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ABSTRACT

In this paper, three extensions of the BI-population Covari-
ance Matrix Adaptation Evolution Strategy with weighted
active covariance matrix update (BIPOP-aCMA-ES) are in-
vestigated. First, to address expensive optimization, we
benchmark a recently proposed extension of the self-adaptive
surrogate-assisted CMA-ES which benefits from more inten-
sive surrogate model exploitation (BIPOP-saACM-k). Sec-
ond, to address separable optimization, we propose a hybrid
of BIPOP-aCMA-ES and STEP algorithm with coordinate-
wise line search (BIPOP-aCMA-STEP). Third, we propose
HCMA, a hybrid of BIPOP-saACM-k, STEP and NEWUOA
to benefit both from surrogate models and line searches. All
algorithms were tested on the noiseless BBOB testbed using
restarts till a total number of function evaluations of 106n
was reached, where n is the dimension of the function search
space.

The comparison shows that BIPOP-saACM-k outperforms
its predecessor BIPOP-saACM up to a factor of 2 on ill-
conditioned problems, while BIPOP-aCMA-STEP outper-
forms the original BIPOP-based algorithms on separable
functions. The hybrid HCMA algorithm demonstrates the
best overall performance compared to the best algorithms
of the BBOB-2009, BBOB-2010 and BBOB-2012 when run-
ning for more than 100n function evaluations.

Categories and Subject Descriptors

G.1.6 [Numerical Analysis]: Optimization—global opti-
mization, unconstrained optimization; F.2.1 [Analysis of
Algorithms and Problem Complexity]: Numerical Al-
gorithms and Problems

General Terms

Algorithms
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1. INTRODUCTION
The Covariance Matrix Adaptation Evolution Strategy

(CMA-ES) [5] has become a popular tool for continuous
black-box optimization. However, CMA-ES is a rather local
optimization algorithm and can be ineffective when deal-
ing with multi-modal optimization problems. In order to
avoid premature convergence to local optima, several restart
strategies for CMA-ES have been proposed [1, 3, 14]. These
strategies, typically based on restarting and increasing (more
generally, on varying) the population size and initial muta-
tion step-size each time at least one stopping criterion of
CMA-ES is met, implement the simplest niching approach
but rather in the time than in space [21]. Thanks to its
population-based nature, the CMA-ES benefits from using
larger population sizes on multi-modal functions with some
global structure and, thus, typically outperforms quasi-Newton
methods such as BFGS [23]. The latter, however, often out-
performs CMA-ES on a special but quite popular class of
noiseless unimodal functions, when gradient information is
useful. This drawback of CMA-ES becomes especially un-
desirable when dealing with expensive optimization, where
each function evaluation takes some time and/or costs some
money.

A common way to reduce the cost of optimization within
Evolutionary Algorithms is to periodically learn a surrogate
model of the expensive function and exploit it during the
search by pre-filtering promising solutions and/or by opti-
mizing the surrogate directly instead of the expensive func-
tion. These approaches have been adopted within Evolution
Strategies and CMA-ES by using different surrogate learn-
ing approaches: Radial Basis Functions network [7], Gaus-
sian Processes [25], Artificial Neural Network [10], Support
Vector Regression [12], Local-Weighted Regression [11, 2],
Ranking Support Vector Machine (Ranking SVM) [11, 13,
8]. More recently it has been shown [17] that key invariance
properties of CMA-ES can be preserved even in surrogate-
assisted scenario by using Ranking SVM approach. More-
over, hyper-parameters used to build surrogate models can
be also adapted during the search allowing the user to define
only the range of these hyper-parameters, while their actual
values will be adapted by the s∗aACM-ES algorithm [17].



In this paper, we benchmark the recently proposed exten-
sion of s∗aACM-ES, referred to as s∗aACM-ES-k, where the
surrogate model is more intensively exploited by increasing
the population size used for its optimization. This extension
further improves the performance of the surrogate-assisted
CMA-ES on uni-modal functions, however, almost does not
improve the performance of multi-modal functions. This is
especially true for separable multi-modal functions, where
CMA-ES is outperformed by Evolutionary Algorithms which
explicitly or implicitly exploit separability. In order to in-
vestigate that would be the effect of such an exploitation
by CMA-ES, we present a hybrid version of CMA-ES al-
gorithm and select the easiest point (STEP) [24, 19] algo-
rithm, which performs coordinate-wise search and is quite
efficient on separable functions [24, 19]. Finally, to benefit
both from surrogate models and line searches, we propose a
hybrid CMA (HCMA) which combines s∗aACM-ES-k, STEP
and NEWUOA algorithm [20].

2. THE ALGORITHMS

2.1 The (µ/µw , λ)-CMA-ES
In each iteration t, (µ/µw , λ)-CMA-ES [5] samples λ new

solutions xi ∈ R
n, where i = 1, . . . , λ, and selects the best

µ among them. These µ points update the distribution of
parameters of the algorithm to increase the probability of
successful steps in iteration t + 1. The sampling is defined

by a multi-variate normal distribution, N (mt, σt2Ct), with
current mean of distribution mt, n×n covariance matrix Ct

and step-size σt. Most of algorithms which will be bench-
marked in this paper are based on an active version of the
CMA-ES (in short, aCMA-ES) with negative covariance ma-
trix update [9, 6].

