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Abstract

Scene text recognition has gained significant attention |
from the computer vision community in recent years. Rec-
ognizing such text is a challenging problem, even more so
than the recognition of scanned documents. In this work,
we focus on the problem of recognizing text extracted from
street images. We present a framework that exploits both
bottom-up and top-down cues. The bottom-up cues are de-
rived from individual character detections from the image.
We build a Conditional Random Field model on these de-

the interactions between them. We impose top-down cues:
obtained from a lexicon-based prior, i.e. language statis-
tics, on the model. The optimal word represented by the text
image is obtained by minimizing the energy function corre- Figure 1: A typical street scene image taken from Google
sponding to the random field model. Street View [29]. It contains very prominent sign boards
We show Significant improvements in accuracies on two (Wlth teXt) on the bUIIdlng and its windows. It also contains

challenging public datasets, namely Street View Text (overobjects such as car, person, tree, and regions such as road,
15%) and ICDAR 2003 (nearly 10%). sky. Many scene understanding methods recognize these

objects and regions in the image successfully, but tend to
ignore the text on the sign board, which containsrich, uisefu
information. Our goal is to fill-in this gap in understanding
the scene.

The problem of understanding scenes semantically has

been one of the challenging goals in computer vision for . . . .
many decades. It has gained considerable attention ovef'0WWn images containing textand other objects. This is fur-

the past few years, in particular, in the context of street ther evidence that text recog_nition forms a useful compo-
scenes [3, 20]. This problem has manifested itself in variou "€nt of the scene understanding problem.

forms, namely, object detection [10, 13], object recogniti Given the rapid growth of camera-based applications
and segmentation [22, 25]. There have also been significanf€adily available on mobile phones, understanding scene
attempts at addressing all these tasks jointly [14, 16, 20].text is more important than ever. One could, for instance,
Although these approaches interpret most of the scene sucforesee an application to answer questions such\ehat
cessfully, regions containing text tend to be ignored. As an does this sign say?This is related to the problem of Opti-
example, consider an image of a typical street scene takerf@l Character Recognitio€R), which has a long history
from Google Street View in Figure 1. One of the first things In the computer vision community. However, the success
we notice in this scene is the sign board and the text it con-0f OCR systems is largely restricted to text from scanned
tains. However, popular recognition methods ignore the documents. Scene text exhibits a large variability in ap-
text, and identify other objects such as car, person, teee, r pearances, as shown in Figures 1 and 2, and can prove to be
gions such as road, sky. The importance of text in imageschallenging even for the state-of-the-attr methods.

is also highlighted in the experimental study conducted by A few recent works have explored the problem of de-
Juddet al. [17]. They found that viewers fixate on text when tecting and/or recognizing text in scenes [4, 6, 7, 11, 23,

1. Introduction



Figure 2:Scene text often contains examples that have a large varietgpearances. Here we show a few sample images
from thesvT [30] and ICDAR [1] datasets, with issues such as, very different fontsdels, low resolution, occlusions.
These images are much more complex than the ones seen il typr datasets. Standard off-the-shelErs perform very
poorly on these datasets [23, 29].

26, 29, 30, 31]. Chen and VYuille [6] and later, Epshtein  resent jointly. We impose top-down cues obtained from a
al. [11] have addressed the problem of detecting text in nat-lexicon-based priofi.e. language statistics, on the model.
ural scenes. These two methods achieve significant detecin addition to disambiguating between characters, thizrpri
tion results, but rely on an off-the-sheltr for subsequent  also helps us in recognizing words.

recognition. Thus, they are not directly applicable for the  The remainder of the paper is organized as follows. In
challenging datasets we consider. De Cangi@d [9] pro- Section 2 we present our character detection method. Our
posed a method for recognizing cropped scene text charframework to build the random field model with a top-down
acters. Although character recognition forms an essentiallexicon-based prior on these detections is described in Sec
component of text understanding, extending this framework tion 3. We provide results on two public datasets and com-
to recognize words is not trivial. Weinmagt al. [31] and pare our method to related work in Section 4. Implemen-
Smithet al. [26] showed impressive scene text recognition tation details are also given in this section. We then make
results using similarity constraints and language ste¢ist  concluding remarks in Section 5.

