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Abstract: This paper investigates co-scheduling algorithms for processing a set of parallel applications.
Instead of executing each application one by one, using a maximum degree of parallelism for each of them,
we aim at scheduling several applications concurrently. We partition the original application set into a
series of packs, which are executed one by one. A pack comprises several applications, each of them with
an assigned number of processors, with the constraint that the total number of processors assigned within a
pack does not exceed the maximum number of available processors. The objective is to determine a partition
into packs, and an assignment of processors to applications, that minimize the sum of the execution times of
the packs. We thoroughly study the complexity of this optimization problem, and propose several heuristics
that exhibit very good performance on a variety of workloads, whose application execution times model
profiles of parallel scientific codes. We show that co-scheduling leads to to faster workload completion
time and to faster response times on average (hence increasing system throughput and saving energy), for
significant benefits over traditional scheduling from both the user and system perspectives.
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Algorithmes d’ordonnancement par lots de taches
parallélisables

Résumé :  Nous étudions des algorithmes d’ordonnancement par lots pour un en-
semble de taches parallélisables. Plutot que d’ordonnancer les taches séquentiellement
en utilisant le degré maximum de parallélisme pour chacune d’entre elles, nous cher-
chons a ordonnancer plusieurs tdches de maniere concurrente. L’idée est de partitionner
I’ensemble des taches en une série de lots, qui seront exécutés les uns apres les autres.
Un lot est composé de plusieurs tiches, et un certain nombre de processeurs est alloué
a chacune de ces taches, sous la contrainte que le nombre total de processeurs alloués a
un lot ne dépasse pas le nombre maximum de processeurs disponibles. L’ objectif est de
trouver une partition de I’ensemble des taches en lots, et une allocation de processeurs
optimale pour la minimisation de la somme des temps d’exécution de chaque lot.
Nous étudions la complexité de ce probleme d’optimisation, et proposons plu-
sieurs heuristiques qui obtiennent d’excellentes performances sur plusieurs ensembles
de taches représentatifs des calculs paralleles scientifiques. Notre technique d’ordon-
nancement par lots permet non seulement d’obtenir un gain sur le temps d’exécution
total, mais obtient également d’excellents résultats pour le temps de réponse moyen.

Mots-clés : Ordonnancement, algorithmes d’approximation, heuristiques
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1 Introduction

The execution time of many high-performance computing applications can be signif-
icantly reduced when using a large number of processors. Indeed, parallel multicore
platforms enable the fast processing of very large size jobs, thereby rendering the so-
lution of challenging scientific problems more tractable. However, monopolizing all
computing resources to accelerate the processing of a single application is very likely
to lead to inefficient resource usage. This is because the typical speed-up profile of
most applications is sub-linear and even reaches a threshold: when the number of pro-
cessors increases, the execution time first decreases, but not linearly, because it suffers
from the overhead due to communications and load imbalance; at some point, adding
more resources does not lead to any significant benefit.

In this paper, we consider a pool of several applications that have been submitted for
execution. Rather than executing each of them in sequence, with the maximum num-
ber of available resources, we introduce co-scheduling algorithms that execute several
applications concurrently. We do increase the individual execution time of each appli-
cation, but (i) we improve the efficiency of the parallelization, because each application
is scheduled on fewer resources; (ii) the total execution time will be much shorter; and
(iii) the average response time will also be shorter. In other words, co-scheduling in-
creases platform yield (thereby saving energy) without sacrificing response time.

In operating high performance computing systems, the costs of energy consump-
tion can greatly impact the total costs of ownership. Consequently, there is a move
away from a focus on peak performance (or speed) and towards improving energy effi-
ciency [12, 20]. Recent results on improving the energy efficiency of workloads can be
broadly classified into approaches that focus on dynamic voltage and frequency scal-
ing, or alternatively, task aggregation or co-scheduling. In both types of approaches, the
individual execution time of an application may increase but there can be considerable
energy savings in processing a workload.

