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Abstract: Experimental techniques in biology such as microfluidic devices and time-lapse
microscopy allow tracking of the gene expression in single cells over time. So far, few attempts
have been made to fully exploit these data for modeling the dynamics of biological networks in cell
populations. In this paper we compare two modeling approaches capable to describe cell-to-cell
variability: Mixed-Effects (ME) models and the Chemical Master Equation (CME). We discuss
how network parameters can be identified from experimental data and use real data of the HOG
pathway in yeast to assess model quality. For CME we rely on the identification approach proposed
by Zechner et al. (PNAS, 2012), based on moments of the probability distribution involved in the
CME. ME and moment-based (MB) inference will be also contrasted in terms of general features
and possible uses in biology.
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Identification de modèles biologiques à partir de données en
cellules uniques

Résumé : Des techniques expérimentales en biologie comme la combinaison de microfluidique
et de vidéo-microscopie permettent de suivre l’expression des gènes au cours du temps dans
des cellules individuelles. L’utilisation de ces données pour modéliser la dynamique des réseaux
biologiques dans des populations de cellules reste encore rare. Dans ce travail, nous comparons
deux approches de modélisation capables de décrire la variabilité entre cellules: modèles à effets
mixtes (ME) et modèles d’équations maitresse chimique (CME). Nous discutons de l’identification
des paramètres des modèles à partir de données expérimentales et utilisons des données réelles de
la voie de transduction du signal HOG chez la levure pour tester la qualité des modèles. Pour la
CME, nous utilisons l’approche d’identification proposée par Zechner et al. (PNAS, 2012), basée
sur les moments des distributions de probabilités de la CME. Plus généralement, nous discutons
également des spécificités de ces deux méthodes d’inférence et de leurs utilisations possibles en
biologie.

Mots-clés : Identification de paramètres, modèles de cellules uniques, modèles à effets mixtes,
équation maitresse chimique, approximation basée sur les moments, voie de signalisation HOG
dans la levure
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1 Introduction

It is now well recognized that the functioning of biological systems at the molecular and cellular
levels is noisy [24, 26]. Within a genetically-identical population, cells behave in a heterogeneous
and stochastic manner. The biological role of noise, whether beneficial or detrimental, is still a
major open question in systems biology [1], therefore, models that are able to capture various
aspects of cell population’s heterogeneous behaviors would shed light on the matter.

In short, one distinguishes two major origins of noise: intrinsic noise, coming from stochas-
ticity of the observed process itself, and extrinsic noise, coming from differences between cells or
cell’s environment [24, 26]. Arguably, the modeling framework of choice for intrinsic variability is
the use of CME. Unfortunately, the identification of such models is quite difficult in practice [27],
although approximations of the CME have been recently proposed [19] and used to fit probability
distributions predicted by the model to empirical distributions from cell populations. Alterna-
tives for the identification of CME model parameters, using moment-closure methods [11], have
also proved to be biologically relevant and computationally much more tractable [34]; however,
in this framework, only some statistics of the population’s distribution are used. These modeling
approaches are, therefore, well adapted to flow cytometry data, which provides information on
population distributions, but are unable to exploit the rich information on single-cell temporal
evolution that time-lapse movie data provide. For this kind of data, we propose to use ME mod-
els. In this framework, a population of individuals is described by an ODE model supplemented
by parameter distributions. Importantly, in contrast to CME and MB approaches, ME models
naturally capture extrinsic variability.

As a statistical analysis framework, ME has been previously used in fields such as medicine,
ecology, manufacturing, psychology and, especially, it has been for decades the modeling paradigm
in the field of pharmacokinetics [7, 21, 18, 23, 3]. However, to the best of our knowledge, the
identification of ME models of cellular processes based on single cell fluorescence microscopy data
has not yet been studied.

In this paper, we compare ME models with CME models identified through an MB approach
very similar to the one presented in [34], using fluorescence microscopy data that shows the
response of yeast cells to repeated osmotic shocks in control experiments [32]. Our results
show that methods for identification of ME models based on real video-microscopy data are
computationally tractable, and that in comparison to state-of-the-art MB identification methods
perform in a comparable way. We therefore conclude that based on our results, one cannot
unambiguously decide whether the major source of variability in the observed cellular process is
intrinsic or extrinsic noise. Lastly, we note that the performance of ME inference methods can
be further improved by taking cell lineage, cell physiology, or other covariate information into
account.