2.2 The BIPOP-aCMA-ES
In BIPOP-CMA-ES [3] after the first single run (when at

least one of stopping criteria is met) with default population
size, the CMA-ES is restarted in one of two possible regimes
by taking into account the budget of function evaluations
spent in the corresponding regime. Each time the algorithm
is restarted, the regime with smallest budget used so far is
used.

Under the first regime the population size is doubled as
λlarge = 2irestartλdefault in each restart irestart and uses
some fixed initial step-size σ0

large = σ0
default.

Under the second regime the CMA-ES is restarted with
some small population size λsmall and step-size σ0

small, where
λsmall is set to

λsmall =

⌊

λdefault

(

1
2

λlarge

λdefault

)U [0,1]2
⌋

, (1)

Here U [0, 1] denotes independent uniformly distributed
numbers in [0, 1] and λsmall ∈ [λdefault, λ/2]. The initial

step-size is set to σ0
small = σ0

default × 10−2U [0,1] .
The active version of BIPOP-CMA-ES (BIPOP-aCMA-

ES) has been proposed in [14].

2.3 The BIPOP-s∗ACM-ES
The s∗ACM-ES [17] is the surrogate-assisted version of the

(µ/µw , λ)-CMA-ES, where Ranking SVM-based surrogate
model is used periodically instead of the expensive function

for direct optimization. The use of Ranking SVM allows
to preserve invariance properties of CMA-ES w.r.t. rank-
preserving transformations of the objective function and or-
thogonal transformations of the search space. The main loop
of s∗ACM-ES: the surrogate model f̂ is optimized for n̂ gen-
erations by the CMA-ES, then the expensive function f is
optimized for one generation. To adjust the number of gen-
erations n̂ for the next time, the model error is computed as a
fraction of incorrectly predicted comparison relations that is
observed after ranking the last λ evaluated points according
to f and f̂ . The s∗ACM-ES performs an online optimization
of the surrogate model hyper-parameters during the opti-
mization of the objective function by performing a search
in a space of model hyper-parameters, and by generating
λhyp surrogate models in each iteration. The information
about the fittest models with the smaller prediction error
on the last λ evaluated solutions is used to adjust the surro-
gate hyper-parameters for the next iteration. The detailed
description of s∗ACM-ES is given in [17].

2.4 The BIPOP-s∗ACM-ES-k
A more intensive exploitation of a surrogate model can be

useful if the model is sufficiently precise. An extension of s∗

ACM-ES, based on this idea, referred to as s∗ACM-ES-k, has
been proposed in [18]. In s∗ACM-ES-k, f̂ is optimized for n̂
generations by CMA-ES with population size λ = kλλdefault

and number of parents µ = kµµdefault, where kλ ≥ 1 and
kµ ≥ 1. Then, f is optimized for 1 generation by CMA-ES
with population size λ = λdefault and number of parents
µ = µdefault. The original s∗ACM-ES corresponds to s∗

ACM-ES-k with kλ = 1 and kµ = 1. Thus, larger values

of kλ and kµ lead to a more intensive exploitation of f̂ . To
prevent the algorithm from a potential divergence when n̂
oscillates around 0 and 1, kλ > 1 is used only if n̂ ≥ n̂kλ

,
where n̂kλ

is the number of generations which corresponds
to an ”accurate enough” model to be intensively exploited.

2.5 The BIPOP-aCMA-STEP
The select the easiest point (STEP) [24, 19] is a simple

line search method which is based on iterative interval divi-
sion. The STEP determines the next point to evaluate by
analyzing the usefulness of evaluation the function at the
middle of an interval [xi, xi−1] with respect to the interval
difficulty computed as [24]

D =
4ŷ − 2∆y + 4

√

ŷ2 − ŷ∆y

∆x2 , (2)

where ∆x = xi − xi−1, ∆y = f(xi) − f(xi−1), ŷ = f∗ −

f(xi−1)+ l, f∗ is the best solution found so far by the STEP
and l is the tolerance (i.e., the precision required for the
value of the optimum).

The STEP can be applied to n-dimensional optimization
problem by performing n coordinate-wise iterative or paral-
lel searches. A variant of iterative search: optimize f along
the coordinate i for NSTEP function evaluations or until a
stopping criterion is met, then fix the best xi, increment i
and repeat the procedure again while i ≤ n. This approach
is quite straightforward but requires NSTEP to be set a pri-
ori. However, NSTEP can be initialized by a small value and
then incremented (e.g., doubled) in a similar way as the pop-
ulation size in BIPOP-aCMA-ES each time STEP finishes
the search on n coordinates. This approach might lead to a



loss of a factor of about 2 in terms of number of function eval-
uations compared to an optimal setting of NSTEP . More-
over, some step function-like improvement of the objective
function can be observed due to switch between variables,
this also means that objective values of tested solutions are
far away in the objective space during the coordinate-wise
search on all but n-th coordinate.

We propose a parallel STEP search where at each iter-
ation one step per coordinate is performed, then x∗

i which
corresponds to the best solution so far along the coordinate
i is used to construct a recommended solution x∗ combined
of x∗

i , i = 1, . . . , n. The objective value of this solution is
estimated and is used for two purposes. First, if the value of
this solution is worse (up to some precision p) than the one
of a solution recommended in the previous iteration, then
f is non-separable or/and noisy. In this case, it is not rec-
ommended to use the STEP. Second, the new recommended
solution can be of the same quality as the previous one even
if the problem is separable. In this case, the STEP still can
run while its best recommended solution is better than the
one found by its competitor algorithm running in parallel
with, e.g., the same budget of function evaluations.