but on a simpler dataset. It consists of “roughly fronto-

parallel” pictures of signs [31], which are quite similar to 2. Character Detection

those found in a traditionabCr setting. In contrast, we he fi , hi q Al
show results on a more challenging street view dataset [29], . The first step in our approach Is to detect potentia oca-
tions of characters in a word image. We propose a sliding

where the words vary in appearance significantly. Further- ™" _ .
more, we evaluate our approach on over 1000 words com-WIndOW based approach to achieve this.
pared to 215 words in [26, 31]. 2.1. Sliding Window Detection

. The proposed approach is more closely relate_d to those Sliding window based detectors have been very suc-
in [23, 29’.330]’ which addr.efss the problem of simultane- cessful for challenging tasks, such as face [28] and pedes-
ously Iocahzmg and recognizing \_Nprds. On one hand, thes‘etrian [8] detection. Although character detection is simi-
methods Iocahz_e text W'.th a significant accuracy, but on_the lar to such problems, it has its unique challenges. Firstly,
ot_herhand,thelrrecognltlon results leave a lot to be ddsw_ here is the issue of dealing with a large number of cat-
Sl_nce words in the scene text dataset have been Iocall_ze gories 62 in all). Secondly, there is a large amount of
W'th a good accuracy, we chus On.th.e problem of recogniz- inter-character and intra-character confusion, as ihtistl
ing words, given their location. .'I.'hIS is commonly referred in Figure 3. When a window contains parts of two char-
to as the croppgd word recog_nmon problem. Note th"%t the acters next to each other, it may have a very similar ap-
challenges of this task are evident from the best pubhshedpeararlce to another character. In Figure 3(a), the window
accuracy (?f onhb6% on the Scene_text_dataset [29]_' The containing parts of the characters tan be confused with
probabilistic approach we Propose in this paper achle_ves an .. Furthermore, a part of one character can have the same
accuracy of over3% under identical experimental settings. appearance as that of another. In Figure 3(b), a part of the
Our method is inspired by the many advancements madecharacter ‘B’ can be confused with ‘E’. We have adopted an
in the object detection and recognition problems [8, 10, 13, additional pruning stage to overcome some of these issues.
25]. We present a framework that exploits both bottom-up  We consider windows at multiple scales and spatial lo-
and top-down cues. The bottom-up cues are derived fromcations. The location of thé" window, ;, is given by its
individual character detections from the image. Naturally center and size. The sét= {¢1, co, ..., ¢ }, denotes the set
these windows contain true as well as false positive detec-of character classes in the datasey £ = 62 for English
tions of characters. We build a Conditional Random Field characters and digits. Leét; denote the features extracted
(crF) model [21] on these detections to determine not only from a window locatiori;. Given the window/;, we com-
the true positive detections, but also what word they rep- pute the likelihoodp(c;|#;), of it taking a labet; for all the
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Figure 3: Typical challenges in multi-class character de-
tection. (@) Inter-character confusion: A window contain-
ing parts of the twa’s is falsely detected as. (b) Intra-
character confusion: A window containing a part of the
character B is recognized as E.

classes inC. In our implementation, we used Histogram
of Gradient {oG) features [8] for¢;, and the likelihoods
p(-) were learnt using a multi-class Support Vector Machine
(svm) [5]. Details of the training procedure are provided in
Section 4.2.

This basic sliding window detection approach produces

many potential character windows, but not all of them are

useful for recognizing words. We discard some of the weak

detection windows using the following pruning method.

2.2. Pruning Windows

For every potential character window, we compute a
score based on: (i) classifier confidence; and (ii) a measur

We perform both the pruning steps conservatively, and
only discard the obvious false detections. We believe that
this bottom-up approach alone cannot address all the is-
sues related to detecting characters. Hence, we introduce
lexicon-based top-down cues to discard the remaining false
positives. We also use these cues to recognize the word as
described in the following section.

3. Recognizing Words

The character detection step provides us with a large set
of windows potentially containing characters within them.
Our goal is to find the most likely word from this set of char-
acters. We formulate this problem in an energy minimiza-
tion framework, where the best energy solution represents
the ground truth word we aim to find.