The paper is structured as follows: In section 2 we review mixed-effect models, CME models,
and moment-closure methods. The biological system under study and the corresponding ME and
MB models used in the inference process are described in section 3. The quality of the identified
models is analized in section 4. Finally, section 5 provides a critical comparison of ME and MB
inference procedures. Through the paper we will use bold letters to denote random variables.

2 Model inference approaches

This section is a short review of the approaches that we will compare. In particular, we will
detail the underlying assumptions, data required and output provided.

RR n° 8288



4 Gonzalez et al

2.1 Mixed-Effects model inference

ME modeling is an approach to the analysis of population data where samples are clustered
into subgroups of the population, called “individuals”, in which the observations are mutually
dependent (e.g. time-series of single cell’s fluorescence) and the behavior of the total population
is inferred from these individuals. The general form of an ME model is [3, 23, 6]:

βi = d(αi, β, bi), i = 1, . . . , N (1)

yij = f(Zij , βi) + eij , j = 1, . . . , J (2)

Equation (2) represents the model of the ith individual, where yij ∈R denotes the jth measure
of individual i, defined by f , a function that depends on a set of regressors Zij ∈ R

N , and
a vector of individual-specific parameters, βi ∈ R

p. Measurement noise is represented by the
independent random variable eij . Further considerations can be made at this level, for example,
when dealing with time series of data. In this case, the vector of regressors can be expressed
as Zij=(tij , uij), where tij ∈ R

N and uij ∈ R
N are the time and input of the ith cell at jth

instant. The parameters βi are extracted from (1), the population model, where d is a function
of αi, a vector of “covariates” (known individual factors), β∈R

p, a vector of “fixed effects”, and
bi, a vector of “random effects”, which is characterized by a covariance matrix C ∈R

p×p. The
population function d in (1) and statistical assumptions on bi induce a probability distribution
on the parameters. The classical methods to estimate d, as well as some statistics of bi, are
based on likelihood maximization [23].

2.2 Moment-Based inference

A standard approach for a detailed description of (bio)chemical reaction kinetics relies on proba-
bilistic modelling of the reactions among discrete pools of molecules. Consider a reaction network
involving n species taking part in R reactions. Denote with xs(t), where s = 1, . . . , n, the number
of molecules of the sth species at time t. For r = 1, . . . , R, let νr,s ∈ Z be the change in the num-
ber of molecules of the sth species upon occurrence of the rth reaction (i.e., signed stoichiometric
coefficients), and let ar(x) ·δt, with x = (x1, . . . , xn) ∈ N

n and ar(x) ≥ 0, be the probability that
the reaction occurs in the infinitesimal time δt given x molecules of the various species. Then
x = (x1, . . . ,xn) can be seen as the state of a continuous-time, discrete-jump Markov process
taking values in N

n [25]. The probability p(x, t) that x is equal to x at time t evolves according
to the so-called Chemical Master Equation (CME)

d

dt
p(x, t) =

R
∑

r=1

ar(x− νr)p(x− νr, t)− ar(x)p(x, t), (3)

where νr = (νr,1, . . . , νr,n). The reaction propensities ar(x) are typically fixed by the the laws
of mass-action [33] up to a vector of kinetic parameters. As an alternative characterization of
the probability law p(x, t), one may consider the collection of all moments µℓ(t) = E[xℓ], where
ℓ = (ℓ1, . . . , ℓn) ∈ N

n is a multi-index, xℓ = xℓ1
1 · . . . · xℓn

n , and |ℓ| = ℓ1 + . . .+ ℓn is the order of
µℓ.
Excluding certain special cases, neither the solution of (3) nor the related moments of x can be
computed in practice, therefore several approximation techniques have been developed; one of
such techniques is Moment Closure (MC). For propensities ar(x) polynomial in x (as in mass-
action kinetics) and some L ∈ N>0, let µ denote a vector containing all moments up to order

