
HAL Id: hal-00816699
https://hal.inria.fr/hal-00816699

Submitted on 22 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Machine-Checked Proof of the Odd Order Theorem
Georges Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot, Cyril Cohen,
François Garillot, Stéphane Le Roux, Assia Mahboubi, Russell O’Connor, Sidi

Ould Biha, et al.

To cite this version:
Georges Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot, Cyril Cohen, et al.. A Machine-
Checked Proof of the Odd Order Theorem. Sandrine Blazy and Christine Paulin and David Pichardie.
ITP 2013, 4th Conference on Interactive Theorem Proving, Jul 2013, Rennes, France. Springer, 7998,
pp.163-179, 2013, LNCS. <10.1007/978-3-642-39634-2_14>. <hal-00816699>

https://hal.inria.fr/hal-00816699
https://hal.archives-ouvertes.fr

A Machine-Checked Proof of

the Odd Order Theorem

Georges Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot, Cyril Cohen,
François Garillot, Stéphane Le Roux, Assia Mahboubi, Russell O’Connor, Sidi
Ould Biha, Ioana Pasca, Laurence Rideau, Alexey Solovyev, Enrico Tassi and

Laurent Théry

Microsoft Research - Inria Joint Centre

Abstract. This paper reports on a six-year collaborative effort that cul-
minated in a complete formalization of a proof of the Feit-Thompson Odd
Order Theorem in the Coq proof assistant. The formalized proof is con-
structive, and relies on nothing but the axioms and rules of the founda-
tional framework implemented by Coq. To support the formalization, we
developed a comprehensive set of reusable libraries of formalized math-
ematics, including results in finite group theory, linear algebra, Galois
theory, and the theories of the real and complex algebraic numbers.

1 Introduction

The Odd Order Theorem asserts that every finite group of odd order is solvable.
This was conjectured by Burnside in 1911 [34] and proved by Feit and Thomp-
son in 1963 [14], with a proof that filled an entire issue of the Pacific Journal
of Mathematics. The result is a milestone in the classification of finite simple
groups, and was one of the longest proof to have appeared in the mathematical
literature to that point. Subsequent work in the group theory community aimed
at simplifying and clarifying the argument resulted in a more streamlined version
of the proof, described in two volumes [6, 36]. The first of these, by H. Bender
and G. Glauberman, deals with the “local analysis”, a term coined by Thompson
in his dissertation, which involves studying the structure of a group by focusing
on certain subgroups. The second of these, by T. Peterfalvi, invokes character
theory, a more “global” approach that involves studying a group in terms of the
ways it can be represented as a group of matrices.

Both the size of this proof and the range of mathematics involved make for-
malization a formidable task. The last couple of decades have brought substantial
advances in the use of interactive theorem provers, or “proof assistants,” towards
verifying substantial mathematical results [5, 16, 23]. The technology has also
been used to verify the correctness of hardware and software components with
respect to given specifications; significant successes in that area include the for-
mal proof of correctness of a realistic compiler [32] and of a small operating
system [29]. Formal methods have been especially useful when it comes to veri-
fying the correctness of mathematical proofs that rely on computations that are

2 Gonthier et al.

too long to be checked by hand. For example, Appel and Haken’s proof of the
four-color theorem [1] has been verified [16] in the Coq system [7], and Thomas
Hales’ Flyspeck project [23] is working towards verifying a proof of the Kepler
conjecture, which Hales himself first established with contributions by Samuel
Ferguson.

The formalization described in the present article, however, is of a different
nature. The proof of the Odd Order Theorem does not rely on mechanical com-
putation, and the arguments were meant to be read and understood in their
entirety. What makes the formalization difficult — and interesting — is the
combination of theories involved. Working with these theories formally required
developing a methodology that makes it possible to switch, efficiently, between
the various views a mathematical text can superimpose on the same mathemat-
ical object. Another important task has been to formalize common patterns of
mathematical reasoning. When it comes to formal verification of software, inter-
action with a proof assistant is commonly based on case analysis and structural
induction. In contrast, the proof of the Odd Order Theorem relies on a variety
of argument patterns that require new kinds of support.

In Section 2 we outline the statement and proof of the Odd Order Theorem.
Section 3 provides some examples of the design choices we adopted to repre-
sent mathematical concepts in the type theory underlying the Coq system. In
Section 4 we review some examples of the techniques we used to represent effi-
ciently different kinds of proof patterns encountered in this proof. In Section 5
we provide three examples of advanced mathematical theories whose formaliza-
tion require a robust combination of several areas of formalized mathematics,
before scaling to the main proof. Section 6 concludes the paper with comments
and some quantitative facts about this work.

2 An overview of the Odd Order Theorem

2.1 Preliminaries

A group G consists of a set, usually also named G, together with an associative
binary law ∗, usually denoted by juxtaposition, and an identity element 1, such
that each element g of G has an inverse g−1, satisfying gg−1 = g−1g = 1. When
there is no ambiguity, we identify an element g of a group with the correspond-
ing singleton set {g}. In particular the trivial group {1} is denoted by 1. The
cardinality of G is called the order of the group. Examples of finite groups in-
clude the cyclic group Z/nZ of integers modulo n under addition, with identity
0; the set Sn of permutations of {0, . . . , n − 1}, under composition; and the set
of isometries of a regular n-sided polygon. These examples have order n, n!, and
2n, respectively. The cartesian product G1 × G2 of two groups G1 and G2 is
canonically a group with law (a1, a2)∗ (b1, b2) := (a1b1, a2b2); the group G1×G2

is called the direct product of G1 and G2.
The law of an abelian group is commutative; in a non-abelian group G, we

only have ab = bab = ba[a, b], where ab := b−1ab is the b-conjugate of a, and

A Machine-Checked Proof of the Odd Order Theorem 3

[a, b] := a−1b−1ab is the commutator of a and b. Product and conjugation extend
to subsets A,B of G, with AB := {ab | a ∈ A, b ∈ B} and Ab := {ab | a ∈ A}.
A subset A of G is B-invariant when Ab = A for all b in B; in that case we have
AB = BA.

