N

N

Scalable high-dimensional indexing with Hadoop
Denis Shestakov, Diana Moise, Gylfi Thor Gudmundsson, Laurent Amsaleg

» To cite this version:

Denis Shestakov, Diana Moise, Gylfi Thér Gudmundsson, Laurent Amsaleg. Scalable high-dimensional
indexing with Hadoop. CBMI—International Workshop on Content-Based Multimedia Indexing, 2013,
Veszprém, Hungary. hal-00817378

HAL Id: hal-00817378
https://inria.hal.science/hal-00817378

Submitted on 24 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/hal-00817378
https://hal.archives-ouvertes.fr

Scalable high-dimensional indexing with Hadoop

Denis Shestakov* Diana Moise
INRIA Rennes, France
Aalto University, Finland

Denis.Shestakov @ {inria.fr,aalto.fi}

Diana.Moise @inria.fr

Abstract—While high-dimensional search-by-similarity tech-
niques reached their maturity and in overall provide good
performance, most of them are unable to cope with very large
multimedia collections. The ’big data’ challenge however has to
be addressed as multimedia collections have been explosively
growing and will grow even faster than ever within the next
few years. Luckily, computational processing power has become
more available to researchers due to easier access to distributed
grid infrastructures. In this paper, we show how high-dimensional
indexing methods can be used on scientific grid environments and
present a scalable workflow for indexing and searching over 30
billion SIFT descriptors using a cluster running Hadoop. Our
findings could help other researchers and practitioners to cope
with huge multimedia collections.

I. INTRODUCTION

The last decade witnessed unprecedented progresses in
the soundness and the quality of high-dimensional search-by-
similarity techniques [1], [2], [3]. Research literature contains
many elegant contributions overall spanning a quite large
spectrum of multimedia applications dealing with still images,
videos, audio, sometimes considering multimodality. Further-
more, the maturity of these techniques now allows startups and
major software companies to build multimedia search engines
that are profitable, money wise. Good performance is here
today: systems are fast and provide reasonable precision/recall.

In parallel, the scale of multimedia collections has
grown faster than ever. Nowadays photo/video-enabled cellular
phones, Web2.0 and UGC as well as the entire social networks
sphere are massive producers of multimedia contents, 24*7, all
over the planet.

Having high-dimensional indexing schemes coping with
this exponential growth of multimedia collections while pre-
serving their good performance requires researchers to turn
their interests to distributed computing platforms. Clusters of
computers, a.k.a. grids, are good candidates for addressing this
challenge. Benefiting from great processing power is com-
pulsory since enormous collections of raw high-dimensional
descriptors must be finely analysed at index creation time.
At search time, great processing power is needed to provide
throughput.

Dealing with distributed and parallel programming has
always been complicated, mainly because synchronisation,
scheduling, load balancing and fault tolerance are hard to
achieve. Several frameworks, however, have been proposed to

* — This work, funded by INRIA, was done at INRIA research labs in
Rennes while the author was on leave from the Aalto University.

INRIA Rennes, France

Gylfi Gudmundsson
INRIA Rennes, France
Gylfi.Gudmundsson @inria.fr

Laurent Amsaleg
IRISA-CNRS, France
Laurent. Amsaleg @irisa.fr

ease this programing, such as Dryad [4], GraphLab [5] or Map-
Reduce [6]. These frameworks (almost completely) transpar-
ently handle these complicated issues, leaving programmers
to solely focus on their tasks, not on the plumbing required
by distribution. Yet, frameworks facilitating the programming
of distributed and parallel tasks impose on programmers very
strict constraints sometimes conflicting with the properties
of their applications. For example, Map-Reduce imposes a
flow of data that makes iteration-based or graph-based search
algorithms hard to implement.