3.1. The Word Model

Each detection window is represented by a random vari-
able X;, which takes a labet;.> Letn be the total number
of detection windows. Note that the set of random variables
includes windows representing not only true positive detec
tions, but also many false positive detections, which mastb
suppressed. We introduce a null (or void) lab#& account
for these false windows. Thus; € K. = K U {¢}. The set

%? represents the set of all possible assignments of labels

of the aspect ratio of the character detected and the aspegl, ihe random variables. An energy functibn K* — R

ratio learnt for that character from training data. Thedintu

ition behind this score is that, a strong character window
candidate should have a high classifier confidence score
and must fall within some range of sizes observed in the

training data. For a window; with an aspect ratia;, let

¢; denote the character with the best classifier confidence

value given byS;;. The mean aspect ratio (computed from
training data) for the charactey is denoted byu,,. We
define a goodness scoreq) for the windowl; as:

)

whereo,; is the variance of the aspect ratio for character
classc; in the training data. Note that the aspect ratio statis-
tics are character-specific. A low goodness score indicate

(:ullj - a’i)2
207,

GS(li) = Sij exp <— (1)

a weak detection, and is removed from the set of candidate

character windows.
We then apply Non-Maximum Suppressionms), sim-
ilar to other sliding window detection methods [13], to ad-

dress the issue of multiple overlapping detections for each
instance of a character. We select detections which have a

high confidence score, and do not overlap significantly with
any of the other stronger detections. We perfomrs after

the aspect ratio pruning because wide windows containing

S

maps any labelling to a real numbEx-) called its energy
or cost. The functior(+) is commonly represented as a
sum of unary and pairwise terms as:

n

>E

i=1

E(x) (w:) + Y Eijlwi, xy), (2)
&£

wherex = {z;|i = 1,2,...,n}, E;(-) represents the unary
term,E;; (-, ) is the pairwise term, anél represents the set
of pairs of interacting detection windows, which is deter-
mined by the structure of the underlying graphical model.

Graph construction. We order the windows based on
their horizontal location, and add one node each for every
window sequentially from left to right. The nodes are then
connected by edges. One could make a complete graph by
connecting each node to every other node. However, it is
not natural for a window on the extreme left to be related
to another window on the extreme right, as evident in Fig-
ure 42 Thus, we only connect windows with a significant
overlap between them or windows which are close to each

10ur model has similarities to that proposed in [10] for objitection,
but the challengese(g inter- and intra- character confusions) are greatly
different from those in the object detection problem.

2We assume here that the windows have been pruned based ah aspe

many characters may suppress overlapping single charact@kyig of character windows. Without this pruning step, adeiw may con-

windows, when they are weaker.

tain multiple characters and will perhaps require a morepteta graph.



other. In the example in Figure 4, we show a few win-
dow samples and the edges between them. The intuition
behind connecting overlapping or close-proximity windows
is that they could represent either overlapping detectidns
the same character or detections of two separate characters x
As we will see later, the edges are used to encode the lan-

guage model as top-down cues.

CRF energy. The unary termE(z;), which denotes the
cost of a node; taking labelc; # e, is defined as:

o

Figure 4: Summary of our approach. We first find a set of
Ei(zi = ¢;) = 1 = p(ejlzi), (3)  potential character windows, shown at the top (only a few
are shown here for readability). We then build a random
field model on these detection windows by connecting them
with edges. The edge weights are computed based on the
) characteristics of the two windows. Edges shown in green
, 4

wherep(c;|z;) is the classifier confidence.¢ svm score)
of character class; for nodez;. For the null labek,

(:ullj - a’i)z
oz,

indicate that the two windows it connects have a high prob-
ability of occurring together. Edges shown in red connect
two windows that are unlikely to be characters following
wherea; is the aspect ratio of the window corresponding to gne another. A edge shown in red forces one of the two win-
nodexz;, ¢; is character detected at nadg andy.,; andoy, dows to take the label, i.e. removes it from the candidate
are the mean and the variance of aspect ratio of the characgharacter set. Based on these edges andthe scores for

ter detected, which is learnt from the training data, respec each window, we infer the character classes of each window

tively. For a true window, which has a relatively gosdM a5 well the word, which is indicated by the green edge path.
score, and matches the average aspect ratio size, this cogBest viewed in colour,)

of assigning a null label is high. On the other hand, false

windows, which either have posivMm scores or vary from

the average aspect ratio size or both will be more likely to because of its efficiency and accuracy on our recognition

take the null labet. problem. Therrw-s algorithm maximizes a concave lower
The pairwise tern¥ (z;, z;) is used to encode the top- bound on the energy. It begins by considering a set of trees

down cues from the |anguage model in a princip'ed way. from the random f|e|d, and ComputeS prObablllty distribu-
The cost of two neighbouring nodesandz; taking labels tions over each tree. These distributions are then used to