One says that H is a subgroup of a group G, and writes H < G, when H
is a subset of G containing 1 and closed under product and inverses — thus
itself a group. For finite H, H < G is equivalent to 1 ∪H2 ⊂ H ⊂ G. The set
of subgroups of G is closed under intersection, conjugation, and commutative
product (such as product with an invariant subgroup). If G is finite and H < G,
then the order of H necessarily divides the order of G. It is not generally the
case that for each divisor of the order of G there exists a subgroup of G of this
order, but if G is a group of order n and p is a prime number dividing n with
multiplicity k, then there exists a subgroup of G having order pk, called a Sylow
p-subgroup of G.

The notion of a normal subgroup is fundamental to group theory:

Definition 1 (Normal subgroup). H is a normal subgroup of a group G,

denoted H ⊳ G, when H is a G-invariant subgroup of G.

If H ⊳G, the set {Hg | g ∈ G} of H-cosets is a group, as (Hg1)(Hg2) = H(g1g2).
This group, denoted G/H, is called the quotient group of G and H because it
identifies elements of G that differ by an element of H. If G1 and G2 are groups,
G1 and G2 are both normal in the group G1 ×G2.

Every finite abelian group is isomorphic to a direct product of cyclic groups
Z/pki

i Z, where the pi are prime numbers. The far more complex structure of
nonabelian groups can be apprehended using an analogue of the decomposition
of a natural number by repeated division:

Definition 2 (Normal series, factors). A normal series for a group G is a

sequence 1 = G0⊳G1 · · ·⊳Gn = G, and the successive quotients (Gk+1/Gk)0≤k<n

are called the factors of the series.

A group G is simple when its only proper normal subgroup is the trivial group
1, i.e., if its only proper normal series is 1 ⊳ G. A normal series whose factors
are all simple groups is called a composition series. The Jordan-Hölder theorem
states that the (simple) factors of a composition series play a role analogous to
the prime factors of a number: two composition series of the same group have
the same factors up to permutation and isomorphism. Unlike natural numbers,
however, non-isomorphic groups may have composition series with isomorphic
factors. The class of solvable groups is characterized by the elementary structure
of their factors:

Definition 3 (Solvable group). A group G is solvable if it has a normal series

whose factors are all abelian.

Subgroups and factors of solvable groups are solvable, so by the structure the-
orem for abelian groups, a finite group is solvable if and only if all the factors
of its composition series are cyclic of prime order. We are now able to state the
Odd Order Theorem.

4 Gonthier et al.

2.2 The Odd Order Theorem

Theorem 1 (Odd Order theorem [14]). Every finite group of odd order is

solvable.

It is striking that the theorem can be stated in such elementary terms, whereas
its proof requires much more baggage. The file stripped_Odd_Order1 of [39]
provides a minimal, self-contained formulation of the Odd Order theorem, using
only the bare Coq logic, and avoiding any use of extra-logical features such as
notations, coercions or implicit arguments.

The proof of Theorem 1 proceeds by induction, showing that no minimal
counterexample G exists. At the outset G is only known to be simple, nonabelian
of odd order, but all proper subgroups of G should be solvable. The first half
of the proof exploits these meager facts to derive a detailed description of the
maximal proper subgroups of G, reducing the general structure of G to five cases.
The second half of the proof uses character norm inequalities to rule out four
of these, and extract some algebraic identities in a finite field from the last one.
Galois theory is then used to refute these, completing the proof.

The study of the (solvable) subgroups of G exploits their decomposition into
prime factors, reconstructing the structure of a maximal subgroup M from that
of its p-factors for individual primes p. An A-invariant subgroup H of M has a
normal series with A-invariant elementary abelian factors, that is, direct prod-
ucts of prime cycles. Identifying each one with a vector space over a finite field
Fp makes it possible to analyze the action of A on H via the representations

mapping A to a group of matrices over Fp, and use linear algebra techniques
such as eigenspace decomposition. Indeed, the proof starts by showing that 2×2
representations are abelian, then that no representation of A has a quadratic
minimal polynomial (this replaces the use of the Hall-Higman theorem in [14]).
This p-stability is combined with Glauberman’s ZJ∗ factorization to establish
a Uniqueness theorem (Chapter II of [6]): any subgroup of rank 3 (containing
an elementary abelian subgroup of order p3) lies in a unique maximal subgroup
of G.

Combining the Uniqueness theorem with results of Blackburn on odd groups
of rank 2 yields that any maximal subgroup M of G is a semidirect product MσE
with Mσ ⊳M and Mσ, E of coprime order. Furthermore, very few elements of Mσ

and E commute — M is similar to a Frobenius group. Further analysis reveals
that most M are of type I: M is very nearly a Frobenius group, with Mσ equal
to the direct product MF of the normal Sylow subgroups of M . However some
M can be of type P, with M = MFUW1, where W1 is cyclic, UW1 is a Frobenius
group, and all w1 in W1 commute precisely with the same cyclic group W2 < MF

(W1 acts in a prime manner on MF). Type P is subdivided into types V, II, III
or IV, according to whether U is trivial, included in a different maximal group,
abelian, or nonabelian, respectively. If any, there are exactly two type P groups
up to conjugation, with W1 and W2 interchanged; at least one has type II, and
over half of the elements of G lie in conjugates of W = W1W2.