More formally, we deal with the following problem: given (i) a distributed-memory
platform with p processors, and (ii) n applications, or tasks, 7}, with their execution
profiles (¢; ; is the execution time of T; with j processors), what is the best way to
co-schedule them, i.e., to partition them into packs, so as to minimize the sum of the
execution times over all packs. Here a pack is a subset of tasks, together with a pro-
cessor assignment for each task. The constraint is that the total number of resources
assigned to the pack does not exceed p, and the execution time of the pack is the longest
execution time of a task within that pack. The objective of this paper is to study this
co-scheduling problem, both theoretically and experimentally, We aim at demonstrat-
ing the gain that can be achieved through co-scheduling, both on platform yield and
response time, using a set of real-life application profiles.

On the theoretical side, to the best of our knowledge, the complexity of the co-
scheduling problem has never been investigated, except for the simple case when one
enforces that each pack comprises at most £ = 2 tasks [21]. While the problem has
polynomial complexity for the latter restriction (with at most k = 2 tasks per pack), we
show that it is NP-complete when assuming at most k£ > 3 tasks per pack. Note that
the instance with £ = p is the general, unconstrained, instance of the co-scheduling
problem. We also propose an approximation algorithm for the general instance. In
addition, we propose an optimal processor assignment procedure when the tasks that
form a pack are given. We use these two results to derive efficient heuristics. Finally,
we discuss how to optimally solve small-size instances, either through enumerating
partitions, or through an integer linear program: this has a potentially exponential cost,
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but allows us to assess the absolute quality of the heuristics that we have designed.
Altogether, all these results lay solid theoretical foundations for the problem.

On the experimental side, we study the performance of the heuristics on a variety
of workloads, whose application execution times model profiles of parallel scientific
codes. We focus on three criteria: (i) cost of the co-schedule, i.e., total execution time;
(ii) packing ratio, which evaluates the idle time of processors during execution; and (iii)
response time compared to a fully parallel execution of each task starting from shortest
task. The proposed heuristics show very good performance within a short running time,
hence validating the approach.

The paper is organized as follows. We discuss related work in Section 2. The
problem is then formally defined in Section 3. Theoretical results are presented in
Section 4, exhibiting the problem complexity, discussing sub-problems and optimal
solutions, and providing an approximation algorithm. Building upon these results,
several polynomial-time heuristics are described in Section 5, and they are thoroughly
evaluated in Section 6. Finally we conclude and discuss future work in Section 7.

2 Related work

In this paper, we deal with pack scheduling for parallel tasks, aiming at makespan
minimization (recall that the makespan is the total execution time). The corresponding
problem with sequential tasks (tasks that execute on a single processor) is easy to solve
for the makespan minimization objective: simply make a pack out of the largest p
tasks, and proceed likewise while there remain tasks. Note that the pack scheduling
problem with sequential tasks has been widely studied for other objective functions,
see Brucker et al. [4] for various job cost functions, and Potts and Kovalyov [18] for a
survey. Back to the problem with sequential tasks and the makespan objective, Koole
and Righter in [13] deal with the case where the execution time of each task is unknown
but defined by a probabilistic distribution. They showed counter-intuitive properties,
that enabled them to derive an algorithm that computes the optimal policy when there
are two processors, improving the result of Deb and Serfozo [7], who considered the
stochastic problem with identical jobs.

To the best of our knowledge, the problem with parallel tasks has not been studied
as such. However, it was introduced by Dutot et al. in [8] as a moldable-by-phase
model to approximate the moldable problem. The moldable task model is similar to
the pack-scheduling model, but one does not have the additional constraint (pack con-
straint) that the execution of new tasks cannot start before all tasks in the current pack
are completed. Dutot et al. in [8] provide an optimal polynomial-time solution for
the problem of pack scheduling identical independent tasks, using a dynamic program-
ming algorithm. This is the only instance of pack-scheduling with parallel tasks that
we found in the literature.