Inria



Identification of biological models from single-cell data 5

L. For matrices A and B fixed by (3) and a suitable so-called moment closure function φ(·), an
approximation µ̃(t) of µ(t) can be obtained through the system [11]:

d

dt
µ̃(t) = Aµ̃(t) +Bφ

(

µ̃(t)
)

. (4)

Models of this form have been used in [34, 25] to describe the dynamics of regulatory networks
within single cells of a cell population. Let us denote with θ the vector containing the kinetic
parameters of the propensity functions and the statistics of the noise (see (6)). Note that θ (as
well as the system statistics at an initial time) may vary across cells. Assume first that θ is
unknown but fixed across the population. Moment-Based Inference (see e.g. [34]) assumes that
parameters θ are estimated by fitting the solutions of equations like (4) to the corresponding
empirical moments of experimental data. In particular, let cTx, with c ∈ R

n, be an observed
scalar output of a network (e.g. the expression of one gene), and assume that, for every cell in a
population of N cells, measurements y follow the model

y = cTx + e, (5)

e =
(

ea + ebc
Tx

)

η, (6)

with η ∼ N (0, 1). Mean my and second-order uncentered moment My of y relate to the
moments mx ≃ µ1 and Mx ≃ µ2 of x by way of the equations

my = cTmx, (7)

My = (1 + e2b)var(cTx)+(ea+ebc
Tmx)

2 +(cTmx)
2 (8)

At any given measurement time, empirical versions m̂y and M̂y of my and My can be determined
from cell population histograms. Then, an estimate of the model parameters θ may be defined
by the solution of the optimization problem

min
θ

∑

j

D
(

m̂y,j, M̂y,j||m
θ
y,j,M

θ
y,j

)

, (9)

where a superscript symbol θ denotes dependence on the parameters, m̂y,j, M̂y,j, my,j , My,j

denote the corresponding moments at time tj , and D denotes a suitable distance. In practice,
mθ

y and Mθ
y are computed based on the solutions of a moment-closure equation (4) with A, B

(and possibly φ) depending on θ.
Similar to what is done for reaction rate (ODE) models (see e.g. [9], and Section 3.2.2), the case
where θ takes different values depending on the subject (extrinsic noise) could be included in this
framework by assigning priors to θ with hyperparameters common to the whole population [34].
In this case, for model inference, the process statistics µℓ must also account for this additional
source of variability, and the hyperparameters of the prior, rather than the individual random
values of θ, have to be estimated [9]. In [15] and [34], an alternative approach was proposed
in particular for the case study of this paper, where certain extrinsic noise quantities where
treated as state invariants of a CME-like model. This allowed to confine the uncertainty of these
quantities into an appropriately chosen initial distribution, and to compute the evolution of the
augmented system moments in a way at all similar to (4).

RR n° 8288



6 Gonzalez et al

Figure 1: Hyperosmotic gene expression in yeast. (A) Hyperosmotic stress triggers phosphory-
lation and nuclear import of the protein Hog1,which thereupon activates osmo-stress responsive
genes. In addition Hog1 stimulates enzymes involved in the glycerol production pathway, while
closure of the membrane glycerol transporter Fps1 prevents glycerol from leaking out. Increas-
ing the intracellular glycerol concentration is the main adaptation mechanism to hyperosmotic
stress. Adaptation is prevented by our experimental setup, thus Fps1 and GPD1 mechanisms
(depicted in light gray) are not considered in our model (B). Information gathered by fluores-
cence microscopy. Cells are grown in a microfluidic device which can select between normal and
high osmolarity media. A microscope takes fluorescent images of the cells, which are segmented
and tracked in real-time.

3 Case study: Gene expression in yeast cell populations

3.1 Description of the system

In the budding yeast S. cerevisiae, an increase of the environmental osmolarity activates the
high osmolarity glycerol (HOG) signal transduction pathway, a stress response pathway that
coordinates the adaptation response to an osmotic shock. Adaptation is achieved by increasing
the cellular glycerol level via various mechanisms, one of which is the upregulation of genes
involved in glycerol production [12]. Here, we used the promoter of an osmoreponsive gene
(STL1) to drive the expression of a yECitrine fluorescent protein (see Figure 1A) to monitor the
gene expression response of the cells to repeated osmotic stresses. Recently, some of the authors
presented a feedback control platform, utilizing the HOG pathway to control gene expression [32]
and the data used here for model parametrization and evaluation stems from this work. Figure
1B illustrates the visual information gathered with this method.