1
http://coqfinitgroup.gforge.inria.fr/doc/stripped_odd_order_theorem.html

http://coqfinitgroup.gforge.inria.fr/doc/stripped_odd_order_theorem.html

A Machine-Checked Proof of the Odd Order Theorem 5

The second part of the proof [36] uses characters. The character of a complex
representation ρ : H 7→ GL(n,C) is the function mapping each h ∈ H to the
trace of ρ(h). In general, a character is not a group homomorphism, but it is a
class function, constant on conjugacy classes of H. Convolution over H makes
the set of class functions on a group H into a Hermitian space, for which the set
irr H of irreducible characters of H forms an orthonormal basis. Characters of
H have natural integer coordinates in irr H, hence integral norm.

Local analysis provides us both with a precise description of the characters
of a maximal subgroup M , and an isometry mapping certain virtual characters

of M (differences of characters) to virtual characters of G. This Dade isometry

is only defined on functions that vanish on 1, so in order to extract usable in-
formation on G one needs coherence theorems extending it to a set of proper
characters. The first, due to Sibley, covers Frobenius and type V maximal sub-
groups, and the second type II–IV subgroups.

For any χ ∈ irr G, coherence for a set (Mi) of non-conjugate maximal sub-
groups implies a numerical inequality bounding the sum of the (Hermitian)
norms of the inverse images of the restrictions of χ to the support of the image
of the Dade isometries for the Mi, and the (complex) norms of the values of χ
elsewhere. For types III–V this bound yields a non-coherence theorem, which
successively eliminates types V and IV; this implies that type I groups are actu-
ally Frobenius, and then the coherence bound forces type P groups to exist.

More inequalities then force the MF , U , and W1 subgroups of the type P
groups to be isomorphic to the additive, unitary multiplicative, and Galois groups
of a finite field Fpq of order pq, then rule out type III, and imply that U is
W y

2 -invariant for some y ∈ HF , where H is the other type II group such that
W1 < HF . Intricate calculations show that this implies that if a ∈ Fpq and 2−a
both have Galois norm 1, then so does τ(a) := 2−1/a, and hence τ(a) . . . τk(a) =
(1− 1/a)k + 1; for a 6= 1 the Galois norm of (1− 1/a)x+ 1 yields a polynomial
of degree q which has 0, ..., p − 1 as roots, whence q ≤ p and hence q = p by
symmetry, so the orders of MF and E > W1 are not coprime, a contradiction.

2.3 Mathematical sources

Our formalization follows the two books describing the revised proof [6, 36],
with a small number of exceptions, for which we formalized the original argu-
ments [14]. We followed Huppert’s proof [27] of the Wielandt fixed point order
formula. The elementary finite group theory part follows standard references
[31]. For more advanced material we have used Aschbacher’s and Gorenstein’s
books [3, 22] and some sources adapted to Galois theory and commutative alge-
bra [30, 33, 37]. The formalization of character theory is based on Isaacs [28].

3 Mathematical structures and interfaces in Coq

3.1 The Calculus of Inductive Constructions and the Coq system

Most mathematical papers and textbooks do not explicitly specify a formal ax-
iomatic foundation, but can generally be viewed as relying on set theory and

6 Gonthier et al.

classical logic. Many interactive theorem provers, however, use alternative for-
mal systems based on some form of type theory. Just as in the domain of pro-
gramming languages, types help classify expressions passed to the checker, and
hence facilitate the verification of claims in which they appear. The Coq proof
assistant [7] is based on a logical foundation known as the Calculus of Inductive

Constructions, or CIC [11, 12], a powerful and expressive version of constructive
dependent type theory.

The advantage to using dependent type theory is that types can express
complex specifications. For example, in our formalization, if G is an object of
type finGroupType, thenG is a record type which packages the type representing
the elements of G, the binary group operation, the identity, and the inverse, as
well as proof that these items satisfy the group axioms. In addition, Coq’s type
inference algorithm can eliminate the need to provide information that can be
reconstructed from type constraints, just as implicit information is reconstructed
by an experienced reader of a page of mathematics. For example, if g and h
are elements of the carrier type of G an object of type finGroupType, then
when presented with the expression g ∗ h, Coq can infer that ∗ denotes the
binary operation of G, as well as the fact that that operation is associative, and
so on. Thus, type inference can be used to discover not only types, but also
data and useful facts [19, 4]. Working with such an elaborate type system in a
proof assistant can be delicate, however, and issues like the decidability of type
checking impose severe restrictions on the nature of the dependent types one can
work with in practice.

The status of computation in Coq’s formalism also plays a central role in the
present formalization. Every term or type has a computational interpretation,
and the ability to unfold definitions and normalize expressions is built in to
the underlying logic. Type inference and type checking can take advantage of
this computational behavior, as can proof checking, which is just an instance of
type checking. The price to pay for this powerful feature is that Coq’s logic is
constructive. In Coq many classical principles, such as the law of the excluded
middle, the existence of choice functions, and extensionality are not available at
the level of the logic. These principles can be recovered when they are provably
valid, in the constructive sense, for specific objects like finite domains, or they
can be postulated as axioms if needed. The present formalization, however, does
not rely on any such axiom. Although it was not the primary motivation for this
work, we eventually managed to obtain a completely constructive version of the
proof and of the theories it requires.

In short, the success of such a large-scale formalization demands a careful
choice of representations that are left implicit in the paper description. Taking
advantage of Coq’s type mechanisms and computational behavior allows us to
organize the code in successive layers and interfaces. The lower-level libraries
implement constructions of basic objects, constrained by the specifics of the
constructive framework. Presented with these interfaces, the users of the higher-
level libraries can then ignore these constructions, and they should hopefully be
able to describe the proofs to be checked by Coq with the same level of comfort

A Machine-Checked Proof of the Odd Order Theorem 7

as when writing a detailed page in LATEX. The goal of this section is to describe
some of the design choices that were made in that respect.