In BIPOP-aCMA-STEP algorithm, a fraction ρSTEP of
function evaluations is allocated to the STEP, while 1-ρSTEP

is allocated to the BIPOP-aCMA-ES. At each iteration after
the first nMinIterSTEP iterations, the best solutions of two
algorithms are compared and the STEP is stopped if its best
solution is worse or if its current solution is worse than its
previously recommended solution.

2.6 The HCMA
The HCMA algorithm is a hybrid of BIPOP-s∗aACM-ES-

k and STEP algorithms coupled as described in the previous
section. Additionally, the NEWUOA algorithm [20] is used
for the first 10n function evaluations to insure good con-
vergence of the HCMA on simple functions which can be
efficiently approximated by quadratic surrogate models. All
solutions generated by STEP and NEWUOA are not used by
BIPOP-s∗aACM-ES-k for surrogate learning since the sam-
pling/test distribution of CMA-ES might not correspond to
the training distribution defined by these solutions.

2.7 The Benchmarked Algorithms
For benchmarking we consider five CMA-ES algorithms

in BIPOP restart scenario [3]: BIPOP-aCMA-ES [16, 3],
BIPOP-s∗aACM-ES [17], BIPOP-s∗aACM-ES-k [18], BIPOP-
aCMA-STEP and HCMA1. For all but BIPOP-s∗aACM-ES-
k [18] and BIPOP-aCMA-STEP algorithms the BBOB re-
sults are taken from the literature. The setting of parame-
ters of BIPOP-s∗aACM-ES-k is given in [18], the maximum
number of function evaluations is set to 106n. However,
surrogate models are used only for the first 2 · 105 (104n
for n = 20) function evaluations for n = 2, 3, 5, 10, 20 and
2 · 103n evaluations for n = 40 in order to reduce the overall
running time and to fit to the BBOB-2013 focus on expen-
sive optimization with the budget of up to 103n function
evaluations. The value of kλ is set to 1, 1, 1, 10, 100, 1000
for n = 2, 3, 5, 10, 20, 40, respectively; kµ = 1 for all dimen-
sions; n̂kλ

= 4. The value of l (respectively, p) of the STEP
is set to 10−10 (respectively, 10−8), nMinIterSTEP = 10 and
ρSTEP = 0.5. The following parameters of NEWUOA are

1For the sake of reproducibility the source code is available
at http://sites.google.com/site/bbobgecco2013/

used [22]: m = 2n+1 interpolation points, the initial radius
ρbeg of the search region is set to 10, the final radius ρend is
set to 10−16, the maximum number of function evaluations
is set to 10n.

3. RESULTS
Results from experiments according to [4] on the bench-

mark functions given in [4] are presented in Figures 1 and
2 and in Table 1. The expected running time (ERT),
used in the figures and table, depends on a given target func-
tion value, ft = fopt+∆f , and is computed over all relevant
trials (on the first 15 instances) as the number of function
evaluations executed during each trial while the best func-
tion value did not reach ft, summed over all trials and di-
vided by the number of trials that actually reached ft [4].
Statistical significance is tested with the rank-sum test
for a given target ∆ft (10−8 as in Figure 1) using, for each
trial, either the number of needed function evaluations to
reach ∆ft (inverted and multiplied by −1), or, if the target
was not reached, the best ∆f -value achieved, measured only
up to the smallest number of overall function evaluations for
any unsuccessful trial under consideration.

The BIPOP-s∗aACM-ES and BIPOP-s∗aACM-ES-k per-
form similarly for n = 2, 3, 5 and before 104n function evalu-
ations because kλ = 1 is used, after 104n evaluations BIPOP-
s∗aACM-ES-k represents BIPOP-aCMA-ES. For larger n,
BIPOP-s∗aACM-ES-k outperforms BIPOP-s∗aACM-ES on
unimodal ill-conditioned problems, e.g., for 20-dimensional
ones the target function values 10−8 can be reached faster
(see Figure 1, Table 1): by a factor of 1.8 on f2 Separable
Ellipsoid and f10 Rotated Ellipsoid functions, by a factor
of 1.5 on f11 Discus, by a factor of 1.1 on f12 Bent cigar,
by a factor of 1.8 on f13 Sharp ridge and by a factor of 1.2
on f14 Sum of different powers. On f8 and f9 Rosenbrock’s
function the speedup of a factor of about 1.3 is obtained.