Inria



Identification of biological models from single-cell data 7

3.2 Models under comparison

3.2.1 Underlying reaction network

The system is described by the reaction network of HOG1-induced gene expression (10) as
proposed in [34] where the (delayed) gene activation rate, u(t− τ), caused by an osmotic shock,
represents the system’s input, and the amount of fluorescent protein yECitrine is the output.

pSTL1 off
c1u(t−τ)

GGGGGGGGGGGGGGGBF GGGGGGGGGGGGGGG

c2

pSTL1 on

pSTL1 on+CR
c3

GGGGGGBF GGGGGG

c4

CR ·pSTL1 on

CR ·pSTL1 on
c5

GGGGGGA CR ·pSTL1 on+mRNA

mRNA
c6

GGGGGGA mRNA+yECitrine

yECitrine
c7

GGGGGGA ∅

mRNA
c8

GGGGGGA ∅

(10)

In (10), pSTL1 on and pSTL1 off represent the active and inactive state of pSTL1 promoter (with
rates of activation/deactivation c1 and c2). CR is the concentration of chromatin remodeling
complex, which binds/unbinds to pSTL1 with rates c3 and c4 to produce the CR ·pSTL1 on

complex. The complex starts the production of mRNA at a rate c5, which in turn produces
yECitrine, with a synthesis rate c6 that depends on the number of ribosomes and a kinetic
parameter. Finally, yECitrine and mRNA are degraded with rates c7 and c8.

3.2.2 Model for ME inference

Next, we will characterize the functions f in (2) and d in (1). In our case, individuals correspond
to single cells whose fluorescence is tracked over time. By the laws of mass-action, the (average)
system can be described (as illustrated in [4]) by the set of reaction rate equations (11):

ẋ1 = c2x2 − c1u(t− τ)x1

ẋ2 = c1u(t− τ)x1 − c2x2 + c4x4 − c3x2x3

ẋ3 = c4x4 − c3x2x3

ẋ4 = c3x2x3 − c4x4

ẋ5 = c5x4 − c8x5

ẋ6 = c6x5 − c7x6

(11)

where x1, x2, x3, x4, x5, and x6 represent, respectively, the proportion of the promoters that
are in the off state (pSTL1 off ), in the on state (pSTL1 on), or bound to chromatin remod-
eling factors (CR · pSTL1 on), and the concentrations of chromatin remodeling factors (CR),
mRNA and fluorescent proteins yECitrine. The parameters to be identified are: reaction rates
c={c1,c2,c3,c4,c5,c6,c7,c8}, the initial concentration of CR (x3(0)) and the time delay τ>0. The
procedure for calculating the input u is developed in Appendix A. For these ten parameters we
want to estimate a mean value β and a covariance matrix C. In order to restrict βi to positive val-
ues, we set bi∼N (0, C)and d(ai, β, bi)=exp(β+bi) (exponentiation here is applied component-
wise). We won’t consider αi because our data doesn’t provide measures of other cell-specific fea-
tures. Let us define the vector of parameters βi = (c1,i, c2,i, c3,i, c4,i, c5,i, c6,i, c7,i, c8,i, x3(0),i, τi)
and let x6,i(t|βi) denote the state of an individual following the dynamics in (11) with parameters

RR n° 8288



8 Gonzalez et al

βi, and initial conditions x1(0),i=1, x2(0),i=x4(0),i=x5(0),i=x6(0),i=0. We can equip the system
(11) with the output equation

yi(t) = x6,i(t|βi) + ei(t) (12)

where

ei(t) = (ea + ebx6,i(t|βi))ηi(t). (13)

Note that (12) and (13) are equivalent to (5) and (6). In particular, ηi(t), i = 1, .., n are indepen-
dent white gaussian noises with unit intensity, and e2a,e

2
b, define the intensity of the additive and

multiplicative parts of the measurement noise ei,j . Then, in (2) we have f(Zij , βi) = x6,i(t|βi)

and eij=ei(tij). Regressors are Zij=(tij , u(t)|
tij
t=0) and the full set of parameters to be inferred

is θ= {β,C, ea, eb}. Model (13) is in agreement with the types of noise present in fluorescence
microscopy [14, 22]. Finally, to find the parameters in function (1) that maximize the marginal
likelihood of the simulated distribution, we use the SAEM algorithm [5]. Starting values for β

that provide good convergence properties are estimated as proposed in section 8.1 of [23], by
calculating individual estimates first and then performing analysis of variability.

