Semantic precision and recall for ontology alignment evaluation

Jérôme Euzenat 1
1 EXMO - Computer mediated exchange of structured knowledge
Inria Grenoble - Rhône-Alpes, LIG - Laboratoire d'Informatique de Grenoble
Abstract : In order to evaluate ontology matching algorithms it is necessary to confront them with test ontologies and to compare the results with some reference. The most prominent comparison criteria are precision and recall originating from information retrieval. Precision and recall are thought of as some degree of correction and completeness of results. However, when the objects to compare are semantically defined, like ontologies and alignments, it can happen that a fully correct alignment has low precision. This is due to the restricted set-theoretic foundation of these measures. Drawing on previous syntactic generalizations of precision and recall, semantically justified measures that satisfy maximal precision and maximal recall for correct and complete alignments is proposed. These new measures are compatible with classical precision and recall and can be computed.
Type de document :
Communication dans un congrès
Proc. 20th International Joint Conference on Artificial Intelligence (IJCAI), Jan 2007, Hyderabad, India. AAAI Press, pp.348-353, 2007, Proc. 20th International Joint Conference on Artificial Intelligence (IJCAI)
Liste complète des métadonnées

Littérature citée [4 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00817806
Contributeur : Jérôme Euzenat <>
Soumis le : jeudi 25 avril 2013 - 13:58:54
Dernière modification le : jeudi 11 octobre 2018 - 08:48:02
Document(s) archivé(s) le : vendredi 26 juillet 2013 - 04:03:33

Fichier

IJCAI07-054.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00817806, version 1

Collections

Citation

Jérôme Euzenat. Semantic precision and recall for ontology alignment evaluation. Proc. 20th International Joint Conference on Artificial Intelligence (IJCAI), Jan 2007, Hyderabad, India. AAAI Press, pp.348-353, 2007, Proc. 20th International Joint Conference on Artificial Intelligence (IJCAI). 〈hal-00817806〉

Partager

Métriques

Consultations de la notice

734

Téléchargements de fichiers

966