A relative loss of performance (compared to BIPOP-s∗

aACM-ES) on multi-modal functions can be explained by
not using surrogate models after 104n and thus using the
original BIPOP-aCMA-ES which usually is outperformed by
BIPOP-s∗aACM-ES. A loss of performance is observed on f6
Attractive sector (by a factor of 1.2), f17 Schaffer (by a factor
of 1.2) and f23 Katsuuras (by a factor of 1.5). However, the
reason of this loss remains unclear for f17 and f23 functions
because a similar loss of performance is also observed on the
same problems in dimension 5 where kλ = 1 for both algo-
rithms (i.e., there is no intensive surrogate model exploita-
tion). This difference might be explained by the stochastic-
ity of multi-modal optimization or by fact of adapting an
additional hyper-parameter - a stopping criterion of SVM
surrogate learning procedure in BIPOP-s∗aACM-ES-k [18],
whose values were fixed in BIPOP-s∗aACM-ES [17]. The
adaptation of this hyper-parameter probably is not efficient
enough compared to the offline tuned value, but this adapta-
tion makes the algorithm more parameter-free. While there
is no data to assess the effect of more intensive surrogate
model exploitation for budgets larger than 104n, the loss of
performance on f6 is clearly due to kλ > 1. A simple way to
reduce this loss would be to increment n̂kλ

, but this might
decrease the speedup on ill-conditioned problems back to-
ward the level of BIPOP-s∗aACM-ES.

The results shown in Figure 2 suggest that separable multi-
modal functions such as f3 Separable Rastrigin and f4 Sepa-
rable Skew Rastrigin-Bueche can be easily solved by BIPOP-



aCMA-STEP and HCMA thanks to its STEP part. Thus,
this kind of hybridization is beneficial if the main target is to
solve the maximum number of problems within a relatively
large budget of function evaluations.

The HCMA demonstrates the best performance among
the tested algorithms after 100n function evaluations. The
hybridization with STEP allows to exploit the separability
when it is detected, i.e., when STEP generates better so-
lutions than BIPOP-s∗aACM-ES-k. In a few cases when
separability was not detected successfully 3-dimensional f3
Rastigin and 3-, 5-dimensional f4 Skew Rastrigin-Bueche
separable functions, it seems that 10n function evaluations
(nMinIterSTEP = 10) sometimes is not sufficient to see the
difference between STEP and BIPOP-s∗aACM-ES-k on these
problems.

4. CPU TIMING EXPERIMENT
The time complexity of BIPOP-aCMA-STEP is essen-

tially the same as the one of BIPOP-aCMA-ES since the
STEP has linear time complexity and its relatively small
”constant factor” (see Eq.(2)) depends only on a particular
implementation. The time complexity of BIPOP-s∗aACM-
ES-k was measured after 15 runs on 20-dimensional f8, the
cost per function evaluation is about 0.45 seconds (runs were
performed on different machines with 2.2 and 2.4 GHz cores
under Ubuntu 10.04 using Octave 3.2.3). These results are
similar to the ones of [15], the time complexity can be re-
duced by a factor of λhyp = 20 by switching off the adapta-
tion of surrogate hyper-parameters.

5. CONCLUSION
In this paper, we have compared the recently proposed

self-adaptive surrogate-assisted BIPOP-s∗aACM-ES-k with
intensive surrogate model exploitation and its predecessor
BIPOP-s∗aACM-ES with the BIPOP-aCMA-ES. The com-
parison shows that the performance of surrogate-assisted
CMA-ES can be further improved on ill-conditioned func-
tions, e.g., on 20-dimensional f10 Rotated Ellipsoid the BIPOP-
s∗aACM-ES-k algorithm is about 6 times faster than BIPOP-
aCMA-ES and about 1.8 times faster than BIPOP-s∗aACM-
ES. However, the performance on multi-modal functions should
be further analyzed for a larger maximum number of func-
tion evaluations.

The proposed BIPOP-aCMA-STEP as expected shows
good results on separable multi-modal functions by exploita-
tion when it is detected (when STEP performs better than
BIPOP-aCMA-ES). The proposed hybrid HCMA algorithm
demonstrates the best overall performance when running for
more than 100n function evaluations on 10-, 20- and 40-
dimensional problems, its overall performance for this bud-
get of function evaluations and for these dimensions is better
than of all algorithms tested during the BBOB-2009, BBOB-
2010 and BBOB-2012.

It would be interesting to further develop HCMA and
BIPOP-aCMA-STEP and make these algorithms better suited
to partially-separable functions and/or adjust the algorithm
to work in a sampling space of CMA-ES defined by its co-
variance matrix. A natural perspective is to improve the
results of HCMA on multi-modal function by applying the
recently proposed alternative restart strategies for CMA-ES
[16].
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Figure 1: Expected running time (ERT in number of f-evaluations) divided by dimension for target function
value 10−8 as log10 values versus dimension. Different symbols correspond to different algorithms given in
the legend of f1 and f24. Light symbols give the maximum number of function evaluations from the longest
trial divided by dimension. Horizontal lines give linear scaling, slanted dotted lines give quadratic scaling.
Black stars indicate statistically better result compared to all other algorithms with p < 0.01 and Bonferroni
correction number of dimensions (six). Legend: ◦:BIPOP-aCMA, ▽:BIPOP-saACM, ⋆:BIPOP-saACM-k,
2:BIPOP-aCMA-STEP, △:HCMA.