It is therefore not trivial to port any of the state of
the art high-dimensional indexing techniques to a distributed
environment. It often requires to change the design of the
indexing algorithm itself to fit in the mold as well as to
finely understand and then tune the many parameters of the
framework facilitating distribution. This paper precisely dis-
cusses these issues, specifically focusing on the Map-Reduce
programming model used together with the Hadoop runtime
environment. The first contribution is the presentation of a
scalable workflow for high-dimensional indexing and search-
ing on a cluster running Hadoop. The second contribution is a
large body of experiments allowing us to discuss the effects of
various parameter settings on the performance of the algorithm.
The lessons drawn from this work should jump-start other
researchers working in that direction.

The paper is structured as follows. Section II gives an
overview of Map-Reduce-based high-dimensional indexing
scheme we designed and implemented for the Hadoop runtime
environment. Section III details the problems we encoun-
tered when implementing and testing the indexing/searching
workflow in our local grid environment. Performance results
and lessons drawn are described in Section IV. Section V
concludes.

II. INDEXING & SEARCHING WORKFLOW ON HADOOP

This section gives a short overview of the scalable, Map-
Reduce oriented, high-dimensional indexing scheme we are
using in this work. More details on this algorithm can be found
in [7]. The indexing algorithm uses at its core a hierarchical
unstructured quantization scheme, quite similar to the approach
proposed by Nister and Stewenius [8]. In a nutshell, high-
dimensional descriptors are clustered around randomly picked
representative points that are hierarchically organized.

Creating the index is a multi-step process that starts with
preparing the high-dimensional descriptors dataset for being
used with the Hadoop framework and finishes with storing the
final clusters in the distributed file system. The steps are:

1) Preparing the dataset for Hadoop compatibility: For
best performance, the collection of high-dimensional descrip-
tors must be turned into Hadoop Sequence Files, which is a
specific file type for binary data. Each raw descriptor becomes
a sequence file record. A record in this file has a key (an
image identifier), and a value (a high-dimensional descriptor).
Hadoop scatters across many machines the blocks of the
sequence file in its distributed file system, HDFS [9].

2) Creation of the indexing dictionary: The indexing starts
by randomly picking from the descriptor collection C' points
that create the representatives of the visual vocabulary dictio-
nary eventually created. These representatives are organized in
a hierarchy of L levels for efficiency. This creates the index
tree for indexing. This tree is saved in a file in HDFS.

3) Distributed index creation: Creating an index from a
very large collection of descriptors is a very costly process.
This can take days or weeks when the descriptor collection
is terabyte-sized. Distributing and parallelizing index creation
on a grid is key for performance. We proceed as follows. A
specific node of the grid, the job-tracker, launches on each
machine participating to the index creation a series of Map-
tasks. Each such task receives at startup time (i) a block of
data from the previously created sequence file and (ii) the
file containing the index tree. One task can thus assign the
descriptors in its data block to the correct representative using
the tree. The resulting assignments are sent to Reduce-tasks
that write to disks high-dimensional descriptors grouped by
cluster identifier. This eventually creates one or more index
files which contain clustered high-dimensional descriptors. The
number of such files depends on the number of Reduce-tasks
ran, see [7].

Searching the index is also a multi-step process. This
process is geared toward throughput as it processes very
efficiently large batches of queries, typically 10*~107 query
descriptors. The steps for running a batch search are:

1) Creation of a lookup table: All query descriptors of a
batch are first reordered according to their closest representa-
tive, which is known from traversing the index tree. A lookup
table is then created, allowing to easily know which query
descriptors have to be used in distance calculations when a
cluster identifier is given. This lookup table is saved in an
HDFS file.

2) Distributed searching: At search time, the job-tracker
launches on machines Map-tasks for searching. Each such
task receives (i) a block of data from one of the previously
created index files, (ii) the file containing the lookup table.
One task will use the cluster identifiers stored in the received
block of data to lookup the query batch in order to identify the
query descriptors having identical cluster identifiers. For those,
distance calculations are performed, updating k-nn tables. k-
nn results are eventually emitted, then aggregated to create the
final result for the query batch.