A closely related problem is the rectangle packing problem, or 2D-Strip-packing.
Given a set of rectangles of different sizes, the problem consists in packing these rect-
angles into another rectangle of size p x m. If one sees one dimension (p) as the number
of processors, and the other dimension (m) as the maximum makespan allowed, this
problem is identical to the variant of our problem where the number of processors is
pre-assigned to each task: each rectangle r; of size p; X m; that has to be packed can
be seen as the task 7T; to be computed on p; processors, with t; ,, = m;. In [22],
Turek et al. approximated the rectangle packing problem using shelf-based solutions:
the rectangles are assigned to shelves, whose placements correspond to constant time
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values. All rectangles assigned to a shelf have equal starting times, and the next shelf is
placed on top of the previous shelf. This is exactly what we ask in our pack-scheduling
model. This problem is also called level packing in some papers, and we refer the
reader to a recent survey on 2D-packing algorithms by Lodi et al. [16]. In particular,
Coffman et al. in [6] show that level packing algorithm can reach a 2.7 approximation
for the 2D-Strip-packing problem (1.7 when the length of each rectangle is bounded
by 1). Unfortunately, all these algorithms consider the number of processors (or width
of the rectangles) to be already fixed for each task, hence they cannot be used directly
in our problem for which a key decision is to decide the number of processors assigned
to each task.

In practice, pack scheduling is really useful as shown by recent results. Lietal. [15]
propose a framework to predict the energy and performance impacts of power-aware
MPI task aggregation. Frachtenberg et al. [9] show that system utilization can be im-
proved through their schemes to co-schedule jobs based on their load-balancing re-
quirements and inter-processor communication patterns. In our earlier work [21], we
had shown that even when the pack-size is limited to 2, co-scheduling based on speed-
up profiles can lead to faster workload completion and corresponding savings in system
energy.

Several recent publications [2, 5, 11] consider co-scheduling at a single multicore
node, when contention for resources by co-scheduled tasks leads to complex tradeofts
between energy and performance measures. Chandra et al. [5] predict and utilize inter-
thread cache contention at a multicore in order to improve performance. Hankendi
and Coskun [11] show that there can be measurable gains in energy per unit of work
through the application of their multi-level co-scheduling technique at runtime which is
based on classifying tasks according to specific performance measures. Bhaduria and
McKee [2] consider local search heuristics to co-schedule tasks in a resource-aware
manner at a multicore node to achieve significant gains in thread throughput per watt.

These publications demonstrate that complex tradeoffs cannot be captured through
the use of the speed-up measure alone, without significant additional measurements
to capture performance variations from cross-application interference at a multicore
node. Additionally, as shown in our earlier work [21], we expect significant benefits
even when we aggregate only across multicore nodes because speed-ups suffer due to
of the longer latencies of data transfer across nodes. We can therefore project savings
in energy as being commensurate with the savings in the time to complete a workload
through co-scheduling. Hence, we only test configurations where no more than a single
application can be scheduled on a multicore node.

3 Problem definition

The application consists of n independent tasks 77, . .., T,. The target execution plat-
form consists of p identical processors, and each task 7; can be assigned an arbitrary
number o (i) of processors, where 1 < o(i) < p. The objective is to minimize the
total execution time by co-scheduling several tasks onto the p resources. Note that the
approach is agnostic of the granularity of each processor, which can be either a single
CPU or a multicore node.

Speedup profiles — Let ¢; ; be the execution time of task T; with j processors,
and work(i, j) = j x t; ; be the corresponding work. We assume the following for
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1<i<nand1<j<p:
Non-increasing execution time: ¢; j4+1 < t; 5 (D)

Non-decreasing work: work (i, j) < work(i,j + 1) )

Equation (1) implies that execution time is a non-increasing function of the number of
processors. Equation (2) states that efficiency decreases with the number of enrolled
processors: in other words, parallelization has a cost! As a side note, we observe that
these requirements make good sense in practice: many scientific tasks 7; are such that
t;,; first decreases (due to load-balancing) and then increases (due to communication
overhead), reaching a minimum for j = jg; we can always let ¢; ; = ¢; ;, for j > jo
by never actually using more than jy processors for 7;.