3.2 Principles of boolean reflection

The equality relation x = y on a given type is generally not decidable, which is
to say, the alternative x = y ∨x 6= y is not generally provable. In some contexts,
one can prove that equality is equivalent to a boolean relation x ≡ y, for which
the law of the excluded middle holds. In our formalization, an eqType is a type
paired with such a relation. Working with an eqType thus provides a measure
of classical reasoning.

Using boolean values and operations to reason about propositions is called
boolean reflection. This makes it possible, in a sense, to “calculate” with propo-
sitions, for example, by rewriting with boolean identities. More generally, to
take advantage of propositions that can be represented as boolean values, the li-
braries provides infrastructure theorems to link logical connectives on (boolean)
propositions with the corresponding boolean connectives. The SSReflect tac-
tic language also provides support to facilitate going back and forth between
different but equivalent descriptions of the same notion, like between boolean
predicates and their logical equivalents. An explicit coercion is used through-
out the formalization, which inserts automatically and silently an injection from
a boolean value b to the formula (b = true) in the type Prop of propositions.
This strategy is central to our methodology, and explains the name SSReflect,
which is short for small scale reflection [18, 20].

Decidable equality plays another important role in facilitating the use of
subtypes. If A is a type, a subset of A can be represented by a predicate B on
A, that is, a map B from A to the type Prop. An element of this subset can
be represented by an element a of A, and a “proof” p that B holds for a. The
dependent pair 〈a, p〉 is an element of the dependent sum, or Sigma type, Σx:ABx.
As B takes values in Prop, Σx:ABx is also called a subtype of A, for the reasons
just described.

The problem is that the equality on a subtype is not as simple as one would
like. Two elements 〈a1, p1〉 and 〈a2, p2〉 are equal if and only if a1 = a2 but also,
now considering both p1 and p2 as proofs that a1 satisfies B, p1 and p2 are the
same proof. However, a theorem due to Hedberg [25], formalized in our library as
eq_irrelevance2, implies that if B is a boolean-valued rather than Prop-valued
predicate, then any two proofs p1 and p2 that a1 satisfies B are equal. Thus,
in this case, two elements 〈a1, p1〉 and 〈a2, p2〉 of the subtype are equal if and
only if a1 = a2. Our libraries provide support [18] for the manipulations of these
boolean subtypes, which are used pervasively in the formalization.

3.3 Finite group theory

Given the substantial amount of group theory that needed to be formalized, we
relied on two important observations to optimize the data structures used to

2
http://coqfinitgroup.gforge.inria.fr/doc/eqtype.html

http://coqfinitgroup.gforge.inria.fr/doc/eqtype.html

8 Gonthier et al.

represent finite groups. First, in many proofs, one can take most or all of the
groups involved to be subgroups of a larger ambient group, sharing the same
group operation and identity. Moreover, local notions like the normalizer of H
inside of G, denoted NG(H), are often used “globally,” as in N(H), a practice
which implicitly assumes that the normalizer is to be computed within an am-
bient container group. Second, and more importantly, many theorems of group
theory are equally effective when stated in less generality, in terms of subgroups
of such an ambient group. For example, given a theorem having to do with two
unrelated groups, it does not hurt to assume that the two groups are subgroups
of a larger group; this can always be made to hold by viewing them as subgroups
of their direct product.

In our formalization, we represent such ambient groups as finGroupTypes,
and then represent the groups of interest as subsets of that type that contain the
identity and are closed under the group operation. This is much simpler than
having to maintain a plurality of types and morphisms between them. We form
a new finGroupType only when strictly necessary, for example when forming a
quotient group, which requires a new group operation [19].

A delicate point we had to cope with is that many constructions are partial.
For example, the quotient group G/N can be formed only if N ⊳ G (see Sec-
tion 2.1), and the direct product G ×H of two subgroups of an ambient group
can be formed only if they commute and G ∩ H = 1. In addition, given our
encoding of groups as subsets of a container group type, morphisms are unlikely
to be defined on the whole group type, but rather on a specific subset.

Such constructions are ubiquitous. Forming subtypes as described in Sec-
tion 3.2 in each case would be unwieldy and would make the application of
lemmas mentioning partial constructions particularly cumbersome. The general
approach has been to make each of these constructions total, either by modifying
the input when it is invalid, or returning a default value. For example, the direct
product construction returns the empty set (which is not a group) if the input
groups have a nontrivial intersection; applying a morphism to a set automati-
cally shrinks the input set by intersecting it with the domain of the morphism.
The downside of this approach is that lemmas involving partial constructions
often, but not always, depend on side conditions that need to be checked when
the lemma is applied.

3.4 Dependent records as first class interfaces

Records are just a generalization of the dependent pair construction described
in Section 3.2, and, in the same way, can be used to package together types,
data, operations and properties. They can thus play the role of abstract “inter-
faces.” Such interfaces are very natural in abstract algebra, but are also useful in
developing a theory of iterated operations [8], a theory of morphisms, a theory
of algebraic structures [15] and so on. For an extensive list of interfaces used in
the SSReflect library, the reader can refer to Section 11.3 of the SSReflect

documentation [20].

A Machine-Checked Proof of the Odd Order Theorem 9

In addition to the hierarchy of algebraic structures, we also provide a hierar-
chy for numeric fields [9], which are fields equipped with a boolean order relation,
possibly partial. The purpose of this small hierarchy is to capture the operations
and the theory of the complex number field and its subfields (cf Section 5.2).