Several comments are in order. First, the indexing and
searching schemes briefly sketched above does approximate
k-nn searches, trading result quality against dramatic response
time improvements. Second, the schemes use quite a lot of
auxiliary data, both during the creation of the index (this
is the index tree) and during the search phase (this is the
lookup table). Particularly, the index tree has to be loaded

when processing each block of (not yet indexed) descriptors
at assignment time, and the lookup table has to be loaded
when processing each block of (clustered) descriptors at search
time. As it will be detailed in the experimental section, this
potentially puts some overhead on the computations since
auxiliary data are large compared to the size of a block of
data. Repeatedly loading large auxiliary data for every single
(in comparison small) data block is costly. The performance
evaluation section also shows the impact of the block size on
performance.

III. 'WORKING WITH GRID’5000

For implementing the indexing/searching scheme sketched
above we have been using computers belonging to the
Grid’5000 project [10]. The Grid’5000 project is a widely-
distributed infrastructure devoted to providing an experimental
platform for the research community. The platform includ-
ing twenty physically distinct clusters for a total of about
7000 CPU cores is spread over ten geographical sites located
through the French territory and one in Luxembourg. To
support experimental diversity, while allowing users to adapt
the environment to their needs, Grid’5000 provides a deep
reconfiguration mechanism that enables users to deploy, install,
boot, run and finely monitor their customized software.

To execute the indexing/searching jobs, we developed a
process that automatically deploys and configures the Hadoop
(version 1.0.1) environment, transfers input data to HDFS
and finally runs the indexing/searching jobs. Although this
automated process is necessary to facilitate experimentation
on Grid’5000, it is not sufficient to overcome the challenges
of running at large scale, platform and data wise. While our
experiences pertain to the Grid’5000, the challenges we have
encountered are also relevant to grid environments in general.
We typically faced the three following problems:

1) Heterogeneity of resources: Resource heterogeneity in
a grid becomes a significant limitation when setting up the
Hadoop environment. Since Hadoop settings can only be
specified globally and not in a per-node manner, the Hadoop
deployment is configured according to the least equipped node,
at the expense of wasting resources on more out-fitted nodes.
To be specific, heterogeneity of resources across clusters on the
grid influences the number of map/reduce slots per tasktracker,
and the amount of RAM memory allocated to each task; these
parameters have to be set to the lowest available values.

2) Node failures: Node failures represent the daily norm
in grid environments. Even though Hadoop is designed to
cope with failures in a transparent manner, machine deaths
can severely impact the whole deployment. On Grid’5000, we
experienced from one to five node failures during a 60 hours
run, some failures requiring a complete re-deployment to
exclude the failed nodes. The worst failure outcome is losing
the data on the machine. To avoid this, we used a replication
data factor of 2 or 3. However, this is not always possible for
very large datasets; factors such as storage, replication time,
add up to substantial costs.

3) Deployment overhead: The deployment overhead for
each experiment is substantial when running at large scales.
Since the grid is a shared tool, it operates using reservations
that allow users to employ resources for a certain time slot.

#Cores Local
Cluster | #Nodes #CPU @Freq /CPU RAM Disk
Cly 64 2 Intel@2.50GHz 4 | 32GB 138GB
Cly 25 2 Intel@2.93GHz 4 | 24GB | 433GB
Cl3 40 2 AMD@1.70GHz 12 | 48GB | 232GB
TABLE 1. CLUSTER CONFIGURATIONS.
Environment deployment 10 min
Hadoop deployment 5 min
Data transfer to HDFS 90 min
Index creation 170 min
HDFS optimal chunk placement 30 min
Lookup table creation 3 min
Searching 5 min
Retrieving search results 5 min
TABLE II. TIME MEASUREMENTS FOR WORKFLOW STEPS.

After the reservation expires, all deployment data and setup are
deleted. Consequently, creating the experimental environment,
setting up the Hadoop cluster and making the data available
in HDFS have to be repeated for every experiment.