Co-schedules — A co-schedule partitions the n tasks into groups (called packs),
so that (i) all tasks from a given pack start their execution at the same time; and (ii)
two tasks from different packs have disjoint execution intervals. See Figure 1 for an
example. The execution time, or cost, of a pack is the maximal execution time of a task
in that pack, and the cost of a co-schedule is the sum of the costs of each pack.

k-IN-p-COSCHEDULE optimization problem — Given a fixed constant k£ < p,
find a co-schedule with at most k tasks per pack that minimizes the execution time.
The most general problem is when k£ = p, but in some frameworks we may have an
upper bound k£ < p on the maximum number of tasks within each pack.

4\ processors

Py Py %o Py

4
time

Figure 1: A co-schedule with four packs P, to Py.

4 Theoretical results

First we discuss the complexity of the problem in Section 4.1, by exhibiting polynomial
and NP-complete instances. Next we discuss how to optimally schedule a set of k tasks
in a single pack (Section 4.2). Then we explain how to compute the optimal solution
(in expected exponential cost) in Section 4.3. Finally, we provide an approximation
algorithm in Section 4.4.

4.1 Complexity

Theorem 1. The 1-IN-p-COSCHEDULE and 2-IN-p-COSCHEDULE problems can both
be solved in polynomial time.

Proof. This result is obvious for 1-IN-p-COSCHEDULE: each task is assigned exactly
p processors (see Equation (1)) and the minimum execution time is Zi:l tip-

This proof is more involved for 2-IN-p-COSCHEDULE, and we start with the 2-IN-
2-COSCHEDULE problem to get an intuition. Consider the weighted undirected graph
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G = (V,E), where |V| = n, each vertex v; € V corresponding to a task 7;. The
edge set E is the following: (i) for all 7, there is a loop on v; of weight ¢; »; (ii) for all
i < 4/, there is an edge between v; and v, of weight max(¢; 1,t, 1). Finding a perfect
matching of minimal weight in G leads to the optimal solution to 2-IN-2-COSCHE-
DULE, which can thus be solved in polynomial time.

For the 2-IN-p-COSCHEDULE problem, the proof is similar, the only difference lies
in the construction of the edge set I: (i) for all %, there is a loop on v; of weight ¢; ,,; (ii)
forall i < ¢/, there is an edge between v; and v, of weight min;—_, (max(t; p—;,ti' ;))-
Again, a perfect matching of minimal weight in G gives the optimal solution to 2-IN-
p-COSCHEDULE. We conclude that the 2-IN-p-COSCHEDULE problem can be solved
in polynomial time. O

Theorem 2. When k > 3, the k-IN-p-COSCHEDULE problem is strongly NP-complete.

Proof. We prove the NP-completeness of the decision problem associated to k-IN-p-
COSCHEDULE: given n independent tasks, p processors, a set of execution times t; ;
for 1 < i < nandl1l < j < p satisfying Equations (1) and (2), a fixed constant
k < p and a deadline D, can we find a co-schedule with at most k tasks per pack, and
whose execution time does not exceed D? The problem is obviously in NP: if we have
the composition of every pack, and for each task in a pack, the number of processors
onto which it is assigned, we can verify in polynomial time: (i) that it is indeed a pack
schedule; (ii) that the execution time is smaller than a given deadline.