separable fcts moderate fcts

HCMA

BIPOP-aCMA-STEP

best 2009

BIPOP-aCMA

BIPOP-
s∗

aACM-k

BIPOP-
s∗

aACM

BIPOP-
s∗

aACM

best 2009

BIPOP-
s∗

aACM-k

HCMA

BIPOP-aCMA

BIPOP-aCMA-STEP

ill-conditioned fcts multi-modal fcts

HCMA

BIPOP-
s∗

aACM-k

BIPOP-
s∗

aACM

BIPOP-aCMA-STEP

BIPOP-aCMA

best 2009

BIPOP-
s∗

aACM

BIPOP-
s∗

aACM-k

best 2009

HCMA

BIPOP-aCMA-STEP

BIPOP-aCMA

weakly structured multi-modal fcts all functions

BIPOP-
s∗

aACM

best 2009

BIPOP-
s∗

aACM-k

BIPOP-aCMA-STEP

BIPOP-aCMA

HCMA

best 2009

BIPOP-aCMA-STEP

HCMA

BIPOP-
s∗

aACM

BIPOP-
s∗

aACM-k

BIPOP-aCMA

Figure 2: Bootstrapped empirical cumulative distribution of the number of objective function evaluations
divided by dimension (FEvals/D) for 50 targets in 10[−8..2] for all functions and subgroups in 20-D. The “best
2009” line corresponds to the best ERT observed during BBOB 2009 for each single target.



∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ

f1 43 43 43 43 43 43 15/15
BIPOP-a7.5(2) 14(2) 20(2) 33(2) 46(4) 59(4) 15/15
BIPOP-s 4.0(0.2) 5.1(0.4) 6.6(0.7) 10(0.7) 13(0.8) 16(1) 15/15
BIPOP-s 3.7(0.1) 4.9(0.8) 6.2(0.5) 8.9(0.5) 12(0.7) 15(1) 15/15
BIPOP-a4.2(0.5) 5.2(0) 7.3(0) 10(0) 13(0.5) 16(0) 15/15

HCMA 1.00(0.0)⋆41.0(0.0)⋆4 1.0(0.0)⋆4 1.0(0.0)⋆4 1.0(0.0)⋆4 1.0(0.0)⋆415/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ

f2 385 386 387 390 391 393 15/15
BIPOP-a23(4) 27(3) 29(3) 31(2) 33(1) 34(1) 15/15
BIPOP-s 6.8(1) 8.0(1) 8.9(1) 10(1) 10(1) 10(1) 15/15
BIPOP-s 4.3(0.9) 4.6(0.8) 4.9(0.8) 5.4(0.7) 5.7(0.7) 6.1(0.6) 15/15
BIPOP-a 1.3(0.1) 1.5(0.1) 1.7(0.1) 2.1(0.2) 2.4(0.3) 2.8(0.2) 15/15
HCMA 1.3(0.1) 1.5(0.1) 1.7(0.0) 2.1(0.2) 2.4(0.3) 2.8(0.2) 15/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ

f3 5066 7626 7635 7643 7646 7651 15/15
BIPOP-a 9.0(5) 1.7e4(2e4) ∞ ∞ ∞ ∞ 2e7 0/15
BIPOP-s 10(7) ∞ ∞ ∞ ∞ ∞ 2e7 0/5
BIPOP-s 20(23) ∞ ∞ ∞ ∞ ∞ 2e7 0/15
BIPOP-a 0.26(0.0)↓40.37(0.1)↓40.46(0.1)↓40.49(0.1)↓40.51(0.1)↓40.53(0.1)↓415/15

HCMA 0.26(0.0)↓40.37(0.1)↓40.46(0.1)↓40.49(0.1)↓40.51(0.1)↓40.53(0.1)↓415/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ

f4 4722 7628 7666 7700 7758 1.4e5 9/15
BIPOP-a 3.0e4(3e4) ∞ ∞ ∞ ∞ ∞ 2e7 0/15
BIPOP-s ∞ ∞ ∞ ∞ ∞ ∞ 2e7 0/5
BIPOP-s 1.9e4(2e4) ∞ ∞ ∞ ∞ ∞ 2e7 0/15
BIPOP-a0.42(0.1)↓40.67(0.1)↓40.90(0.1) 1.5(0.2) 1.8(0.2) 0.11(1e-2) 15/15

HCMA 0.42(0.1)↓40.67(0.1)↓40.90(0.1) 1.5(0.2) 1.8(0.2) 0.11(1e-2) 15/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ

f5 41 41 41 41 41 41 15/15
BIPOP-a5.5(0.9) 6.6(0.8) 6.7(0.9) 6.7(0.9) 6.7(0.9) 6.7(0.9) 15/15
BIPOP-s 4.7(0.7) 5.3(0.7) 5.4(0.7) 5.4(0.7) 5.4(0.7) 5.4(0.7) 15/15
BIPOP-s 4.5(0.9) 5.2(0.6) 5.3(0.8) 5.4(0.6) 5.4(0.6) 5.4(0.6) 15/15

BIPOP-a1.0(0)⋆4 1.0(0)⋆4 1.0(0)⋆4 1.0(0)⋆4 1.0(0)⋆4 1.0(0)⋆4 15/15
HCMA 1.2(0.1) 1.4(0.3) 1.4(0.3) 1.4(0.3) 1.4(0.3) 1.4(0.3) 15/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ

f6 1296 2343 3413 5220 6728 8409 15/15
BIPOP-a1.5(0.2) 1.2(0.1) 1.1(0.1) 1.1(0.1) 1.1(0.1) 1.1(0.1) 15/15
BIPOP-s1.4(0.3) 1.2(0.2) 1.1(0.2) 1.1(0.2) 1.3(0.3) 1.4(0.3) 15/15
BIPOP-s 1.6(0.5) 1.3(0.4) 1.2(0.3) 1.4(0.3) 1.5(0.3) 1.7(0.4) 15/15
BIPOP-a1.6(0.2) 1.3(0.1) 1.1(0.1) 1.1(0.1) 1.1(0.1) 1.1(0.1) 15/15
HCMA 1.7(0.3) 1.4(0.2) 1.3(0.2) 1.4(0.2) 1.6(0.3) 1.7(0.4) 15/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ

f7 1351 4274 9503 16524 16524 16969 15/15
BIPOP-a1.3(1) 2.9(2) 2.3(1) 1.5(0.6) 1.5(0.6) 1.4(0.6) 15/15
BIPOP-s 1.0(0.9) 1.6(0.6) 0.84(0.3) 0.61(0.1)↓30.61(0.1)↓30.60(0.1)↓315/15