Here we simply provide an example to illustrate how, using record types and
setting up type inference carefully, one can obtain a hierarchy of interfaces that
provides multiple inheritance, notation overloading, and (as we will see in the
next section) a form of proof search. Consider the expression (x + x * x ==

0), where x is taken to be of type int. The symbols *, + and == are overloaded,
and correspond to the multiplication of a ring, the addition operation in an
additive group, and a decidable comparison operation. Type inference has to
check that operations are applied to arguments of the right type; for example
x of type int is used as an argument of *, hence the type int is unified with
the carrier of an unspecified ring structure. Unification can be programmed,
thanks to Coq’s canonical structures mechanism, to solve such a unification
problem by fixing the unknown structure to be the canonical ring structure
on the integers. Given that int has been proved to be an instance of all the
structures involved, unification always succeeds and type inference can make
sense of the input expression, binding the overloaded symbols to the respective
integer operations.

3.5 Searching proofs by programming type inference

Very often, the verification of small, uninteresting details is left implicit in an
ordinary mathematical text, and it is assumed that a competent reader can fill
these in. Canonical structures can be programmed to play a similar role. In
particular, structures can package data with proofs, as in Section 3.2, in which
case searching for a particular structure that contains a certain value can amount
to looking for a proof that some property holds for that value.

A slight difficulty is that canonical structures are designed to guide unifica-
tion, which is used by type inference to process types (like int), while here we
need to process values (like the intersection of two sets). The crucial observation
is that Coq’s logic features dependent types, which means that values can be
injected into types, even artificially, to make them available to unification, and
hence to canonical structure resolution. We call the mechanism for doing this a
phantom type. The use is similar to the use of phantom types in functional pro-
gramming [26], where one enriches a type with a dummy (phantom) annotation
to trick the type system into enforcing additional invariants.

Manifestations of this automatic proof search machinery are ubiquitous. For
example, we can prove (1 \in f @* (G :&: H)) by applying the group1 lemma,
which states that a set contains the unit element 1 if it happens to be a group.
The canonical structure mechanism infers this group structure automatically for
f @* (G :&: H): if G and H have a group structure, then so does their intersec-
tion, as well as the image of that intersection under a group morphism f.

An advanced use of canonical structures is found in the definition of the
mxdirect predicate, which states that its argument is a finite sum

∑n

i=1 Ei of

10 Gonthier et al.

vector spaces (Ei)i∈[1...n] that is moreover direct. What makes the mxdirect

predicate unusual is that it is computed from the syntax of its argument, by
comparing the rank r(

∑n

i=1 Ei) of the vector space defined by the whole expres-
sion with the sum

∑n

i=1 r(Ei) of the ranks of its components. If the two numbers
are equal, the sum is direct. The canonical structure mechanism is programmed
to recognize the syntax of an arbitrary sum of vector spaces, to collect the single
spaces, to sum up their ranks. The mxdirect predicate is then defined as the
comparison of the result with the rank of the whole initial expression [17].

The canonical structures inference mechanism essentially provides a Prolog
like resolution engine that is used throughout the libraries to write statements
that are more readable and easier to use. Programming this resolution engine
can be quite tricky, and a more technical explanation would go beyond the scope
of this paper [21].

4 Mathematical proofs in Coq

4.1 Symmetries

One commonly invokes a symmetry argument in a mathematical proof by assert-
ing that “without loss of generality” some extra assumption holds. For example,
to prove a statement P (x, y) in which x and y play symmetric roles, adding the
assumption x ≤ y does not change the resulting theorem. Whereas an ordinary
mathematical proof will leave it to the reader to infer the tacit argument, when
doing formal proofs, it is useful to have support to fill in the details [24].

The SSReflect proof language provides a simple but effective tool in that
regard: the wlog tactic [20]. This tactic performs a logical cut with a formula
constructed from the names of the context items involved in the symmetry ar-
gument and the statement of the extra property the symmetry will exploit, both
provided by the user. The logical cut generated by the proof shell involves the
selected piece of context and the ongoing, usually very large, goal. For instance,
when attempting to prove the statement (P a b), the command wlog H: a b /

a <= b, generates a first subgoal requiring a proof that (H : forall x y, x

<= y -> P x y) holds, and another one to prove (P a b) under the assumption
of H, which boils down to two applications of H if the statement (P a b) is ac-
tually symmetric in a and b. This simple tool has been instrumental at several
places of the formalization, especially in large proofs using character theory [36].

4.2 Cycles of inequalities

A standard pattern of reasoning seems to conclude out of blue that some assertion
holds, from a proof that a chain of nonstrict inequalities in which the first and last
terms are the same. The implicit content is a three-step proof: the circularity
of the chain forces each inequality to be an equality; for each inequality, the
equality case is characterized by a certain condition; hence the conjunction of
these conditions holds and the desired statement follows from these. Typical

A Machine-Checked Proof of the Odd Order Theorem 11

examples of such inequalities come from the properties of convex functions, e.g.,
the inequality between the arithmetic and geometric means is related to the strict
convexity of the exponential function. The equality conditions can, however, be
more elaborate; for example, the rank of a sum of finite dimensional vector spaces
is smaller than the sum of the ranks of the summed vector spaces and equality
holds if and only if the sum is direct.

In order to formalize this kind of proof efficiently, the SSReflect library
uses notation to pair an inequality with the condition under which equality holds.
For example, consider the following lemma:

Lemma nat_Cauchy m n : 2 * (m * n)<= m ^ 2 + n ^ 2 ?= iff (m == n)

This hides the conjunction of the following statements:
2 * (m * n) <= m ^ 2 + n ^ 2

(2 * (m * n) == m ^ 2 + n ^ 2) = (m == n)

The second statement is an equality reflecting the equivalence of the two boolean
statements. Because the rewrite tactic can take multi-rules as arguments [20],
rewriting with nat_Cauchy can affect several kinds of comparisons. The library
provides support for using these statements, including the transitivity lemma
collecting the equality conditions that is instrumental in capturing the pattern
of reasoning described above. This technique has been a key ingredient in the
formalization of advanced results3 using character theory [36].