We first prove the strong completeness of 3-IN-p-COSCHEDULE. We use a reduc-
tion from 3-PARTITION. Consider an arbitrary instance Z; of 3-PARTITION: given an
integer B and 3n integers a1, . . . , a3n, can we partition the 3n integers into n triplets,
each of sum B? We can assume that Ef’zl a; = nB, otherwise Z; has no solution.
The 3-PARTITION problem is NP-hard in the strong sense [10], which implies that we
can encode all integers (a1, ..., a3y, B) in unary. We build the following instance Z,
of 3-IN-p-COSCHEDULE: the number of processors is p = B, the deadline is D = n,
there are 3n tasks T;, with the following execution times: for all ¢, 7, if j < a; then
t;; =1+ a%_, otherwise t; ; = 1. It is easy to check that Equations (1) and (2) are
both satisfied. For the latter, since there are only two possible execution times for
each task, we only need to check Equation (2) for j = a; — 1, and we do obtain that
(a; — 1)1+ a—{) < a;. Finally, Z has a size polynomial in the size of Z;, even if we
write all instance parameters in unary: the execution time is 7, and the ¢; ; have the
same size as the a;.

We now prove that Z; has a solution if and only if Z5 does. Assume first that 7
has a solution. For each triplet (a;, aj, ay) of I, we create a pack with the three tasks
(T3, T}, Ty) where T; is scheduled on a; processors, T on a; processors, and T on ay,
processors. By definition, we have a; + a; + ar = B, and the execution time of this
pack is 1. We do this for the n triplets, which gives a valid co-schedule whose total
execution time n. Hence the solution to Zs.

Assume now that 7 has a solution. The minimum execution time for any pack is
1 (since it is the minimum execution time of any task and a pack cannot be empty).
Hence the solution cannot have more than n packs. Because there are 3n tasks and
the number of elements in a pack is limited to three, there are exactly n packs, each
of exactly 3 elements, and furthermore all these packs have an execution time of 1
(otherwise the deadline n is not matched). If there were a pack (7}, T}, Tj) such that
a; + a; + ay > B, then one of the three tasks, say T;, would have to use fewer than
a; processors, hence would have an execution time greater than 1. Therefore, for each
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pack (T, Tj, Ty, ), we have a; +a; +ay < B. The fact that this inequality is an equality
for all packs follows from the fact that Zf"l a; = nB. Finally, we conclude by saying
that the set of triplets (a;, a;, ax) for every pack (T}, Tj, Ty) is a solution to Z.

The final step is to prove the completeness of k-IN-p-COSCHEDULE for a given
k > 4. We perform a similar reduction from the same instance Z; of 3-PARTITION. We
construct the instance Z, of k-IN-p-COSCHEDULE where the number of processors is
p = B+(k—3)(B+1) and the deadline is D = n. There are 3n tasks 7; with the same

1

execution times as before (for 1 < 7 < 3n, if j < a; then ¢; ; = 1 + —-, otherwise

t;; = 1), and also n(k — 3) new identical tasks such that, for 3n + 1 ”g 1 < kn,
t;,; = max (%, 1). It is easy to check that Equations (1) and (2) are also fulfilled

for the new tasks. If 7; has a solution, we construct the solution to Z, similarly to the
previous reduction, and we add to each pack k — 3 tasks T; with 3n+1 < ¢ < kn, each
assigned to B + 1 processors. This solution has an execution time exactly equal to n.
Conversely, if Z» has a solution, we can verify that there are exactly n packs (there are
kn tasks and each pack has an execution time at least equal to 1). Then we can verify
that there are at most (k — 3) tasks T; with 3n + 1 < ¢ < kn per pack, since there are
exactly (k — 3)(B + 1) + B processors. Otherwise, if there were k — 2 (or more) such
tasks in a pack, then one of them would be scheduled on less than B + 1 processors,
and the execution time of the pack would be greater than 1. Finally, we can see that
in Z,, each pack is composed of (k — 3) tasks T; with 3n + 1 < 4 < kn, scheduled
on (k — 3)(B + 1) processors at least, and that there remains triplets of tasks 7T;, with
1 <4 < 3n, scheduled on at most B processors. The end of the proof is identical to
the reduction in the case k = 3. O

Note that the 3-IN-p-COSCHEDULE problem is NP-complete, and the 2-IN-p-CO-
SCHEDULE problem can be solved in polynomial time, hence 3-IN-3-COSCHEDULE
is the simplest problem whose complexity remains open.

