N

HAL

open science

Implementing hash-consed structures in Coq

Thomas Braibant, Jacques-Henri Jourdan, David Monniaux

» To cite this version:

Thomas Braibant, Jacques-Henri Jourdan, David Monniaux. Implementing hash-consed structures in
Coq. Interactive Theorem Proving, 4th international conference, Jul 2013, Rennes, France. pp.477-
483, 10.1007/978-3-642-39634-2_ 36 . hal-00816672

HAL Id: hal-00816672
https://hal.science/hal-00816672

Submitted on 22 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00816672
https://hal.archives-ouvertes.fr

Implementing hash-consed structures in Coq*

Thomas Braibant! Jacques-Henri Jourdan' David Monniaux?

April 22, 2013

Abstract

We report on three different approaches to use hash-consing in programs
certified with the Coq system, using binary decision diagrams (BDD) as run-
ning example. The use cases include execution inside Coq, or execution of the
extracted OCaml code. There are different trade-offs between faithful use of
pristine extracted code, and code that is fine-tuned to make use of OCaml pro-
gramming constructs not available in Coq. We discuss the possible consequences
in terms of performances and guarantees.

1 Introduction

Hash-consing is an implementation technique for immutable data structures that
keeps a single copy, in a global hash table, of semantically equivalent objects, giving
them unique identifiers and enabling constant time equality testing and efficient
memoization (also known as dynamic programming). A prime example of the use
of hash-consing is reduced ordered binary decision diagrams (ROBDDs, BDDs for
short), representations of Boolean functions [3] often used in software and hardware
formal verification tools, in particular model checkers.

A Boolean function f : {0,1}" — {0,1} can be represented as a complete bi-
nary tree with 2" — 1 decision nodes, labeled by variables x; according to the depth
from the root (thus the adjective ordered) and with subtrees labeled 0 and 1, and
leaves labeled T (for true) or F (for false) . Such a tree can be reduced by merg-
ing identical subtrees, thus becoming a connected directed acyclic graph (see second
diagram below); choice nodes with identical children are removed (see third dia-
gram below). The reduced representation is canonical: a function is (up to variable
ordering z1,...,x,) represented by a unique ROBDD.

For instance, the function f(0,0) = T, f(0,1) = F, f(1,0) = T, f(1,1) = F is
represented, then simplified as:

*This work was partially funded by ANR project “VERASCO” and ERC project {STATOR"
TINRIA

HCNRS / VERIMAG

http://verasco.imag.fr/
http://stator.imag.fr/
http://www.inria.fr/
http://www.cnrs.fr/
http://www-verimag.imag.fr/

o
[
o
—

T F T F

In practice, one directly constructs the reduced tree. To do so, a BDD library
usually maintains a global pool of diagrams and never recreates a diagram that is
isomorphic to one already in memory, instead reusing the one already present. In
typical implementations, this pool is a global hash table. Hence, the phrase hash
consing denotes the technique of replacing nodes creation by lookup in a hash table
returning a preexisting object, or creation of the object followed by insertion into the
table if previously nonexistent. A unique identifier is given to each object, allowing
fast hashing and comparisons. This makes it possible to do efficient memoization:
the results of an operation are tabulated so as to be returned immediately when an
identical sub-problem is encountered. For instance, in a BDD library, memoization
is crucial to implement the or/and/xor operations with time complexity in O(|al.|b])
where |a| and |b| are the sizes of the inputs; in contrast, the naive approach yields
exponential complexity.

In this article, we investigate how hash-consing and memoization, imperative
techniques, may be implemented using the Coq proof assistant, using the example of
a BDD library, with two possible uses: 1) to be executed inside Coq with reasonable
efficiency, e.g. for proofs by reflection; 2) or to be executed efficiently when extracted
to OCaml, e.g. for use in a model-checking or static analysis tool proved correct in
Coq.

2 A Problem and Three Solutions

In the following, we propose to implement a BDD library using three different ap-
proaches. We focus on a minimal set of operations: node creation, Boolean opera-
tions (or, and, xor, not) and equality testing on formulas represented as ROBDDs;
and we provide formal guaranties of their correctness. (Note that, in some of our
solutions, we do not prove the completeness of the equality test. That is, we prove
that the equality test returning true implies equality of the formulas; but proving
the converse is not essential for many applications.)

The typical way of implementing hash-consing (a global hash table) does not
translate easily to Coq. The reason is that the Gallina programming language at the
heart of the Coq proof assistant is a purely applicative language, without imperative
traits such as hash tables, or pointers or pointers equality.