IV. EXPERIMENTAL RESULTS

To evaluate the performance of the workflow presented
in this paper, we ran a large series of experiments on the
Grid’5000 testbed. We employed nodes belonging to the
Rennes site, spanning three clusters described in Table I.
Setting up a Hadoop cluster consisted of deploying each
centralized entity (namenode and jobtracker) on a dedicated
machine and co-deploying datanodes and tasktrackers on the
rest of the nodes; typically, we used a separate machine as a
Hadoop client to manage job submissions. In next two sections
we describe our data collection and provide time observed for
workflow operations on the grid. We then proceed to presenting
performance results of indexing and searching.

A. Dataset description

In our experiments we used the dataset provided by one
of our partners in the Quaero project, http://quaero.org/. The
dataset consists of around 30 billion SIFT descriptors extracted
from 100 million images (resized to only 150 pixels on their
largest side) harvested on the Web. This amounts to four
terabytes of data. To facilitate experiments, we use not only
this entire collection, but also a subset of it containing 20M
images, i.e., 7.8 billion descriptors or about one terabyte on
disks. To best of our knowledge, these datasets are among the
largest collections presented to the image retrieval community.

For evaluation of the indexing quality, we used the above
mentioned data collection as a distracting dataset into which
the INRIA Copydays evaluation set had been drawn [11].
Of course, images were resized as distractors were. We con-
sidered a copyright violation detection scenario, where we
included 127 original images in the indexed database and
queried it for 3055 associated generated variants (crop+scale,
scale change+jpeg compression and manually generated strong
distortions such as print-crumple-scan). We then count how
frequently the original images are returned as the top result. We
additionaly randomly picked a large number of images from
the collection and created 49 Stirmark-based variants for each
image. Overall, this series of queries added to the Copydays
ones makes it possible to increase the load at query time by
submitting large query batches. In this paper, we typically
use one query batch solely made of the Copydays queries

Nodes Default Hadoop(min) Tuned Hadoop(min)
50 202 174.7
106 95 69
TABLE III. INDEXING TIME.
Parameter Default value | Tuned value
#Map slots/tasktracker 2 8
#Reduce slots/tasktracker 2 8
Input data replication 3 3
Output data replication 3 1
Chunk size 64 MB 512 MB
JVM reuse off on
Map output compression off on
Reduce parallel copies 5 50
Sort factor 10 100
Sort buffer 100 MB 200 MB
Datanode max. receivers 256 4096
Namenode handlers 10 40
TABLE IV. HADOOP CONFIGURATION TUNING.

and another query batch that includes Copydays but contains
overall 12,000 images.

B. Time evaluations for workflow operations on Grid’5000

A typical experiment involving indexing and searching
1 TB of data on 50 Grid’5000 nodes requires a time frame
of 5-6 hours. To better analyze this time-consuming process,
we divide it into several steps and we provide the amount of
time allocated to each step, see Table II.

The first step of the workflow accounts for deploying and
configuring the execution environment: creating an isolated
environment on Grid’5000, starting Hadoop processes, launch-
ing monitoring tools to collect information about the platform
usage and job statistical data. As Table II shows, a substantial
amount of time is spent on copying the data from local storage
to HDFS. Note that the data is replicated 3 times to favor local
execution of map tasks. The index creation process produces
indexed data stored in HDFS with a replication factor of 1. In
order to allow the searching step to benefit from data locality,
we perform an additional step to increase the replication factor
to 2 and also to change the chunk size, if needed. After
searching completes, the results are collected, together with
statistical information.

C. Index creation

In a first set of experiments, we focused on determining
the configuration settings that best suit our workload. Given
the scale of our experiments, we also investigated the tuning of
Hadoop configuration parameters to improve the performance.
This first round of tests was carried out on the 20 million
images dataset. Table III provides the indexing time using the
default Hadoop configuration as well as the tuned one. For
both runs, the number of map slots per task is set to 8 and the
HDEFS chunk size is set to 512MB.