3.2.3 Model for MB inference

We chose the model proposed in [34] given the similarity of the systems and the promising
results presented. We will use a zero-cumulant moment closure of the 35 equations reported
in section S.4.1 of [34], which describe the time evolution of the population statistics. In this
system of equations, the first 7 state variables represent the first-order moment (the mean) of
each chemical species (including ribosomes) and the remaining equations represent the second-
order uncentered moments (from which covariance between pairs of species can be inferred).
We are interested in the first- and second-order moments of the fluorescent protein, which is
denoted in [34] as the G species. The ck, k = 1, ..., 8 parameters appearing in [34] will have the
same meaning as the ck parameters introduced in section 3.2.2, with the exception of parameter
c1, which in our case acts as a scaling factor for the input u, and parameter c6, which for
simplicity of notation we have lumped together with the concentration of ribosomes (α1

2 in [34]),
given that they are mutually unidentifiable. We have also assumed the same sources of extrinsic
and intrinsic variability as in [34]. The parameters to identify are a set of fixed parameters
βf = (c1, c2, c3, c4, c5, c7, c8, τ) that are common to all cells, and statistics of a distribution on
parameters βv=(x3(0), c6). In particular, we will identify average values E[x3(0)], E[c6] and the
entries of the matrix Cv = cov(x3(0), c6).
Extrinsic variability comes from the variable parameters and intrinsic variability results from
the stochasticity of the CME. For the function D(·||·) in (9) we will use the Kullback-Leibler
divergence between Gaussian distributions [16]. This is a simpler approximation than the one
used in [34], but still provides a convenient (pseudo)metric for matching first- and second-order
moments even if the distributions are not Gaussian. At every time instant j we will compute

D
(

m̂y,j, M̂y,j||m
θ
y,j ,M

θ
y,j

)

= log(
σθ
y,j

σ̂y,j

) +
σ̂2
y,j + (m̂y,j −my,j)

2

2σ2
y,j

+
1

2
(14)

m̂y,j, my,j represent the mean of the observed and simulated distributions respectively, and
σ̂y,j ,σy,j the corresponding standard deviations. Note that these values include the contribution
of the measurement noise, as specified in (8). Starting values for βf and βv, are estimated in the
same way as for ME inference.

Inria



Identification of biological models from single-cell data 9

Figure 2: Experimental data. The solid blue line and shaded blue area denote the mean +/- two
standard deviations of the samples in the identification set. The dashed red line and shaded red
area denote the same quantities of the validation sets. The pulses in the bottom of the figure
represent the position of the valve that regulates the osmotic shocks applied to the system.

3.3 Experimental data and data pre-processing

The data used consisted of a set of two experiments, in which cells had been controlled to follow
a constant yECitrine concentration, set at 1500 fluorescence units. In each experiment, yij
corresponds to the value of fluorescence for yECitrine in cell i at time tj. The sampling time
is 6 minutes and the analysis covers 10 hours of experiments. The empirical first and second
moments of the data,

m̂y,j =
1

N

N
∑

i=1

yij , M̂y,j =
1

N

N
∑

i=1

y2ij ,

correspond to the first-order and second-order uncentered moments of the yECitrine species in
the MB model.
Raw data was processed as follows: first, a manual review of the snapshots taken in the two
experiments was carried out to spot possible errors in tracking. This is because increasingly
growing population and artifacts in the image capturing process led to misidentification of some
cells during the real-time automatic analysis. At each time instant, cells whose fluorescence
level was considered as outlier where marked, and cells marked as outliers more than 30% of
their lifetime were removed from the dataset. Finally, we set a time threshold based on the
approximate lifespan of yeast cells [10], and only cells that where alive and successfully tracked
for more than 90 minutes were included in the identification dataset.In Fig. 2, the identification
and validation sets are compared. It can be seen that the mean values are very close to each
other, as they represent the controlled outputs. The dispersion of the populations (represented
in Fig. 2 by +/- two standard deviations) differs significantly, due to the difference in the initial
number of cells. Note also that the input patterns are equal during the first 3 hours until the
cells reach the desired output, but afterwards they differ.