Ei(r; = €) = maxp(c;|r;) exp <—
J

¢ # e andc; # e respectively is given by: reweightthe messages being passed during leef24] on
each tree. The algorithm terminates when the lower bound
Eij(xi, ;) = EL(xi,25) + Ao exp(—t(z5,25)).  (5) cannot be increased further, or the maximum number of it-

erations has reached.
Here, ¢(z;,z;) = (100 — Overlagz;, z;))?, is a mea- _ _ .
sure of the overlap percentage between the two windows3-2- Computing the Lexicon Prior

ion 7l : . : .
Xi and X;. The function £}, (z;, z;) denotes the lexi- We use a lexicon to compute the pribf; (z;, z;) in (5).
con prior.The parameteX, determines t_hel overlap-based  sych language models are frequently used in speech recog-
penalty. Computation of the lexicon prid#;; (-, -) is dis- nition, machine translation, and to some extenb@Rr sys-

windows with sufficiently high overlap cannot take non-null \yord recognition problem.

labels,.e. at least one of them is likely to be a false window.

The costs involving the null labelare computed as: Bi-gram. Bi-gram based lexicon priors are learnt from

Eyj(a: = ciyj = €) = Ao exp(—(ai,2;)).  (6) joir_1t occurrences of characte_rs in the I_exicon. Character
: pairs which never occur are highly penalized. E¥t;, c;)

The pairwise cosE;; (z; = ¢, z; = ;) is defined similarly. denote_ the propability of occurrence Qf a character pair
Further,F;; (z; = ¢, 2; = €) is uniformly set to zero. (¢i, ¢;) inthe lexicon. The pairwise cost is:
i . Ellj (,Ti =G, Ty = Cj) = )\l(l — P(Ci, Cj)), (7)
Inference. Given these unary and pairwise terms, we
minimize the energy function (2). We use the sequential where the parametey; determines the penalty for a charac-
tree-reweighted message passingw-s) algorithm [18] ter pair occurring in the lexicon.



Node-specific prior. When the lexicon increases in size, the tasks of locating words and recognizing words respec-
the bi-gram model loses its effectiveness. It also fails to tively. Since, in our work, we focus on the word recognition
capture the location-specific information of pairs of cltara task, we used thevT-wORD dataset, which contains 647
ters. As a toy example, consider a lexicon with only two word images.
wordscvPR andiCPR. The node-specific pairwise cost for Our basic unit of recognition is a character, which needs
the character paiP(R) to occur at the beginning of the word  to be detected or localized before classification. A miss in
is higher than for it to occur at the end of word. This useful the localization will result in poorer word recognition. To
cue is ignored in the bi-gram prior model. improve the robustness of the recognition architecture, we
To overcome this, we divide each lexicon word into  need to quantitatively measure the accuracy of the charac-
parts, where: is determined based on the number of nodes ter detection module. For this purpose, we created ground
in the graph and the spatial distance between nodes. Waruth data for characters in thevT-woORD dataset. Using
then use only the firsl/nth of the word for computing the  the ground truth at the character level we evaluated the per-
pairwise cost between initial nodes, similarly néxt" for formance of thesvm classifier used for this task. Note that
computing the cost between the next few nodes, and so onno such evaluation has been reported onsthe dataset as
In other words, we do a region of interesty) based search  yet. Our ground truth data set contains around 4000 char-
in the lexicon. Therol is determined based on the spatial acters of 52 classes overall. We refer to this datassvas
position of a detected window in the worelg if two win- CHAR.S
dows are on the left most side then only the first couple
of characters of lexicons are considered for calculatireg th ICDAR 2003 Dataset. ThelcDAR 2003 dataset was orig-
pairwise term between windows. inally created for cropped character classification, fonf i
The pairwise cost using this prior is given by: age text detection, cropped and full image word recogni-
) tion, and various other tasks in document analysis. We used
Bl (i =ciyx; = ¢;) = { 0 if (Ci’c.z') € RO, (8) the part corresponding to cropped image word recognition
R A otherwise called Robust Word Recognition [1]. Similar to [29], we
ignore words with less than two characters or with non-
alphanumeric characters, which results in 829 words over-
all. For subsequent discussion we refer to this dataset as
ICDAR(50).

