexander
Sprintson. Algorithms for computing QoS paths with
restoration, IEEE/ACM Transactions on Networking (TON),
v.13 n.3, p.648-661, June 2005

[5] X. Chen, Y. Mao, Z. M. Mao, and J. Van der Merwe. Decor:
Declarative network management and operation. SIGCOMM
Comput. Commun. Rev., 40:61-66, January 2010.

[6] Z. Cheng, M. Perillo, and W. B. Heinzelman. General
Network Lifetime and Cost Models for Evaluating Sensor
Network Deployment Strategies. IEEE Transactions on
Mobile Computing, 7(4):484-497, April 2008.

[7] T. Condie, D. Chu, J. M. Hellerstein, and P. Maniatis. Evita
raced: metacompilation for declarative networks. Proc. VLDB
Endow., 1:1153-1165, August 2008.

[8] A. J. Demers, J. Gehrke, R. Rajaraman, A. Trigoni, and Y.
Yao. The cougar project: a work-in-progress report. SIGMOD
Record, 32(4):53-59, 2003.

[9] A. Deshpande, C. Guestrin, S. R. Madden, J. M. Hellerstein,
and W. Hong. Model-driven data acquisition in sensor
networks. In Proceedings of the Thirtieth International
conference on Very Large Data Bases. Volume 30 (VLDB
'04), 588-599, 2004.

[10] G. Graefe. Query evaluation techniques for large databases.
ACM Computing Surveys, vol. 25, Issue 2, June, 1993.

[11] S. Grumbach and F. Wang. NetLog, a rule-based language
for distributed programming. In M. Carro and R. Pea, editors,
PADL, volume 5937 of Lecture Notes in Computer Science,
pages 88-103. Springer, 2010.

[12] W. Hoschek, F. J. Jaén-Martinez, A. Samar, H. Stockinger,
and K. Stockinger. 2000. Data Management in an
International Data Grid Project. In Proceedings of the First
IEEE/ACM International Workshop on Grid Computing
(GRID '00), Rajkumar Buyya and Mark Baker (Eds.).
Springer-Verlag, London, UK, 77-90.

[13] Y. Ioannidis. Query optimization. ACM Comput. Surv.,
28(1):121-123, 1996.

[14] S.R. Jeffery, G. Alonso, M. J. Franklin, W. Hong and J.
Widom. Declarative support for sensor data cleaning. In:
Fishkin, K.P., Schiele, B., Nixon, P., Quigley, A. (eds.)
PERVASIVE 2006. LNCS, vol. 3968, pp. 83-100. Springer,
Heidelberg, 2006.

[15] B. T. Loo, T. Condie, M. N. Garofalakis, D. E. Gay, J. M.
Hellerstein, P. Maniatis, R. Ramakrishnan, T. Roscoe, and I.
Stoica. Declarative networking: language, execution and
optimization. In ACM SIGMOD International Conference on
Management of Data, Chicago, Illinois, USA, 2006.

[16] B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis, T.
Roscoe, and I. Stoica. Implementing Declarative Overlays. In
20th ACM Symposium on Operating Systems Principles
(SOSP), 2005.

[17] B. T. Loo, J. M. Hellerstein, I. Stoica, and R. Ramakrishnan.
Declarative Routing: Extensible Routing with Declarative
Queries. In SIGCOMM, 2005.

[18] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong.
Tinydb: an acquisitional query processing system for sensor
networks. ACM Trans. Database Syst., 30(1), 2005.

[19] Y. Mao. On the declarativity of declarative networking.
SIGOPS Oper. Syst. Rev., 43:19-24, January 2010.

[20] L. Martinez, C. Collet, C. Bobineau, E. Dublé, The QOL
approach for optimizing distributed queries without complete
knowledge. In: IDEAS, 2012.

[21] Microsoft, “Execution plan caching and reuse,” [Online].
Available: http://technet.microsoft.com/en-us/library, 2008.

[22] M. Stillger, G. Lohman, V. Markl, and M. Kandil. Leo -
db2's learning optimizer. In: Proceedings of the 27th
International Conference on Very Large Data Bases (VLDB
2001), Morgan Kaufmann Publishers Inc, 19-28, San
Francisco, CA, USA, 2001..

[23] D. Subramanian and K. Subramanian. Query optimization in
multidatabase systems. Distrib. Parallel Databases, 6(2):183-
210, 1998.

[24] Y. Yu, D. Estrin, and R. Govindan, Geographical and
Energy-Aware Routing: A Recursive Data Dissemination
Protocol for Wireless Sensor Networks. UCLA Computer
Science Department Technical Report, UCLA-CSD TR-01-
0023, May 2001.

192