BIPOP-s0.52(0.2)↓21.2(0.9) 0.65(0.3) 0.56(0.2) 0.56(0.2) 0.55(0.2) 15/15

BIPOP-a1.5(1) 3.2(2) 2.5(1) 1.5(0.7) 1.5(0.7) 1.5(0.7) 15/15
HCMA 0.98(0.9) 1.1(0.2) 0.84(0.4) 0.57(0.2) 0.57(0.2) 0.57(0.2) 15/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ

f8 2039 3871 4040 4219 4371 4484 15/15
BIPOP-a3.3(0.9) 4.0(3) 4.3(3) 4.4(3) 4.4(3) 4.5(3) 15/15
BIPOP-s 1.3(0.2) 1.5(0.9) 1.5(0.9) 1.6(0.8) 1.6(0.8) 1.6(0.8) 15/15

BIPOP-s1.0(0.1)⋆ 0.97(0.1)⋆21.0(0.1)⋆2 1.1(0.1)⋆2 1.1(0.1)⋆2 1.1(0.1)⋆2 15/15
BIPOP-a3.7(1.0) 4.1(3) 4.4(3) 4.5(3) 4.5(3) 4.5(3) 15/15
HCMA 1.3(0.2) 1.1(0.1) 1.2(0.1) 1.2(0.1) 1.2(0.1) 1.2(0.1) 15/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ

f9 1716 3102 3277 3455 3594 3727 15/15
BIPOP-a3.8(1.0) 4.4(0.6) 4.7(0.6) 4.8(0.5) 4.8(0.5) 4.8(0.5) 15/15
BIPOP-s 1.5(0.3) 1.7(0.2) 1.7(0.2) 1.8(0.2) 1.8(0.2) 1.7(0.2) 15/15
BIPOP-s1.3(0.2) 1.3(0.2)⋆ 1.4(0.2)⋆ 1.4(0.2)⋆ 1.4(0.2)⋆ 1.4(0.2) 15/15
BIPOP-a3.9(0.6) 4.1(0.4) 4.3(0.3) 4.5(0.3) 4.5(0.3) 4.5(0.3) 15/15
HCMA 1.6(0.3) 1.5(0.3) 1.6(0.3) 1.6(0.3) 1.6(0.3) 1.6(0.3) 15/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ

f10 7413 8661 10735 14920 17073 17476 15/15
BIPOP-a1.2(0.2) 1.2(0.2) 1.1(0.1) 0.83(0.0)↓40.76(0.0)↓40.77(0.0)↓415/15

BIPOP-s 0.36(0.1)↓40.35(0.0)↓40.31(0.0)↓40.24(0.0)↓40.23(0.0)↓40.23(0.0)↓415/15

BIPOP-s0.21(0.0)⋆2
↓40.20(0.0)↓40.17(0.0)⋆

↓40.13(0.0)
⋆
↓40.13(0.0)

⋆
↓40.13(0.0)↓415/15

BIPOP-a1.2(0.2) 1.2(0.1) 1.0(0.1) 0.80(0.1)↓40.74(0.0)↓40.76(0.0)↓415/15

HCMA 0.25(0.0)↓40.23(0.0)↓40.20(0.0)↓40.15(0.0)↓40.14(0.0)↓40.15(0.0)↓415/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ

f11 1002 2228 6278 9762 12285 14831 15/15
BIPOP-a4.5(0.3) 2.3(0.1) 0.87(0.0) 0.64(0.0)↓40.56(0.0)↓40.51(0.0)↓415/15

BIPOP-s 2.5(0.4) 1.2(0.2) 0.44(0.1) 0.30(0.0)↓40.26(0.0)↓40.23(0.0)↓415/15

BIPOP-s1.6(0.4)⋆ 0.77(0.2)⋆ 0.29(0.1)↓30.20(0.0)↓40.17(0.0)
⋆
↓40.15(0.0)↓415/15

BIPOP-a4.8(0.4) 2.4(0.2) 0.91(0.1) 0.66(0.0)↓40.57(0.0)↓40.52(0.0)↓415/15

HCMA 1.7(0.2) 0.81(0.1) 0.30(0.0)↓40.21(0.0)↓40.18(0.0)↓40.16(0.0)↓415/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ

f12 1042 1938 2740 4140 12407 13827 15/15
BIPOP-a3.3(3) 3.6(3) 4.0(2) 3.7(1) 1.5(0.4) 1.5(0.4) 15/15
BIPOP-s 0.99(0.9) 1.1(1) 1.2(0.9) 1.2(0.9) 0.55(0.3)↓ 0.59(0.3)↓215/15