The results in Table III show that setting the right parame-
ters for the Hadoop framework reduces execution time with by
27 minutes. Tuning the parameters of the Hadoop framework
is a rather complex task that requires good knowledge and
understanding of both the workload and the framework itself.
In Table IV we provide a list of values that improved per-
formance of the indexing process. To start with, compression
of map output data led to reducing the amount of shuffled
data by 30% (from 1 TB to 740 GB) which resulted in

Cro JPEG compression
1009 |- 10 15 20 30 4050 60 70 0 0;5775)3712542930 50 75 L100%
90% |- ‘ 1
’ f | All Variants
80% - | |\
70% - .
60% - \ 4
| \
50% |- | \ |
40% |- \ \ 4
30% - ‘ 4
o \ | ,Qéo
20% |- Y &
\ SN
10% - <
0% 0%
20M — 100M

Fig. 1. Search Quality, Copydays evaluation set.

significantly reduced network traffic. Another factor with a
significant impact on performance is the HDFS chunk size.
However, since the indexing process is highly CPU-intensive,
adjusting this parameter did not impact the execution time.
Other low-level parameters refer to the shuffling phase, when
the data is sorted on the mapper’s side, copied to the reducer
and then merged and sorted on the reducer node. The last
two lines of Table IV show options configured on the HDFS
nodes: the maximum number of chunk requests (read/write)
each namenode can simultaneously handle, and the number of
connections the namenode can serve at a time. A configuration
parameter not included in the table, refers to rack-awareness.
This parameter enables Hadoop to map its deployment to the
network topology; this mapping is used in replica placement
and task scheduling. For our experiments, we did not configure
racks, since the nodes we employed are all connected to the
same switch.

Given the performance gains obtained, tuning the pa-
rameters listed in Table IV is worth-while; nevertheless, the
values delivering best performance are highly dependent on
the workload, and thus, tweaking them in order to discover
the best values is advisable.

In the second phase, we index the whole 4 TB dataset,
using the configuration settings previously discovered. Because
of RAM limitations, we decreased the number of map slots to
four and reduce slots to two. With this settings, the indexing
on 100 nodes took 8 hours 27 minutes to complete.

D. Searching

We divided our grid experiments on searching the data
collection with batches of query images into five parts. First,
we evaluated the quality of search results by searching the
query batch across the full dataset (100M images, 4TB size)
and 20% of it (20M, 1TB size). We then evaluated the
performance of search on 20M dataset. Our specific goals were
to test the search performance depending on the number of
nodes available (i.e., batch search scalability) and to analyze
the batch search execution. Next we experimented with the
best parameters for storing the indexed collection on the
grid (particularly, influence of HDFS block size on search
performance). Finally, we evaluated the throughput of our
batch search.

1) Exp #1: Quality Measurement: The first experiment
we show here reports quality measurements results proving
the indexing technique returns high-quality results. To this

Time, sec

3800 +—— ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢
3600 \ [—o— Copydays batch, 512M HDFS blocks
3400 \ l——-—— 12k batch, 512MB HDFS blocks
3200 \
3000 v
2800 Y
2600 v
2400 \ Y
2200 \ ‘\
2000 \ -\
1800
1600 \ N
1400
1200 » =
1000 N 1\‘1\‘\‘
800 — ==~
600 .
400 o L3
200
° 10 20 30 40 50 60 70 80 90 100

nodes

Fig. 2. Batch search scalability for Copydays and 12k batches.

end, we used the Copydays dataset presented above drawn in
two distracting collections comprising 20M and 100M random
images from the Web.

Figure 1 shows the quality results of the search. This Figure
plots for every family of variants the percentage of original
images found at rank 1, for the two distracting collections.
It also plots the average percentage across all variants at the
far right end of the Figure. From the Figure, it is clear that
our indexing scheme returns high quality results, except for
some severely attacked images such as when 80% of the
image is cropped+rescaled to its original size or when strong
manual distortions are applied. It is interesting to observe
search quality does not significantly degrades when the size of
the distracting dataset increases. Overall, 82.68% of Copydays
variants are found when drowning them in 20M images, and
we find 82.16% of them when drown in 100M images. This is
a clear assessment that our indexing technique is very viable.