Therefore, there are two approaches to the implementation of hash-consing for
data-structures in Coq. The first one is to model the memory using finite maps
inside Coq, and use indices in the maps as surrogates for pointers, implementing
all the aforementioned operations on these persistent maps. Such an implementa-
tion was described in [, 4], and we propose a new one in The second one is
to recover imperative features by fine-tuning the extraction of Coq code: either by
realizing selected Coq constants by efficient OCaml definitions, e.g., extracting Coq

Inductive expr := Definition mk_node (1 : expr) (v: var) (h : expr) st :=

F| T| N: positive — expr. if expr_egb 1 h then (1,st)
Definition node := (expr * var * expr). else match find (1,v,h) (hmap st) with
Record hashcons := { | Some x = (N x, st)
graph: positive ~» node; | None = (N st.(next), upd (1,v,h) st)
hmap : node ~~ positive; end.

next : positive }.

Figure 1: Hash-consing in pure Coq

constructors into smart OCaml constructors and fixpoint combinators into memoiz-
ing fixpoint combinators (see [§2.2]); or by explicitly declaring as axioms the OCaml
code implementing the hash constructs and its properties (see [§2.3)).

2.1 Pure Coq

Our first implementation of BDDs is defined as follows in Coq. First, we assign a
unique identifier to each decision node. Second, we represent the directed acyclic
graph underlying a BDD as a Coq finite map from identifiers to decision nodes (that
is, tuples that hold the left child, the node variable and the right child). For instance,
the following graph, on the left, can be represented using the map on the right.

I
\Jx 1 — (F, ry, N 2)
N 2 — (F, 22, N 3)
l x3 3 — (F,z3, T)
YR
F T

Then, we implement the hash-consing pool using another map from decision nodes
to node identifiers and a next counter that is used to assign a unique identifier to
a fresh node. Equality between BDDs is then provided by decidable equality over
node identifiers. We present on Fig. [[lour inductive definitions (left) and the code of
the associated allocation function mk_node (right), knowing that upd n st allocates
the fresh node n in the hash-consing state st (taking care of updating both finite
maps and incrementing the “next fresh” counter).

We define well-formedness as follows. A node identifier is valid in a given global
state when it is lower than the value of the next counter. Then, the notion of well-
formedness of global states covers the facts that graph maps all valid node identifiers
to valid nodes (nodes whose children are valid); and hmap is a left-inverse of graph.

Then, all operations thread the current global state in a monadic fashion that
is, of course, reminiscent of a state monad. The correctness of BDD operations
corresponds to the facts that 1) the global state is used in a monotonic fashion
(that is the structure of the resulting global state is a refinement of the input one
and that the denotation of expressions is preserved); 2) the resulting global state
is well-formed; 3) the denotation of the resulting BDD expression is correct. As
can be expected from our data structure, BDD operations cannot be defined using
structural recursion (there is no inductive structure on which to recurse). Using well-
founded recursion is difficult here because the well-founded relation involves both
parameters of the function and the global state. Proving it to be well-founded would
involve merging non-trivial proofs of monotonicity within programs. In the end, we
resorted to define partial functions that use a fuel argument to ensure termination.

Finally, it is possible to enrich our hash-consing structure with memoization
tables in order to tabulate the results of BDD operations.

Record memo := { Record BDD := { ... :> hashcons; ... :> memo}.
mand : (positive * positive) ~~ expr;

mor : (positive % positive) ~~ expr;

mxor : (positive * positive) ~» expr;

mneg : positive ~~ expr}.

The memoization tables are passed around by the state monad, just as the hash-
consing structure. It is then necessary to maintain invariants on the memoization
information. Namely, we have to prove that the nodes referenced in the domain and
in the codomain of those tables are valid; and that the memoization information is
semantically correct.

As a final note: this implementation currently lacks garbage collection (allocated
nodes are never destroyed until the allocation map becomes unreachable as a whole);
it could be added e.g. by reference counting.

2.2 Smart constructors

In the previous approach, we use a state monad to store information about hash-
consing and memoization. However, one can see that, even if these programming
constructs use a mutable state, they behave transparently with respect to the pure
Coq definitions. If we abandon efficient executability inside Coq, we can write the
BDD library in Coq as if manipulating decision trees without sharing, then add
the hash-consing and memoization code by tweaking the extraction mechanism. An
additional benefit is that, since we use native hash tables, we may as well use weak
ones, enabling the native garbage collector to reclaim unused nodes without being
prevented from doing so by the pointer from the table.

More precisely, we define our BDDs as in Fig. Bal Moreover, we tell Coq to
extract the bdd inductive type to a custom bdd OCaml type (see left of Fig. D) and
to extract constructors into smart constructors maintaining the maximum sharing
property. These smart constructors make use of generic hash-consing library by Con-
chon and Filliatre [2] that defines the o hash_consed type of hash-consed values of
type a and the hashcons function that returns a unique hash-consed representative
for the parameter. Internally, the library uses suitable hash and equality functions
on BDDs together with weak hash tables to keep track of unique representatives.