4.2 Scheduling a pack of tasks

In this section, we discuss how to optimally schedule a set of k£ tasks in a single
pack: the k tasks T7,...,T} are given, and we search for an assignment function
o:{1,...,k} — {1,...,p} such that Zleo(i) < p, where o(7) is the number
of processors assigned to task 7;. Such a schedule is called a 1-pack-schedule, and
its cost is maxi<i<k t;,o(;)- In Algorithm 1 below, we use the notation T; <, Tj if
bio(i) < Ljo(j)*

Theorem 3. Given k tasks to be scheduled on p processors in a single pack, Algo-
rithm 1 finds a 1-pack-schedule of minimum cost in time O (plog(k)).

In this greedy algorithm, we first assign one processor to each task, and while there
are processors that are not processing any task, we select the task with the longest
execution time and assign an extra processor to this task. Algorithm 1 performs p — k
iterations to assign the extra processors. We denote by o(©) the current value of the
function o at the end of iteration . For convenience, we let t; o = +oo for 1 <i < k.
We start with the following lemma:

Lemma: At the end of iteration £ of Algorithm 1, let T}« be the first task of the sorted
list, i.e., the task with longest execution time. Then, for all ¢, ;. ;) (;+) <t o) (5)—1-

Proof. Let T;« be the task with longest execution time at the end of iteration ¢. For
tasks such that o(¥)(7) = 1, the result is obvious since t;,0 = +oo. Let us consider any
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Algorithm 1: Finding the optimal 1-pack-schedule o of k tasks in the same pack.

procedure Optimal-1-pack-schedule(11, ..., T})

begin
fori =110 kdo
| o(i)«1
end

Let L be the list of tasks sorted in non-increasing values of <, ;
Davailable 1= P — k;
while Pavailable 7é 0do
T;« :=head(L);
L :=tail(L);
o(i*) o)+ 1;
Davailable *= Pavailable — 1
L :=Insert T;+ in L according to its <, value;
end
return o,

end

task T; such that o) (i) > 1. Let #' + 1 be the last iteration when a new processor was
assigned to task T}: o(*) (i) = 0¥ (i) — 1 and ¢’ < ¢. By definition of iteration ¢’ + 1,
task 7; was chosen because t; o) (;) Was greater than any other task, in particular
i o) (i) = tix g (i+)- Also, since we never remove processors from tasks, we have

o) (i) < o®@(i) and ¢ (i*) < ¢ (i*). Finally, tiv o0 (ir) < b gy <

i o)) = tio®(i)—1-
We are now ready to prove Theorem 3.

of Theorem 3. Let o be the 1-pack-schedule returned by Algorithm 1 of cost ¢(c), and
let T;+ be a task such that ¢(0) = t;« ,(;+). Let o’ be a 1-pack-schedule of cost c(c”).
We prove below that c(o’) > ¢(o), hence o is a 1-pack-schedule of minimum cost:

e If o/ (i*) < o(i*), then T}« has fewer processors in ¢’ than in o, hence its execu-
tion time is larger, and ¢(c”) > ¢(0).

o If o/(#*) > o(i*), then there exists ¢ such that /(i) < o(i) (since the total
number of processors is p in both o and ¢’). We can apply the previous Lemma
at the end of the last iteration, where 7+ is the task of maximum execution time:
tis o(ir) < tio(i)—1 < ti,o()» and therefore c¢(o’) > c(0).