2) Exp #2: Scalability of batch search: We conducted
series of batch searches over 20M dataset (stored in HDFS
using 512MB blocks) on varying number of nodes, from 10
to 100 nodes. We used two different batches: with 3055 query
images (Copydays) and with around 12,000 images (12k). Due
to node/cluster availability at the time of experiments, only
nodes in reservations with 40 and 50 nodes were from the
same Grid’5000 cluster, C'l; (see Table I). While in 10-, 20-
and 30-machine reservations nodes belonged to clusters Cls
and Cl3, nodes of 75- and 100-node reservations were from
three Grid’5000 clusters. Particularly, some nodes in 10-, 20-,
30-, 75- and 100-machine reservations were expectedly under-
performing as the Hadoop had to be configured according
to the nodes with minimal RAM, number of cores, etc (see
Section III). The results are shown in Figure 2. In general, de-
spite node heterogeneity, the proposed searching scheme scales
well for both average-size and large-size batches: searching the
same 1TB collection took approximately 7.2 times faster on
100 nodes than it took on 10 nodes.

3) Exp #3: Understanding batch search execution: We con-
tinued with experiments to reveal how the Hadoop framework
executes the batch search job by obtaining basic information
(such as start time, finish time, duration, node name) on
every mapper.! We performed search for 12k batch over 20M

"Hadoop job history logs supporting Exp #3 and Exp #4 are available at
http://goo.gl/e06wWE.

Time, sec
500

400 ' 600 800 1000 1200 1400 1600 1800 2000 2200
map tasks sorted by start time

Fig. 3. Time progress of map tasks for searching 12k batch over 1TB (in
512MB blocks).

dataset stored in HDFS using 512MB block sizes on 100
nodes, each configured to run six map tasks simultaneously.
Figure 3 shows execution duration for every mapper, where all,
2260, map tasks are sorted by their starting times with their
durations depicted as vertical lines plotted on Y-axis based
on their absolute starting and finishing times. For convenience
of identifying map tasks outliers we added the line showing
average finishing times for mappers of the first and subsequent
waves. One can see that the Hadoop jobtracker took 2.8s
to start execution of the first *wave’ of mappers (where a
wave capacity is defined by Nyodes * Nmappers, 1.€., 600
map tasks per wave in this experiment). Overall this batch
search job had four waves of mappers, 3x600 mappers plus
the fourth wave with 460. However, only the first three are
easily recognizable in Figure 3. Since mappers run on nodes
with different performance (see Table I) and, on top of that,
the amount of computations performed varied for every map
task, there is a significant variance in map duration times which
eventually led to the degradation of mapper waves. In addition,
variations in node performance explain ’sub-waves’ (created by
mappers on the same cluster’s nodes), two of which are also
identifiable on the plot (see Figure for mappers at range 600-
750 and 1200-1400). For instance, performance of mappers at
600-750 is due to fast nodes (of the Clsy cluster, see Table I)
that finished processing some of their first six data blocks
earlier than others and hence were first to start running the
second wave of mappers. Spikes at around 300, 600, 1350-
1400 are of particular interest as these represent the longest
mappers in this search execution — they are caused by the
worst-performing nodes of Cl; that were processing blocks
with maximum distance calculations required. Comparing map
tasks in the first and the three subsequent waves reveals another
important aspect: all mappers of the first wave as being first
had to load the lookup table by reading it from the HDFS,
while the next waves’ mappers have this table cached in
the memory. In this way, we observe a substantial difference
among average duration of map tasks in the first and three
subsequent waves, namely 164s and 95s respectively.

For more careful analysis of this batch search, we plotted
overall number of mappers running from 375s to 478s in
Figure 4. As every node was configured to run six mappers at
most, the maximum number of map tasks cannot exceed 600.
Starting from 392s we observe stable decreasing in number
of running mappers from 600 to 1 as all map tasks had been

afl

]
375 385 395 405 415 425 435 445 455 465 4
Time, sec

Fig. 4. Number of running map tasks during searching 12k batch over 1TB
(in 512MB blocks) from 375s to 478s.