In Coq, we define the obvious bdd_eqb function of type bdd — bdd — bool, that
decides structural equality of BDDs. Then, we extract this function into OCaml’s
physical equality. From a meta-level perspective, the two are equivalent thanks to
the physical unicity of hash-consed structures.

The last ingredient needed to transform a decision tree library into a BDD library
is memoization. We implement it by using special well-founded fixpoint combina-
tors in Coq definitions, which we extract into a memoizing fixpoint combinator in
OCaml. As an example, we give the definition of the bdd_not operation in Fig. 2
The fixpoint combinator is defined using the Coq general Fix well-founded fixpoint
combinator that respects a fixpoint equality property. The definition of bdd_not
then uses memoFix1 and requires proving that the BDDs sizes are decreasing (these
trivial proof obligations are automatically discharged).

We extract the memoFix1 combinator to a memoizing construct, that is observa-
tionally equivalent to the original one. However, this new construct tabulates results

Inductive bdd: Type := Extract Inductive bdd =
| T| F| N: var — bdd — bdd — bdd. "bdd hash_consed" ["hT" "hF" "hN"] "bdd_match".

(a) BDDs in Coq as decision trees

type bdd = let hT = hashcons bdd_tbl T

|T|F let hF = hashcons bdd_tbl F

| N of var * bdd hash_consed * bdd hash_consed let hN (p, b1, b2) = hashcons bdd_tbl (N(p, b1, b2))
let bdd_tbl = hashcons_create 257 let bdd_match fT fF fN b =

match b.node with
|T—£T () |F — £F ()
| N(p, b1, b2) — £N p bl b2

(b) Hash-consed OCaml BDD type

Definition memoFix1 := Program Definition bdd_not : bdd — bdd :=

Fix (well_founded_ltof bdd bdd_size). memoFixl _ (fun b rec = match b with
Lemma memoFix1_eq : V Ty F b, | T=F|F=T

memoFixl Ty F b = | Nv bt bf =

F b (fun b’ _ = memoFixl Ty F b’). N v (rec bt _) (rec bf _)
Proof. [...] Qed. end).

(c) Using a fixpoint combinator for bdd_not

Figure 2: Implementing BDDs in Coq, extracting them using smart constructors

in order to avoid unnecessary recursive calls. We use similar techniques for binary
operations. As all Coq definitions are kept simple, proofs are straightforward: we
can prove semantic correctness of all operations directly using structural induction
on decision trees.

2.3 Axioms

In the previous approach, hash-consing and memoization are done after the fact,
and are completely transparent for the user. In the following, we make more explicit
the hypotheses that we make on the representation of BDDs. That is, we make
visible in the inductive type of BDDs that each BDD node has a “unique identifier”
field (see Fig. B) and we take the node construction function as an axiom, which is
implemented in OCaml. Note that nothing prevents the Coq program from creating
new BDD nodes without calling this function mkN. Yet, only objects created by it (or
copies thereof) satisfy the valid predicate; we must declare another axiom stating
that unique identifier equality is equivalent to Coq’s Leibniz equality for valid nodes.
Then, we can use unique identifiers to check for equality.

This approach is close to the previous one. It has one advantage, the fact that
unique identifiers are accessible from the Coq code. They can for instance be used
for building maps from BDDs to other data, as needed in order to print BDDs as a
linear sequence of definitions with back-references to shared nodes. Yet, one could
also expose unique identifiers in the “smart constructor” approach by stating as
axioms that there exists an injection from the BDD nodes to a totally ordered type
of unique identifiers.

The use of axioms is debatable. On the one hand, the use of axioms somewhat
lowers the confidence we can give in the proofs, and they make the code not exe-
cutable within Coq. On the other hand, these axioms are actually used implicitly
when extracting Coq constructors to “smart constructors”: they correspond to the

Axiom var : Set. Inductive valid : bdd — Prop :=
| valid T : valid T

Axiom uid : Set. | valid_F : valid F
Axiom uid_egb : uid — uid — bool. | valid_N : V var bt bf,
Axiom uid_eq_correct: V x y : uid, (valid bt) — (valid bf) —
(uid_egb x y =true) ¢ x=y. (valid (mkN var bt bf)).
Inductive bdd : Set := Axiom shallow_equal_ok :
| T|F V idl id2 : uid,
| N: uid — var — bdd — bdd — bdd. V varl var2 : var,
V btl bfl bt2 bf2 : bdd,
Axiom mkN : var — bdd — bdd — bdd. valid (N id1 varl btl bfl) —
valid (N id2 var2 bt2 bf2) —
Axiom mkN_ok : idl = id2 —
V v : var, V bt bf : bdd, N idl varl btl bfl =
3 id, mkN v bt bf = N id v bt bf. N id2 var2 bt2 bf2.