4.3 Proof search by large-scale reflection

Most of the proofs we worked from were not amenable to automation. A notable
exception is found in Section 3 of the second volume of the proof [36], which
deals with an indexed family of virtual characters (βij). These are defined to
be integer linear combinations βij =

∑
k zk χk of irreducible characters, where

the collection of irreducible characters (χk) form a family of class functions that
is orthonormal for the inner product 〈·, ·〉. The array of virtual characters in
question satisfies certain combinatorial constraints:

– For each i, 〈βij , βij〉 = 3.
– For any two distinct elements on the same row or the same column (i = i′

or j = j′ but not both), 〈βij , βi′j′〉 = 1.
– Any two elements on distinct rows and columns (i 6= i′ and j 6= j′) are

orthogonal, that is, 〈βij , βi′j′〉 = 0.

These conditions impose tight constraints on the βij ’s.
A two-page combinatorial argument [36] shows that if there are at least four

rows and two columns, then elements of the same column have a common irre-
ducible character, and the respective coefficients are equal. We initially formal-
ized this argument by hand. Later, Pascal Fontaine (one of the developers of
the SMT solver veriT), provided us with an encoding4 that made it possible

3
See, for instance, http://coqfinitgroup.gforge.inria.fr/doc/PFsection9.html.

4
The SmtLib file is available at http://coqfinitgroup.gforge.inria.fr/smt/th3_5.smt.

http://coqfinitgroup.gforge.inria.fr/doc/PFsection9.html
http://coqfinitgroup.gforge.inria.fr/smt/th3_5.smt

12 Gonthier et al.

to automate the proof using a trusted connection between Coq and an SMT
solver [2]. In order to have an automated version of the proof within the Coq

system, we ultimately encoded the proof search directly, taking advantage of the
symmetry of the problem. This was done using large-scale reflection, supported
by notation-based reification. This automated version is shorter than our ini-
tial version, compiles twice as fast, and is intellectually more satisfying, as it
eliminates unnecessary steps from the original proof [36].

4.4 Classical reasoning

The instances of the mathematical structures of our hierarchy (see Section 3.4)
are required to have boolean operators for the comparison and, possibly, the
ordering of their inhabitants. We provide instances for all these structures, and
all the instances needed for this formalization are in fact either finite types or
countable types. We therefore benefit from other classical properties otherwise
not available in the constructive logic of Coq. Indeed, countable types satisfy the
functional choice axiom for boolean predicates (Markov’s principle); functions on
finite types can be represented by their graphs, which are extensional: the graphs
of any two functions that are pointwise equal are in fact equal [18].

Boolean reflection extends to any first-order theory that has a decision pro-
cedure. In particular, the algebraic hierarchy mentioned in Section 3.4 has an
interface for fields with a decidable first-order theory. The specification of this
property uses a deep embedding of first-order formulas together with a boolean
satisfiability predicate. Finite fields are of course instances of this interface, as
are algebraically closed fields, which enjoy quantifier elimination [38, 10]. Decid-
able fields are used in the formalization of representation theory, both in dealing
with modular representations, which are based on finite fields, and complex rep-
resentations, which are based on algebraic complex numbers.

In other cases first-order decidability fails, notably for the rationals and for
number fields. As a result, we elected not to rely on this interface for some basic
results in the theory of group modules that cannot be proved constructively.
Instead, we proved their double negation, expressed using the classically

monadic operator [17, 35]:

Definition classically (P : Prop) : Prop :=

forall b : bool, (P -> b) -> b.

Note the implicit use in this statement of the coercion mentioned in Section 3.2.
The statement (classically P) is logically equivalent to (~~ P), but this for-
mulation is more useful in practice, because when using a hypothesis of the form
(classically P) in the proof of a statement expressed as a boolean (on which
excluded middle holds), one can constructively assume that P itself holds.

The classically operator is used only in the file formalizing the theory of
group modules for representations. Note that although we use the classically
operator to weaken the statement of some theorems we formalized, we did
not need to alter the statement of Odd Order Theorem to describe its proof
completely within the calculus of inductive constructions.

A Machine-Checked Proof of the Odd Order Theorem 13

5 Mathematical theories

5.1 Representations and characters

Our treatment of linear algebra is organized in two levels. On the abstract level,
a hierarchy of structures (see Section 3.4) provides interfaces, notations and
shared theories for vectors, F -algebras and their morphisms. On the concrete
level, these structures are instantiated by particular models, centered on matri-
ces [17]. The central ingredient to this latter formalization is an extended Gaus-
sian elimination procedure similar to LUP decomposition. This formalization of
matrix algebra itself contains proofs of nontrivial results, covering determinants,
Laplace expansion for cofactors, and properties of direct sums.

The choices we have made are validated by the successful formalization of
representation theory, which depends on both finite group theory and linear
algebra. Thanks to the underlying formalization of linear algebra in terms of
concrete matrices, it is fairly easy to define the representations of a given group
G in terms of square matrices with coefficients in a given field F , as well as other
important notions, like the enveloping algebra of a representation, or a group
module. Part of the theory of group modules requires the extra assumption
that F has a decidable first-order theory. The library includes formal proofs
of the fundamental results of representation theory, including Schur’s lemma,
Maschke’s theorem, the Jacobson density theorem, the Jordan-Hölder theorem,
Clifford’s theorem, the Wedderburn structure theorem for semisimple rings, etc.

