Abstract : Continuing innovation in science and technology is vital for our society and requires ever increasing computational resources. However, delivering such resources has become intolerably complex, ad-hoc, costly and error prone due to an enormous number of available design and optimization choices combined with the complex interactions between all software and hardware components. Auto-tuning, run-time adaptation and machine learning based approaches have been demonstrating good promise to address above challenges for more than a decade but are still far from the widespread production use due to unbearably long exploration and training times, lack of a common experimental methodology, and lack of public repositories for unified data collection, analysis and mining.