Time, sec
400
380
360 4
340+
3204
300 -
280
260 4
2404

200
180 4

120 4 <r- sub-wave

<~ subiwave

1200 1600 2000 2400 2800 3200 3600 4000 4400
map tasks sorted by start time

Fig. 5. Time progress of map tasks for searching Copydays batch over 1TB
(in 256MB blocks).

already assigned to nodes and thus a node that just finished a
map task had nothing to run next. The time range from 392s
and till finishing time of very last mapper, 478s, is the under-
performing period, i.e., within this time fast nodes became idle
first and stop to contribute to the overall search performance.

For better illustration of map wave concept we built another
plot (see Figure 5) showing map task execution duration for
Copydays batch search over 20M dataset (in 256MB blocks).
Similar to 12k-512MB-search workload four (out of six)
mapper waves are easily recognizable: in this workload there
are 800 mappers in first five waves and 417 mappers in the last
wave. The computational workload of every mapper, however,
significantly decreased as not only there are approximately two
times less points to be processed in each block due to two times
smaller block size, but also the number of query descriptors
in the batch became substantially smaller. Unlike 12k-512MB-
search workload, last mappers of Copydays-256M-search are
responsible for a delay in overall execution time: indeed, while
the slowest mapper of last wave (among marked mappers at
4200-4400 in Figure 5) started 5.3s seconds earlier than the
very last mapper, it finished the last, 34 seconds later than
expected on average.

4) Exp #4: Most profitable HDFS block size: We continued
with experiments on defining storage parameters, particularly,
what HDFS block size may lead to better search performance.
On the one hand, since processing of every HDFS block re-
quires a corresponding map task to load the entire lookup table,

Batch HDEFS block | # blocks | Search Map tasks duration, s
size, MB time, s

avg | min | max | median
Copydays 256 4417 413 59 15 111 57
12k 863 106 24 390 72
Copydays 512 2260 382 99 18 291 99
12k 521 113 30 258 114
Copydays 640 1832 406 125 21 213 132
12k 545 130 30 325 126
Copydays 1024 1186 398 174 21 337 192
12k 554 187 33 340 186

TABLE V. SEARCH FOR COPYDAYS AND 12K BATCHES OVER 1TB

WITH DIFFERENT HDFS BLOCK SIZES.

increasing HDFS block size and hence decreasing the number
of HDFS blocks should lead to faster searches. On the other
hand, increasing block sizes slows down mappers (as they need
to read more data and perform more distance calculations).
This, together with decreasing total number of mappers, can
result in non-optimal> map task assignments by the Hadoop
jobtracker. We make the deployment on 100 nodes and cloned
the 20M collection in HDFS using four different block sizes,
namely 256MB (recommended by Hadoop for large datasets),
512MB, 640MB, and 1024MB. We then searched through each
collection-clone with Copydays and 12k batches. The results
are summarized in Table V, where the third column indicates
the total number of blocks used for storing a collection-clone
on HDFS, and the fifth column contains average, extreme
(fastest and slowest) and median durations of map tasks.
Fastest mappers are those that processed smallest blocks® —
since our indexed dataset consisted of 200 files, around 200
blocks were smaller than the defined HDFS block size and
hence were processed significantly faster on average. Life-
span of the slowest mapper defines a lower bound for overall
search run time for a given HDFS block size — disregarding
the number of nodes available, for search completion one of
the nodes should run the slowest map task. In the worst case,
the slowest map task is started among the mappers of last wave
and severely delays the overall search time.