RR n° 8288



10 Gonzalez et al

4 Inference results

4.1 Evaluation criteria

Time series of yECitrine concentrations for 10000 cells were computed using the ME and CME
models. To discuss the results of the identification process, we assessed how well the identified
models can reproduce identification and validation data. In the first case, we generated two
datasets (ME1, MB1) using the input profile of the identification dataset (Figure 2, blue input).
In the second case, we generated datasets ME2 and MB2 using the red input profile in Figure 2.
Results are described in detail in sections 4.2 and 4.3.

As explained in section 3.2.2, in the ME case a cell is instantiated by extracting a random
vector bi from the distribution N (0, C), computing βi = exp(β + bi), and generating yEcitrine
samples according to (12). For the CME, yECitrine samples for a cell are obtained by extracting
a random vector βv,i from a lognormal distribution whose statistics are inferred from βv, Cv (see
[30]), and then running Gillespie’s algorithm [8] to sample from the probability p(x, t) of the
CME, instantiated with vectors βv,i and βf . Finally, measurement noise is added according to
(5). Identified models are then scored according to two criteria: the first one is the ability of the
system to follow the time evolution of the mean and the standard deviation of the population.
This was quantified in terms of the normalized RMSE

NRMSE =

√

1
T

T
∑

j=1

(λj − λ̂j)2

λ̂max − λ̂min

(15)

where, for an experiment spanning T time samples, λ̂j is the jth sample of the analyzed feature
(i.e. mean or standard deviation of the cell population) calculated from the observations, λj is

the same quantity calculated from the simulated population, and λ̂max, λ̂min are the maximum
and minimum in the set {λ̂}Tj=1. In the sequel, NRMSEM corresponds to the NRMSE of the
mean trajectory and NRMSES is the NRMSE of the standard deviation of trajectories. The sec-
ond criterion used is the Kolmogorov-Smirnov Two-Sample Test (KS), described in [13] and used
to assess in a non-parametric way (i.e. without assumptions of the underlying continuous distri-
bution) the similarity between two distributions. At each time instant, we compare yECitrine
distribution over the simulated and real populations and a p-value (pK) is computed. The KS
test is based on the null hypothesis that the samples are drawn from the same distribution and
the null hypothesis is rejected with 95% confidence when pK<0.05, hence, a higher pK indicates
higher similarity between the distributions. The percentage of time samples with pK>0.05 (i.e.
the success rate), will be denoted with hK.

4.2 Performance on identification data

The time necessary to estimate ME and MB parameters, using an Intel(R) Core(TM) i7 CPU
@2.67 GHz with 4 GB RAM, was in the order of 22 hours for ME (using nlmefitsa, from statistics
toolbox [29]) and 1.5 hours (using fminsearch, from optimization toolbox [28]). In both cases
only one processor was used. The huge difference in identification times is due to the fact that
solving the optimization problem (9) requires to solve several times only the ODE system that
characterizes the first and second moments of the population distribution; on the other hand,
the minimization of the marginal likelihood in ME using the SAEM method, requires to simulate
several times a whole population of cells using the model (11). Table 1 summarizes the results
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Identification of biological models from single-cell data 11

obtained when evaluating the model against the identification dataset. The NRMSEM shows
that MB inference has a slightly better performance following the mean. The standard deviation
is also better followed by MB inference with a NRMSES significantly lower value for MB than for
ME. The same general conclusion can be drawn from the KS test: the average of the pK value
at all time instants is higher for MB as well as the hK success rate. Inferred values are listed in
Appendix sections B and C.