The next step is the finite group character theory, the main prerequisite
for the second part of the proof [36]. Characters are defined as class functions
with complex values, equipped with their standard convolution product. We first
define the tuple of class functions on a given group G that are irreducible char-
acters of G; then characters are class functions that are linear combinations of
irreducible characters with natural number coordinates. Finally, we define vir-
tual characters: class functions that are integer linear combinations of a given
list of class functions. All these definitions are constructive, thanks to the finite-
ness of the group, the decidability of the first order theory of the coefficient field
(Section 4.4) (here the complex algebraic numbers) and the Smith normal form
for integer matrices. The formalization includes results like the theory of inertia
groups, Burnside’s paqb theorem, and Burnside’s vanishing theorem [28].

5.2 Complex algebraic numbers

Our formalization of the character theory used in the second volume of the
proof [36] is parametrized by a decidable field of complex numbers. In order
to provide a concrete instance of this interface, we formalized a construction of
the algebraic numbers. Standard presentations of character theory use arbitrary
complex numbers, but as characters can only take algebraic values, the restriction
is innocuous.

The algebraics can be described as an algebraic closure of the rationals
equipped with an involutive conjugation automorphism z 7→ z̄. The latter yields
both a norm (|z| = tt̄ for some t2 = z) and a partial order (x ≤ y if |y−x| = y−x)

14 Gonthier et al.

whose restriction to the real (conjugation-invariant) algebraics is total; that is,
an implementation of our “numeric field” interface (Section 3.4).

We first obtained the algebraics as the complex extension R[i] of the real
closed field of real algebraic numbers R which we had constructed explicitly [9];
we adapted an elementary proof of the Fundamental Theorem of Algebra (FTA)
based on matrix algebra [13] to show that R[i] is algebraically closed.

We then refactored that construction to eliminate the use of the real alge-
braics. We construct the algebraics directly as a countable algebraic closure,
then construct conjugation by selecting a maximal real subfield. Because we are
within a closure we can use Galois theory and adapt the usual proof of the FTA
to show that conjugation is total.

5.3 Galois theory

Galois theory establishes a link between field extensions and groups of auto-
morphisms. A field extension is built by extending a base field with roots of
polynomials that are irreducible on this base field. The vector space structure of
such an extension plays an important role. The remarks and methods described
in Section 3.3 apply in this situation: instead of assigning a type to each new
extension, field extensions are formalized as intermediate fields between a fixed
base field F and a fixed ambient splitting field extension L. A splitting field
extension of F is a field extension of F generated by an explicit finite list of all
the roots of a given polynomial.

All the constructions of this formalized Galois theory hence apply to exten-
sions of a field F that are subfields of a field L. If K and E are intermediate
extensions between F and L, the Galois group type (see Section 3.3) of E is
the type of automorphisms of E. Then the Galois group Gal(E/K) of a field
extension E/K is the set of automorphisms of the Galois group type that fix K.
Partiality issues are dealt with in a manner similar to their treatment in finite
group theory (see Section 3.3): the definitions take as arguments subspaces of
the ambient field, but the theory is available for those vector spaces that are
fields, a fact that can generally be inferred via a canonical structure. For exam-
ple, Gal(E/K) is a set when E and K are vector spaces, but is equipped with a
group structure as soon as E is a field.

It is interesting to note that standard Galois theory is usually carried out
on normal extensions rather than on splitting fields. While the two notions are
constructively equivalent, splitting fields are much easier to construct in practice.

6 Conclusion

The success of the present formalization relies on a heavy use of the inductive
types [12] provided by Coq and on various flavors of reflection techniques. A
crucial ingredient was the transfer of the methodology of “generic programming”
to formal proofs, using the type inference mechanisms of the Coq system.

Our development includes more than 150,000 lines of proof scripts, includ-
ing roughly 4,000 definitions and 13,000 theorems. The roughly 250 pages of

A Machine-Checked Proof of the Odd Order Theorem 15

mathematics in our two main sources [6, 36] translate to about 40,000 lines of
formal proof, which amounts to 4-5 lines of SSReflect code per line of informal
text. During the formalization, we had to correct or rephrase a few arguments
in the texts we were following, but the most time-consuming part of the project
involved getting the base and intermediate libraries right. This required system-
atic consolidation phases performed after the production of new material. The
corpus of mathematical theories preliminary to the actual proof of the Odd Or-
der theorem represents the main reusable part of this work, and contributes to
almost 80 percent of the total length. Of course, the success of such a large for-
malization, involving several people at different locations, required a very strict
discipline, with uniform naming conventions, synchronization of parallel devel-
opments, refactoring, and benchmarking for synchronization with Coq.

As we have tried to make clear in this paper, when it comes to formalizing this
amount of mathematics, there is no silver bullet. But the combined success of the
many techniques we have developed shows that we are now ready for theorem
proving in the large. The outcome is not only a proof of the Odd Order Theorem,
but also, more importantly, a substantial library of mathematical components,
and a tried and tested methodology that will support future formalization efforts.

Acknowledgments. The authors would like to thank the Coq team for their con-
tinuous development, improvement and maintenance of theCoq proof assistant.