5) Exp #5: Batch search throughput: Finally we evaluated
the throughput of our batch search, i.e., average processing
time per image for different batch sizes. As a lookup table
is loaded entirely into memory by every mapper, a big batch
limits the number of mappers that can run in parallel, which,
when 7, 0ppers < 0.79 X Ncores, increases search times (and
hence decreases the throughput rate). At the same time, search
runs are dominated by I/Os and, thus, big lookup tables can
be preferable until a certain size when CPU work on distance
calculations surpass I/0s. We searched two batches, Copydays
and 12k, over 100M dataset on 87 nodes (of three clusters, see
Table I). Search times suggest that 12k batch provide a stable
throughput, around 210ms per image (more than 2 times better
than the observed throughput for Copydays search, 460ms per
image), for searching over 100 million images. The limitations
for throughput when processing the 100M dataset is linked
to the lowest amount of RAM available among all nodes.
As 18 (out of 87) nodes had only 24MB RAM, we had to set

’Ideally, the last wave of map tasks on all nodes should finish almost
simultaneously. Achieving this is easier for the job scheduler if lots of mappers
have short life-spans.

3The last block of a file in HDFS is of varying size and smaller than
the configured HDFS block size. For example, with HDFS block size set to
256MB, the size of a last block of 520MB file is 8MB.

the maximum number of mappers, namely, six for 12k batch,
based on these nodes. As a result, other nodes (with 32 and
48MB RAM), which could handle at least eight simultaneous
mappers rather than six, were under-performing and unable to
improve the throughput.

V. CONCLUSIONS

This paper presented a scalable workflow for high-
dimensional indexing and searching on a cluster running
Hadoop. Besides its scalability benefit, the proposed scheme
not only achieves good search quality but also allows to
search 100M image collection with a stable throughput of
around 210ms per image. We particularly focused on the issues
essential for porting a high-dimensional indexing technique to
a distributed grid platform. We described a wide collection of
experiments and the practical lessons we have drawn from our
experience with the Hadoop environment. Our specific recom-
mendation here is to tune Hadoop configuration parameters to a
specific workload as it is very beneficial performance-wise. In
addition, analyzing Hadoop job execution pinpoints the steps
for further improvement: e.g., we plan to avoid loading the
index tree for each mapper, by implementing multi-threaded
map tasks that can utilize the full processing power at lower
RAM usage. On the searching part, RAM usage can also be
improved by a partial loading of the lookup table. As future
work, we plan to conduct experiments with Hadoop deploy-
ments spanning multiple Grid’5000 sites. Although network
bottlenecks are inevitable, the extra computing power will
allow us to test scalability beyond 100 nodes.

ACKNOWLEDGEMENTS

This work was partly achieved as part of the Quaero
Project, funded by OSEO, French State agency for innovation.
The experiments presented in this paper were carried out us-
ing the Grid’5000/ALADDIN-G5K experimental testbed (see
http://www.grid5000.fr/ for details).

REFERENCES

[1] H. Jégou, M. Douze, and C. Schmid, “Product quantization for nearest
neighbor search,” IEEE Trans. on PAMI, 2011.

[2] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with
automatic algorithm configuration,” in VISAPP, 2009.

[3] A. Gionis, P. Indyk, and R. Motwani, “Similarity search in high
dimensions via hashing,” in VLDB, 1999.

[4] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
distributed data-parallel programs from sequential building blocks,”
SIGOPS Oper. Syst. Rev., vol. 41, no. 3, 2007.

[51 Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M.
Hellerstein, “Distributed GraphLab: a framework for machine learning
and data mining in the cloud,” Proc. VLDB Endow., vol. 5, no. 8§, 2012.

[6] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, 2008.

[71 D. Moise, D. Shestakov, G. Gudmundsson, and L. Amsaleg, “Indexing
and searching 100M images with Map-Reduce,” in ICMR, 2013.

[8] D. Nister and H. Stewenius, “Scalable recognition with a vocabulary
tree,” in CVPR, 2006.

[9] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop
distributed file system,” in MSST, 2010.

[10] R. Bolze, F. Cappello, E. Caron et al., “Grid’5000: A large scale and
highly reconfigurable experimental grid testbed,” Int. J. HPC Appl.,
vol. 20, no. 4, 2006.

[11] H. Jégou, M. Douze, and C. Schmid, “Hamming embedding and weak
geometric consistency for large scale image search,” in ECCV, 2008.