Table 1. Performance indices on identification data
ME1 MB1

NRMSEM 0.06 0.04

NRMSES 0.25 0.11

Avg. pK 0.25 0.49

hK 79% 87%

4.3 Model validation

Figure 3A reveals that the tracking of the mean is very good in both cases, but MB is better
than ME in following the standard deviation, as the values in Table 2 confirm. Results in Table
2 show that quantitative differences between the two methods are overall small, although indi-
cators NRMSEM and NRMSES show a better performance using MB. The KS-test results don’t
favor MB in the validation stage as they did on the identification stage. Overall, ME presents
an increase in performance between the identification and the validation stages, while MB’s per-
formance decreases for most indicators. This could be a sign that MB overfits the system, losing
generalization capabilities. This aspect should be analyzed in detail in a future study in order
to find criteria to prevent overfitting when using this technique.

Table 2. Performance indices on validation data
ME2 MB2

NRMSEM 0.08 0.06

NRMSES 0.20 0.13

Avg. pK 0.34 0.32
hK 87% 74%

5 Discussion and concluding remarks

In our experiments, both MB and ME have led to satisfactory results despite the differences in
the frameworks and the assumptions on extrinsic or intrinsic variability. Therefore, the choice
of the modeling framework will depend on the particular problem addressed. Two factors that
would favor the choice of ME would be the default ability to account for expression profiles in
individual cells, and the possibility of using characteristics such as cell size, cell-cycle state and
others, adding them as covariates (vector αi), to better quantify the deterministic factors that
contribute to cell-to-cell variability [26]. The inclusion of these features could be, in principle,
developed in a CME-MB framework, but the large complexity of such models suggests to look
for simpler modeling approaches.

RR n° 8288



12 Gonzalez et al

Figure 3: Validation Experiments. Simulations are compared to data from a validation set.
Figure (A) and (B) show the time evolution of ME and MB’s identified models compared to
the time evolution of the observations. (C) shows the time evolution of the pK value for both
models, indicating how close the simulated distributions are to the real observed distributions at
every time instant. The black dashed line represents the 95% confidence interval, below which,
there is significant statistical evidence that the distributions are not equal.
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Identification of biological models from single-cell data 13

One important aspect that only can be handled through single-cell data and therefore is much
better suited for a ME approach, is the analysis of correlations in individual cell behaviors as a
function of their parental relationships via cell lineage reconstruction.This can provide a better
understanding of various cellular processes, such as aging [17] or cell cycle duration [2]. Because
it allows to associate individual behaviors with individual parameter values, the ME framework
seems ideally suited to model the effect of parameter correlations across many cell generations.

Appendix

A Computation of the input function

To obtain a complete framework one has to relate the promoter activation rate, u(t), appearing
in reaction 1 of Fig. 10, with the actuation signal (ie, the valve status). Three phenomena need to
be taken into account. Firstly, there is a known lag between valve actuation and actual change of
the cells environment in the imaging chamber. This effect has been characterized in [32] and has
been modeled here by the piecewise affine function represented in Fig. 4 by a green line. Secondly,
an increase of the cells environment osmolarity leads to the activation of the HOG pathway and
results in an increased Hog1 nuclear localization. Denoting h(t) cell chamber osmolarity and s(t)
the nuclear Hog1 enrichment (red line in Fig. 4), the Hog1 activation dynamics can be described
by [20, 31]

ṡ = κh(t)− γs, (16)

where parameter values were estimated based on experimental data in [31]. Lastly, the promoter
activation rate u(t) is assumed to follow a Hill-type kinetics as a function of the nuclear Hog1
enrichment s(t) [34].

u(t) =
(s(t) + s0)

nH

KnH

d + (s(t) + s0)nH
, (17)

in which the values of the parameters Kd, nH , and s0 have been estimated in [34]. One should
note that here, like in [34], we assume that signal transduction does not show significant stochas-
tic fluctuations nor cell to cell variability. Indeed, all these steps are assumed to be purely
deterministic. The effective activation rate of the gene (pSTL1 off → pSTL1 on) (light-blue line
in Fig. 4) is then assumed to be proportional to u with a delay τ .
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14 Gonzalez et al

Figure 4: Input function. The plot represents the temporal evolution of the position of the
microfluidic valve (0: normal media, 1: hyperosmotic media; dark blue), the osmolarity of the
cells environment (h(t); green), the nuclear Hog1 enrichment (s(t); red), and the delayed gene
activation rate (u(t− τ); light blue) during an 8-minute osmotic shock. Here the delay τ was set
to 10 minutes. However, note that in generality, its value is estimated with the rest of parameters
in section 3.2).