BIPOP-s0.83(0.1) 0.93(0.9) 1.2(0.9) 1.1(0.6) 0.51(0.2)↓20.53(0.2)↓215/15

BIPOP-a3.1(3) 3.6(3) 3.8(3) 3.5(2) 1.5(0.6) 1.5(0.6) 15/15
HCMA 1.7(1) 1.7(1) 1.6(1) 1.4(0.7) 0.60(0.2)↓ 0.61(0.2)↓215/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ

f13 652 2021 2751 18749 24455 30201 15/15
BIPOP-a4.1(3) 3.3(3) 3.7(3) 0.85(0.4) 1.1(0.8) 1.4(0.6) 15/15
BIPOP-s1.1(0.9) 0.89(0.7) 1.4(1.0) 0.38(0.1)↓40.42(0.2)↓40.40(0.1)↓415/15

BIPOP-s 1.1(0.7) 0.74(0.5) 0.85(0.4) 0.17(0.1)↓40.21(0.1)↓40.22(0.1)↓415/15

BIPOP-a5.0(5) 2.7(2) 4.4(2) 0.89(0.3) 1.1(0.6) 1.1(0.6) 15/15
HCMA 1.3(0.1) 0.90(0.5) 0.99(0.7) 0.25(0.1)↓40.27(0.1)↓40.24(0.1)↓415/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ

f14 75 239 304 932 1648 15661 15/15
BIPOP-a3.2(1) 2.6(0.5) 3.3(0.4) 3.2(0.3) 3.8(0.2) 0.68(0.0)↓415/15

BIPOP-s 3.2(1) 1.8(0.6) 1.9(0.4) 1.5(0.2) 1.4(0.2) 0.23(0.0)↓415/15

BIPOP-s 3.1(0.7) 1.8(0.3) 2.1(0.5) 1.4(0.2) 1.3(0.1) 0.19(0.0)⋆3
↓415/15

BIPOP-a5.4(1) 3.3(0.8) 3.9(0.7) 3.3(0.4) 3.9(0.4) 0.68(0.0)↓415/15

HCMA 1.3(0.3)⋆3 2.7(1) 2.9(0.3) 1.7(0.1) 1.5(0.1) 0.21(0.0)↓415/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ

f15 30378 1.5e5 3.1e5 3.2e5 4.5e5 4.6e5 15/15
BIPOP-a0.88(0.4) 1.6(0.6) 1.2(0.6) 1.2(0.6) 0.89(0.5) 0.89(0.4) 15/15
BIPOP-s 0.65(0.6) 1.3(0.6) 0.91(0.7) 0.89(0.6) 0.66(0.5) 0.65(0.5) 15/15
BIPOP-s0.62(0.4) 1.8(0.4) 0.96(0.5) 0.97(0.5) 0.71(0.3)↓20.73(0.3)↓215/15

BIPOP-a0.90(0.8) 1.5(0.6) 1.0(0.6) 1.0(0.6) 0.76(0.4)↓ 0.76(0.4)↓ 15/15

HCMA 1.0(2) 1.5(0.8) 0.90(0.7) 0.90(0.7) 0.66(0.5)↓ 0.66(0.5)↓ 15/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ

f16 1384 27265 77015 1.9e5 2.0e5 2.2e5 15/15
BIPOP-a1.7(0.6) 0.87(0.5) 0.78(0.5) 0.92(0.4) 1.2(0.8) 1.1(0.8) 15/15
BIPOP-s 1.9(0.6) 0.74(0.4) 0.51(0.3) 0.60(0.5) 0.84(0.5) 0.83(0.5) 15/15
BIPOP-s1.3(0.3) 0.58(0.3) 0.46(0.2)↓ 0.41(0.2)↓20.61(0.5) 1.0(0.6) 15/15

BIPOP-a2.3(0.9) 0.67(0.6) 1.0(1.0) 1.1(1) 1.3(1) 1.2(0.9) 15/15
HCMA 1.8(0.8) 0.66(0.5) 0.52(0.2)↓ 0.49(0.3) 0.69(0.5) 1.1(1) 15/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ

f17 63 1030 4005 30677 56288 80472 15/15
BIPOP-a3.0(1) 1.1(0.3) 1.7(2) 1.0(0.4) 0.90(0.5) 1.1(0.4) 15/15
BIPOP-s 3.2(2) 1.2(0.4) 2.7(3) 1.2(0.7) 1.2(0.5) 1.4(0.8) 15/15
BIPOP-s 2.8(1) 3.3(4) 3.8(3) 1.5(0.6) 1.7(0.5) 1.6(0.5) 15/15
BIPOP-a4.2(2) 2.0(0.3) 1.00(2) 0.94(0.3) 1.0(0.5) 1.1(0.4) 15/15
HCMA 2.7(4) 2.8(1) 3.1(3) 1.6(0.9) 1.8(0.7) 1.8(0.8) 15/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ

f18 621 3972 19561 67569 1.3e5 1.5e5 15/15
BIPOP-a0.94(0.2) 0.77(0.1) 1.5(0.7) 1.4(0.5) 1.2(0.7) 1.5(0.7) 15/15
BIPOP-s 1.0(0.3) 1.5(1) 0.92(0.4) 0.96(0.4) 1.6(0.6) 1.6(0.5) 15/15
BIPOP-s 1.1(0.5) 3.2(3) 1.9(0.6) 1.4(0.8) 1.4(0.7) 1.6(0.8) 15/15
BIPOP-a1.2(0.2) 1.0(2) 1.2(0.7) 1.2(0.6) 1.2(0.6) 1.3(0.6) 15/15
HCMA 1.4(0.4) 2.7(3) 1.3(0.5) 1.1(0.6) 1.1(0.6) 1.2(0.6) 15/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ

f19 1 1 3.4e5 6.2e6 6.7e6 6.7e6 15/15
BIPOP-a184(66) 2.9e4(2e4)1.4(1) 1.0(0.4) 1.0(0.4) 1.0(0.4) 15/15
BIPOP-s 143(52) 2.5e4(1e4)0.42(0.3) 0.72(0.4)↓ 0.73(0.4) 0.73(0.4) 15/15