Finally, the time complexity is obtained as follows: first we sort & elements, in time
O(klog k). Then there are p — k iterations, and at each iteration, we insert an element
in a sorted list of k& — 1 elements, which takes O(log k) operations (use a heap for the
data structure of L). O

Note that it is easy to compute an optimal 1-pack-schedule using a dynamic-programming
algorithm: the optimal cost is ¢(k, p), which we compute using the recurrence formula

c(t;q) = min {max(c(i—1,¢—¢) tig)}

for2 < i < kand1 < ¢ < p, initialized by ¢(1,q) = t1,4, and ¢(,0) = +o0.
The complexity of this algorithm is O(kp?). However, we can significantly reduce the
complexity of this algorithm by using Algorithm 1.
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4.3 Computing the optimal solution

In this section we sketch two methods to find the optimal solution to the general k-
IN-p-COSCHEDULE problem. This can be useful to solve some small-size instances,
albeit at the price of a cost exponential in the number of tasks n.

The first method is to generate all possible partitions of the tasks into packs. This
amounts to computing all partitions of n elements into subsets of cardinal at most k.
For a given partition of tasks into packs, we use Algorithm 1 to find the optimal proces-
sor assignment for each pack, and we can compute the optimal cost for the partition.
There remains to take the minimum of these costs among all partitions.

The second method is to cast the problem in terms of an integer linear program:

Theorem 4. The following integer linear program characterizes the k-IN-p-COSCHE-
DULE problem, where the unknown variables are the x; j;’s (Boolean variables) and
the yy’s (rational variables), for 1 <i,b<nand1 < j < p:

Minimize >y, yp subject to

(i) 25 Tigp =1, 1<i<n

(ii) 32 @igp <k, 1<b<n 3)
(iii) 32 ;7 X @ijp <p, 1<b<n

(iv) i X tij < Y, 1<i,b<n,1<j<p

Proof. The x; ;’s are such that x; ;;, = 1 if and only if task 7; is in the pack b and it
is executed on j processors; yp is the execution time of pack b. Since there are no more
than n packs (one task per pack), b < n. The sum Egzl yp is therefore the total exe-
cution time (y, = 0 if there are no tasks in pack b). Constraint (i) states that each task
is assigned to exactly one pack b, and with one number of processors j. Constraint (ii)
ensures that there are not more than k tasks in a pack. Constraint (iii) adds up the
number of processors in pack b, which should not exceed p. Finally, constraint (iv)
computes the cost of each pack. O

4.4 Approximation algorithm

In this section we introduce PACK-APPROX, a 3-approximation algorithm for the p-IN-
p-COSCHEDULE problem. The design principle of PACK-APPROX is the following:
we start from the assignment where each task is executed on one processor, and use
Algorithm 2 to build a first solution. Algorithm 2 is a greedy heuristic that builds a co-
schedule when each task is pre-assigned a number of processors for execution. Then
we iteratively refine the solution, adding a processor to the task with longest execution
time, and re-executing Algorithm 2. Here are details on both algorithms:

Algorithm 2. The k-IN-p-COSCHEDULE problem with processor pre-assignments
remains strongly NP-complete (use a similar reduction as in the proof of Theorem 2).
We propose a greedy procedure in Algorithm 2 which is similar to the First Fit De-
creasing Height algorithm for strip packing [6]. The output is a co-schedule with at
most k tasks per pack, and the complexity is O(nlog(n)) (dominated by sorting).

Algorithm 3. We iterate the calls to Algorithm 2, adding a processor to the task with
longest execution time, until: (i) either the task of longest execution time is already
assigned p processors, or (ii) the sum of the work of all tasks is greater than p times
the longest execution time. The algorithm returns the minimum cost found during
execution. The complexity of this algorithm is O(n?p) (in the calls to Algorithm 2
we do not need to re-sort the list but maintain it sorted instead) in the simplest version
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presented here, but can be reduced to O(nlog(n) + np) using standard algorithmic
techniques.