B Inferred parameters for ME model

Table 3. Mean Parameters
Parameter Value Unit
c1 7.3 ·101 min−1

c2 2.5 ·103 min−1

c3 1.9 ·10−5 min−1

c4 3.7 ·10−2 min−1

c5 1.3 min−1

c6 8.6 ·102 min−1

c7 4.8 ·10−3 min−1

c8 1.0 ·10−1 min−1

τ 1.4 ·101 min

x3(0) 1.4 ·102 a.U.

a 5.3 a.U.

b 7.3 ·10−2 a.U.
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Table 4. Parameter Variance-Covariance
Parameter Value Parameter Value

var(c1) 2.5 ·101 var(c4) 3.2 ·10−4

cov(c1,c2) 4.2 ·102 cov(c4,c5) 1.3 ·10−3

cov(c1,c3) −7.3 ·10−7 cov(c4,c6) 4.1
cov(c1,c4) −3.7 ·10−2 cov(c4,c7) −2.5 ·10−5

cov(c1,c5) −1.9 ·10−1 cov(c4,c8) 6.2 ·10−4

cov(c1,c6) −5.5 ·102 cov(c4,τ) 4.2 ·10−3

cov(c1,c7) 3.0 ·10−4 cov(c4,x3(0)) 2.7 ·10−1

cov(c1,c8) −5.4 ·10−2 var(c5) 1.4 ·10−2

cov(c1,τ) −3.1 ·101 cov(c5,c6) 1.3 ·101

cov(c1,x3(0)) −3.5 ·101 cov(c5,c7) −2.4 ·10−5

var(c2) 2.7 ·104 cov(c5,c8) 1.6 ·10−3

cov(c2,c3) −4.6 ·10−5 cov(c5,τ) −3.4 ·10−1

cov(c2,c4) −2.2 cov(c5,x3(0)) 1.3
cov(c2,c5) −1.5 ·101 var(c6) 6.2 ·104

cov(c2,c6) −2.8 ·104 cov(c6,c7) −4.9 ·10−1

cov(c2,c7) 7.7 ·10−2 cov(c6,c8) 1.1 ·101

cov(c2,c8) −3.6 cov(c6,τ) 3.4 ·102

cov(c2,τ) −1.9 ·102 cov(c6,x3(0)) 3.2 ·103

cov(c2,x3(0)) −2.5 ·103 var(c7) 2.2 ·10−5

var(c3) 1.5 ·10−12 cov(c7,c8) −1.7 ·10−4

cov(c3,c4) 9.8 ·10−9 cov(c7,τ) −2.1 ·10−3

cov(c3,c5) 2.0 ·10−8 cov(c7,x3(0)) 2.4 ·10−2

cov(c3,c6) 1.9 ·10−4 var(c8) 3.6 ·10−3

cov(c3,c7) −4.4 ·10−9 cov(c8,τ) 5.9 ·10−2

cov(c3,c8) 6.7 ·10−8 cov(c8,x3(0)) −4.9 ·10−2

cov(c3,τ) 1.1 ·10−6 var(τ) 1.1 ·102

cov(c3,x3(0)) −3.8 ·10−6 cov(τ ,x3(0)) −2.5
var(x3(0)) 4.9 ·102
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16 Gonzalez et al

C Inferred parameters for CME(MB) model

Table 5. Parameters and Variances
Parameter Value Units

c1 2.1 ·101 min−1

c2 5.1 ·10−1 min−1

c3 2.3 ·10−2 min−1

c4 3.7 ·10−1 min−1

c5 9.7 ·10−1 min−1

c6 3.9 ·10−1 min−1

c7 7.4 ·10−3 min−1

c8 1.8 ·10−2 min−1

x3(0) 1.2 ·102 a.U.

τ 9.5 min

var(x3(0)) 1.5 a.U.

var(c6) 9.7 ·10−4 min−2

cov(c6,x3(0)) 1.2 ·10−6 min−1

a 1.0 a.U.

b 3.7 ·10−3 a.U.
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