References

[1] K. Appel and W. Haken. Every map is four colourable. Bulletin of the American

Mathematial Society, 82:711–712, 1976.
[2] M. Armand et al. A Modular Integration of SAT/SMT Solvers to Coq through

Proof Witnesses. In CPP, volume 7086 of LNCS, pages 135–150, 2011.
[3] M. Aschbacher. Finite Group Theory. Cambridge Studies in Advanced Mathe-

matics. Cambridge University Press, 2000.
[4] J. Avigad. Type inference in mathematics. Bulletin of the European Association

for Theoretical Computer Science. EATCS, (106):78–98, 2012.
[5] J. Avigad and J. Harrison. Formally verified mathematics. To appear in the

Communications of the ACM.
[6] H. Bender and G. Glauberman. Local analysis for the Odd Order Theorem. Num-

ber 188 in London Mathematical Society, LNS. Cambridge University Press, 1994.
[7] Y. Bertot and P. Castéran. Interactive theorem proving and program development:

Coq’Art: The calculus of inductive constructions. Springer-Verlag, Berlin, 2004.
[8] Y. Bertot, G. Gonthier, S. Ould Biha, and I. Pasca. Canonical big operators. In

TPHOLs, volume 5170 of LNCS, pages 86–101, 2008.
[9] C. Cohen. Construction of real algebraic numbers in coq. In ITP, volume 7406 of

LNCS, pages 67–82, 2012.
[10] C. Cohen and A. Mahboubi. A formal quantifier elimination for algebraically

closed fields. In CICM, volume 6167 of LNCS, pages 189–203, June 2010.
[11] T. Coquand and G. Huet. The calculus of constructions. Information and Com-

putation, 76(2-3):95–120, 1988.
[12] T. Coquand and C. Paulin-Mohring. Inductively defined types. In Colog’88,

volume 417 of LNCS. Springer-Verlag, 1990.

16 Gonthier et al.

[13] H. Derksen. The fundamental theorem of algebra and linear algebra. American

Mathematical Monthly, 100(7):620–623, 2003.
[14] W. Feit and J. G. Thompson. Solvability of groups of odd order. Pacific Journal

of Mathematics, 13(3):775–1029, 1963.
[15] F. Garillot, G. Gonthier, A. Mahboubi, and L. Rideau. Packaging mathematical

structures. In TPHOLs, volume 5674 of LNCS, pages 327–342. Springer, 2009.
[16] G. Gonthier. Formal proof—the Four Color Theorem. Notices of the AMS,

55(11):1382–1393, 2008.
[17] G. Gonthier. Point-free, set-free concrete linear algebra. In ITP, volume 6898 of

LNCS, pages 103–118. Springer, 2011.
[18] G. Gonthier and A. Mahboubi. An introduction to small scale reflection in Coq.

Journal of Formalized Reasoning, 3(2):95–152, 2010.
[19] G. Gonthier, A. Mahboubi, L. Rideau, E. Tassi, and L. Théry. A Modular For-

malisation of Finite Group Theory. In TPHOLs, pages 86–101, 2007.
[20] G. Gonthier, A. Mahboubi, and E. Tassi. A Small Scale Reflection Extension for

the Coq system. Rapport de recherche RR-6455, INRIA, 2012.
[21] G. Gonthier, B. Ziliani, A. Nanevski, and D. Dreyer. How to make ad hoc proof

automation less ad hoc. In ICFP, pages 163–175, 2011.
[22] D. Gorenstein. Finite Groups. AMS Chelsea Publishing Series. 2007.
[23] T. Hales. Formal proof. Notices of the AMS, 55(11):1370–1380, 2008.
[24] J. Harrison. Without Loss of Generality. In TPHOLs, volume 5674 of LNCS,

pages 43–59, 2009.
[25] M. Hedberg. A coherence theorem for Martin-Löf’s type theory. Journal of

Functional Programming, 8(4):413–436, July 1998.
[26] R. Hinze. Fun with phantom types. In J. Gibbons and O. de Moor, editors, The

Fun of Programming, Cornerstones of Computing, pages 245–262, 2003.
[27] B. Huppert and N. Blackburn. Finite Groups II. Grundlehren Der Mathematis-

chen Wissenschaften. Springer London, Limited, 1982.
[28] I. Isaacs. Character Theory of Finite Groups. AMS Chelsea Pub. Series. 1976.
[29] G. Klein et al. sel4: formal verification of an os kernel. In SOPS ACM SIGOPS,

pages 207–220, 2009.
[30] K. Konrad. Separability II.

http://www.math.uconn.edu/~kconrad/blurbs/galoistheory/separable2.pdf.
[31] H. Kurzweil and B. Stellmacher. The Theory of Finite Groups: An Introduction.

Universitext Series. Springer, 2010.
[32] X. Leroy. Formal certification of a compiler back-end, or: programming a compiler

with a proof assistant. In POPL, pages 42–54. ACM Press, 2006.
[33] R. Mines, F. Richman, and W. Ruitenburg. A course in constructive algebra.

Universitext (1979). Springer-Verlag, 1988.
[34] P. M. Neumann, A. J. S. Mann, and J. C. Tompson. The collected papers of

William Burnside, volume I. Oxford University Press, 2004.
[35] R. O’Connor. Classical mathematics for a constructive world. Mathematical Struc-

tures in Computer Science, 21:861–882, 2011.
[36] T. Peterfalvi. Character Theory for the Odd Order Theorem. Number 272 in

London Mathematical Society, LNS. Cambridge University Press, 2000.
[37] J. Rotman. Galois Theory. Universitext (1979). Springer, 1998.
[38] A. Tarski. A Decision Method for Elementary Algebra and Geometry, 1948. 2nd

edition Berkeley, CA: University of California Press, 1951.
[39] The Mathematical Component Team. A Formalization of the Odd

Order Theorem using the Coq proof assistant, September 2012.
http://www.msr-inria.inria.fr/Projects/math-components/feit-thompson.

http://www.math.uconn.edu/~kconrad/blurbs/galoistheory/separable2.pdf
http://www.msr-inria.inria.fr/Projects/math-components/feit-thompson

	A Machine-Checked Proof of the Odd Order Theorem