4. Experiments 4.2. Character Detection

In this section we present a detailed evaluation of our  Sliding window based character detection is an impor-
method. Given a word image extracted from a street sceneant component of our framework, as our random field
and a lexicon, our problem is to find all the characters, and model is defined on the detections obtained. At every possi-
also to recognize the word as a whole. We evaluate variousble location of the sliding window, we test a character clas-
components of the proposed approach to justify our choicessifier. This provides a likelihood of the window containing
We compare our results with two of the best performing a certain character. The alphabet of characters recognized

We evaluate our approach with both these pairwise terms,
and find that the node-specific prior achieves better perfor-
mance.

methods [29, 30] for this task. consists of 26 lowercase and 26 uppercase letters, and 10
digits.
4.1. Datasets We evaluated various features for recognizing charac-
We used the Street View TexsyT) [30]3 and thelc- ters. We observed that theG feature [8] outperforms the

DAR 2003 robust word recognition [1] datasets in our ex- features reported in [9], which uses a bag-of-words model.

periments. To maintain identical experimental settings to This is perhaps due to the lack of geometric information in

those in [29], we use the lexica provided by them for these the model. We computed denseG features with a cell

two datasets. size of4 x 4 using10 bins, after resizing each image to a
22 x 20 window. We learnt a 1-vs-afivm classifier with an

SVT. The Street View TextgvT)* dataset contains im-  RBF kernel using these features. We used the standard

ages taken from Google Street View. As noted in [30], most SVM Package [5] for training and testing ts&ms. For the

of the images come from business signage and exhibit a5V T-CHAR evaluation, we trained the model on AR

high degree of variability in appearance and resolutiore Th 2003 dataset due to the relatively small sizesuf-CHAR
dataset is divided intevT-spoTandsvT-worp, meantfor ~ (~ 4000 characters). We observed that the method using
HOG descriptors performs significantly better than others

Shittp://vision.ucsd.edu/Kai/svt with a classification accuracy of 61.86%.
“Note that this dataset has been slightly updated sinceigimat re-

lease in [30]. We use the updated version [29] in our expetime 5Available at http://cvit.iiit.ac.in/projects/Scene Tederstanding




Total characters in the ground truth | 3796 \ —
True detection (true positive) 3707 \ d

Characters we missed (false negatiye) 89

) o ] Figure 5:A few challenging character examples we missed
Table 1:Evaluation of the performance of our sliding win- i e sliding window stage. These examples are very diffi-

dow approach. \We use the intersection over union mea-cyit even for a human. We observed that all these potential
sure [1, 12] thresholded at 90% to determine whether a .naracter windows were missed due to PSYM SCOres.

detection has been retrieved or not. Note that most of the
true positives are detected. A few of them, such as the ones
shown in Figure 5 were missed. 4.4, Results and Discussion

Similar to the evaluation scheme in [29], we use the in-
We then performed sliding window based detection ferred result to retrieve the word with the smallest edit dis

where we considered bounding boxes of varying sizes, attance in the IeX|con._ We evaluated our methods on two
many locations in the cropped word image. Each bound- ©f the most challenging street scene text datasets, namely
ing box is classified with a certain likelihood given by its SVT @ndICDAR 2003. Other databases, such as the ones

svM score. We pruned some of the windows based on used in [26, 31], mainly consist of “roughly fronto-paréile

their aspect ratio. We used the goodness score measure jRiCtures of signs [31], or do not consider low resolution or
(1), and discarded all windows with a score less than low contrast images [26]. This makes the images in these