BIPOP-s 148(44) 3.3e4(3e4)0.72(0.8) 0.76(0.2) 0.77(0.3) 0.77(0.3) 15/15
BIPOP-a259(90) 2.7e4(2e4)1.2(1) 0.86(0.3) 0.94(0.3) 0.94(0.3) 15/15

HCMA 49(6)⋆3 3.5e4(3e4)0.72(0.7) 0.95(0.4) 0.96(0.3) 0.96(0.3) 15/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ

f20 82 46150 3.1e6 5.5e6 5.6e6 5.6e6 14/15
BIPOP-a4.9(1) 4.8(2) 1.4(0.6) 0.95(0.4) 0.95(0.3) 0.95(0.3) 15/15
BIPOP-s 2.9(0.5) 2.1(1) 0.97(0.7) 0.87(0.4) 0.86(0.4) 0.85(0.4) 15/15
BIPOP-s 2.8(0.5) 2.4(2) 1.1(0.6) 0.93(0.3) 0.93(0.3) 0.94(0.3) 15/15
BIPOP-a6.3(1) 4.7(2) 1.0(0.5) 0.95(0.3) 0.95(0.3) 0.95(0.3) 15/15

HCMA 0.77(0.4)⋆41.9(1) 1.2(0.6) 0.88(0.3) 0.88(0.3) 0.88(0.3) 15/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ

f21 561 6541 14103 14643 15567 17589 15/15
BIPOP-a7.8(12) 110(57) 72(89) 69(86) 65(81) 58(71) 15/15
BIPOP-s 2.6(4) 1.5(1) 6.0(11) 5.8(11) 5.5(10) 4.8(9) 15/15
BIPOP-s 2.1(2) 3.7(5) 20(6) 19(6) 19(6) 17(5) 15/15
BIPOP-a4.8(5) 80(95) 53(109) 51(105) 48(99) 43(88) 15/15
HCMA 0.76(2) 3.5(5) 49(50) 47(48) 44(45) 39(40) 15/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ

f22 467 5580 23491 24948 26847 1.3e5 12/15
BIPOP-a37(59) 260(240) 273(450) 257(401) 239(394) 48(75) 13/15
BIPOP-s 7.7(9) 100(96) 178(320) 173(301) 168(274) 35(54) 15/15
BIPOP-s 7.6(10) 221(549) 311(450) 293(436) 273(399) 54(74) 13/15
BIPOP-a63(74) 220(507) 288(396) 271(373) 252(347) 50(69) 14/15
HCMA 11(16) 135(194) 486(638) 458(479) 425(558) 85(114) 11/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ

f23 3.2 1614 67457 4.9e5 8.1e5 8.4e5 15/15
BIPOP-a 4.7(9) 43(44) 1.2(1) 1.4(1) 0.85(0.7) 0.90(0.6) 15/15
BIPOP-s 3.0(6) 21(13) 0.61(0.3) 1.4(1) 1.3(1) 1.3(1) 15/15
BIPOP-s 3.2(4) 29(36) 0.74(0.8) 2.7(5) 1.8(3) 1.9(3) 15/15
BIPOP-a 2.3(4) 23(26) 0.69(0.6) 2.3(2) 1.4(1) 1.5(1) 15/15
HCMA 12(10) 23(15) 0.96(0.7) 1.8(2) 1.1(1) 1.1(1) 15/15

∆fopt 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ

f24 1.3e6 7.5e6 5.2e7 5.2e7 5.2e7 5.2e7 3/15
BIPOP-a1.00(1) 0.94(0.9) 2.8(3) 2.8(3) 2.8(3) 2.8(3) 2/15
BIPOP-s 0.99(1) 0.88(0.7) 0.80(0.8) 0.80(0.8) 0.80(1.0) 0.79(0.8) 6/15
BIPOP-s 1.3(1) 0.93(1) 1.2(1) 1.2(1) 1.2(1) 1.2(1) 4/15
BIPOP-a1.7(2) 0.90(0.9) 2.7(3) 2.7(3) 2.7(3) 2.7(3) 2/15
HCMA 0.88(1) 1.2(1) 5.7(6) 5.7(6) 5.7(6) 5.7(6) 1/15

Table 1: Expected running time (ERT in number of function evaluations) divided by the respective best ERT
measured during BBOB-2009 (given in the respective first row) for different ∆f values in dimension 20. The
central 80% range divided by two is given in braces. The median number of conducted function evaluations
is additionally given in italics, if ERT(10−7) = ∞. #succ is the number of trials that reached the final target
fopt + 10−8. Best results are printed in bold.
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