Figure 3: Axiomatization of equality using unique identifiers

metatheoretical statement that these constructors behave as native Coq constructors.
Thus, they make explicit some of the magic done during extraction.

3 Discussion

We compare our approaches on different aspects:

Executability inside Coq. Both the “smart constructors” and the “pure” imple-
mentations can be executed inside Coq, even if the former has dreadful per-
formances (when executed inside Coq, it uses binary decision trees). The
“axiomatic” approach cannot be executed inside Coq.

Efficiency of the extracted OCaml code. We have yet to perform extensive
testing, but preliminary benchmarks indicate that the “pure” approach yields
code that is roughly five times slower than the “smart constructors” approach
(and we assume that the latter is also representative of the “axiomatic” ap-
proach) on classic examples taken from previous BDD experiments in Coq [5].
We have yet to measure memory consumption.

Trust in the extracted code. Unsurprisingly, the “smart constructors” and the
“axiomatic” approaches yield code that is harder to trust, while the “pure’
approach leaves the extracted code pristine.

9

Proof. From a proof-effort perspective, the “smart constructors” is by far the sim-
plest. The “axiomatic” approach involves the burden of dealing with axioms.
However, it makes it easier to trust that what is formally proven corresponds
to the real behavior of the underlying runtime. By comparison, the “pure’
approach required considerably more proof-engineering in order to check the
validity of invariants on the global state.

9

Garbage collection. Implementing (and proving correct) garbage collection for
the “pure” approach would require a substantial amount of work. By contrast,
the “smart” and “axioms” approaches make it possible to use OCaml’s garbage
collector to reclaim unreachable nodes.

4 Conclusion and directions for future works

In this paper, we proposed two solutions to implement hash-consing in programs
certified with the Coq system. The first one is to implement it using Coq data-
structures; the second is to use the imperative features provided by OCaml through
the tuning of the extraction mechanism. The difference in flavor between the map-
ping of Coq constants to smart OCaml realizers or the axiomatization of there
realizers in Coq is a matter of taste. In both cases, some meta-theoretical reasoning
is required and requires to “sweep something under the rug”.

We conclude with directions for future works. First, we believe that the smart
constructors approach is generalizable to a huge variety of inductive types. One
can imagine that it could be part of the job of Coq’s extraction mechanism to
implement on-demand such smart constructors and memoizers as it was the case
for other imperative constructs [1]. Second, we look forward to investigate to what
extent one could provide a certified version of the hash-consing library proposed by
Conchon and Filliatre [2].

Ackowledgements. We thank the reviewers for their helpful comments and Jean-
Christophe Filliatre for fruitful discussions.

References

[1] Michaél Armand et al. “Extending Coq with Imperative Features and Its Ap-
plication to SAT Verification”. In: Proc. ITP. Vol. 6172. LNCS. Springer, 2010,
pp. 83-98. DOI: [[0.1007/978-3-642-14052-58)

[2] Sylvain Conchon and Jean-Christophe Filliatre. “Type-Safe Modular Hash-Consing”.

In: ACM SIGPLAN Workshop on ML. Portland, Oregon, Sept. 2006. URL:
http://www.lri.fr/~filliatr/ftp/publis/hash-consing?2.pdf.

[3] Donald E. Knuth. “The Art of Computer Programming”. In: vol. 4A. Binary
decision diagrams. Addison-Wesley, 2011. Chap. 7.1.4. 1SBN: @78-0201038040

[4] Kumar Neeraj Verma and Jean Goubault-Larrecq. Reflecting BDDs in Cog.
Anglais. Rapport de recherche RR-3859. INRIA, 2000. HAL: |inria-00072797.

[5] Kumar Neeraj Verma et al. “Reflecting BDDs in Coq”. In: Proc. ASIAN. Vol. 1961.
LNCS. Springer, 2000, pp. 162-181. ISBN:

http://www.jstor.org/stable/10.1007/978-3-642-14052-5_8
http://www.lri.fr/~filliatr/ftp/publis/hash-consing2.pdf
http://worldcat.org/isbn/978-0201038040
http://hal.archives-ouvertes.fr/inria-00072797
http://worldcat.org/isbn/3-540-41428-2

	Introduction
	A Problem and Three Solutions
	Pure Coq
	Smart constructors
	Axioms

	Discussion
	Conclusion and directions for future works