Character specifisiMs is done on the remaining bound- datasets quite similar to those found in a traditiooakR
ing boxes. This two step pruning is done to discard some Setting. Since our focus is to work with typic_:al images from _
of the obvious errors, although making sure that almost all & street scene, we used the most challenging datasets avail-

the true positives are included at this stage. Table 1 sum-aPle publicly.
marizes an evaluation of the quality of our sliding window  The best known results on ttevT andICDAR datasets

approach for thesvT-CHAR dataset. We computed the in- &€ reportedin [29], whgrg the authors used alpi(.:toriatstru_
tersection over union measure of a detected window com-tures model for recognizing words. Under similar experi-
pared to the ground truth, similar fascAL voc[12] and mental settings, we compare our results with this and other
ICDAR 2003 [1]. We used a threshold of 90% to determine methods in Table 2. We ob_serve that our method outper-
if a box has missed a character or not. Note that more thanfo'ms [29] and the commercialCr ABBYY [2].

97% of the characters are detected. Some of the typical fail- e also study the effect of the two pairwise terms,
ures are due to poor resolution of the images, which leadsh@mely bi-gram and node-specific priors. We note that the
to very weaksvM scores, as shown in Figure 5. In addition nede-specific prior is superior to the bi-gram prior. As the
to the detection rate, we also measured the performance oftUmber of words in the lexicon increases, bi-gram probabil-
this module in terms of precision-recall. We obtained an ity does not convey much information. Moreover, it fails to
mAP of 0.88 over all the characters, which indicates that Capture cues such as, some character pairs occur more fre-
this approach provides reliable cues for other parts of ourduently atthe beginning of the word and very rarely towards

framework. the end.
We show the qualitative performance of our method
4.3. Cropped Word Recognition in Figure 7. These examples demonstrate the benefits of
combining top-down (node-specific lexicon) and bottom-up
We use the detections obtained to build trer model (character detection) cues in word recognition. It doeghav

as discussed in Section 3.1. We add one node for every defailures however. Some of the failure cases are shown in the
tection window, and connect it to other windows based on |ast row in the figure. In our evaluation, we found the main
its spatial distance and overlap. Two nodes spatially dista causes of such failures to be: (i) weak unary term; and (ii)
from each other are not connected directly. The unary costmissing characters in the detection stage itself (Figure 5)
of taking a character label is determined by thev con- The increase in accuracy of more than 15% ongtie-
fidence, and the pairwise costs are learnt from the lexicon.woRrp dataset and nearly 10% on thepAR 2003 dataset
We experiment with both bi-gram and node-specific lexicon can be attributed to the strengths of our model: (i) We per-
priors. form better sliding window detection and get most of the

We choose the lexicon prior parameter in (7) and (8) true positives. Note that we quantitatively measure our per
A1 = 2, for all our experiments. The overlap penalty pa- formance of this stage and miss only 2% of the true win-
rameter in (5) and (6) is set ty, = 1, empirically for all dows. (ii) We use the contexité. lexicon prior) in a more
our experiments. The resulting energy function is optimiize principled way. (iii) We seamlessly integrate the bottom-u
using theTrRw-s algorithm [18]. and top-down clues in arF framework.



ARIS AVIS | OIXTH SIXTH Method SVT-WORD | ICDAR(50)
& PICT [30] 59.0* -
PLEX + ICDAR [29] 56 72
ABBYY [2] 35 56
RADIN RADIO | GALESTDU  GAMESTOP Proposed (Bi-gram) 70.03 76.96
. Proposed (Node-specific)  73.26 81.78

- m Table 2: Cropped Word Recognition Accuracy (in %): We

Figure 6:Bi-gram vs node-specific prior. The word inferred SOW & comparison of the proposed random field model to
using bi-gram prior is shown on the left (in the blue box) the popular commerciabCR systemaBBY, andPLEX pro-
and that inferred using node-specific prior is shown on the PoSed in [29]. *Note that the dataset has been revised since
right (in the yellow box) at the top of every image. The node- the original pu.bl|cat|on in [30], wh|ch makes that resultino
specific prior shows a better performance over the bi-gram comparable directly. However, given that our method per-

prior as it captures relative occurrence of characters more forms better than the improved version of [30], i.e. [29],
effectively. (Best viewed in colour.) we expect this trend to hold. We improve the accuracy by

over 15% and 10% respectively @wvT-WORD and ICDAR
datasets.

Discussion. Our method is inspired by the work of [29]
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