Algorithm 2: Creating packs of size at most k, when the number o (7) of proces-
sors per task 7; is fixed.
procedure MAKE-PACK(n, p, k, o)
begin
Let L be the list of tasks sorted in non-increasing values of execution times
ti o)
while L # () do
Schedule the current task on the first pack with enough available
processors and fewer than k tasks. Create a new pack if no existing pack
fits;
Remove the current task from L;
end
return the set of packs

end

Algorithm 3: PACK-APPROX

procedure PACK-APPROX(TY, ..., T},)
begin
COST = +00;

forj=1twndo o(j) «+ 1;
fori=0ton(p—1)—1do

Let Awt(i) = Z?:l tjo(j)o'(]),

Let T}« be one task that maximizes i o(s)s
Call MAKE-PACK (n,p,p, 0);

Let COST; be the cost of the co-schedule;
if COST; < COST then COST « COST;;

if (A’%(i) > tjx o(;+) ) or (0(j*) = p) then return COST; /+ Exit

loop */
else o(j*) < o(j*)+ 1,/ Add a processor to Tj */

end
return COST;

end

Theorem 5. PACK-APPROX is a 3-approximation algorithm for the p-IN-p-COSCHE-
DULE problem.

Proof. We start with some notations:

* step i denotes the i*" iteration of the main loop of Algorithm PACK-APPROX;

« o is the allocation function at step ¢;

* tmax(i) = max; t; 0 () is the maximum execution time of any task at step i;

* j*(i) is the index of the task with longest execution time at step i (break ties
arbitrarily);
Ao(i) =325t 00 (j)a(i) () is the total work that has to be done at step ;
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* COST; is the result of the scheduling procedure at the end of step ;
* OPT denotes an optimal solution, with allocation function o(9PT) execution time COSTgpr,

and total work
Aot = Dt 50m (30 "D ().
J

Note that there are three different ways to exit algorithm PACK- APPROX:
1. If we cannot add processors to the task with longest execution time, i.e., o) (j*(i)) =

D;
2. If Aul tmax (%) after having computed the execution time for this assignment;
3. When each task has been assigned p processors (the last step of the loop “for’:
we have assigned exactly np processors, and no task can be assigned more than
P Processors).
Lemma 1. At the end of step i, COST; < 3max (tmax(z‘),%@) .
Proof. Consider the packs returned by Algorithm 2, sorted by non-increasing execution
times, By, Bo, ..., B, (some of the packs may be empty, with an execution time 0).
Let us denote, for 1 < g < n,
* jq the task with the longest execution time of pack B, (i.e., the first task sched-
uled on B,);
* tq the execution time of pack By (in particular, tg=t; @ (;,):
» A, the sum of the task works in pack B;
* p, the number of processors available in pack B, when j,41 was scheduled in
pack Byy1.
With these notations, COST; = ZZ=1 tq and A (i) = ZZ=1Aq- For each pack,
note that pt, > A, since pt, is the maximum work that can be done on p processors
Am(i)

with an execution time of ¢,. Hence, COST; > =

In order to bound COST;, let us first remark that o) (jig41) > p,: otherwise jgi1
would have been scheduled on pack B,. Then, we can exhibit a lower bound for A,
namely A, > t,4+1(p — pq). Indeed, the tasks scheduled before j,1 all have a length
greater than ¢4, by definition. Furthermore, obviously A,1 > t44+1p4 (the work of
the first task scheduled in pack Bgy41). So finally we have, A, + Ag+1 > tg41p.

Summing over all ¢’s, we have: 25" Ag > S, tg, hence 2’4‘%(2‘) 4+t >

=1 p = Zug=2
COST;. Finally, note that {1 = t,,ax(?), and therefore COST; < 3 max (tmax (1), A‘%(i))
Note that this proof is similar to the one for the Strip-Packing problem in [6]. [

Lemma 2. At each step i, Awy(i + 1) > Aps(i) and timax (i + 1) < tmax(?), i.e., the
total work is increasing and the maximum execution time is decreasing.

Proof. Ai(i 4+ 1) = A(i) — a + b, where

o a = work(j*(i), 0 (5*(4))), and

« b= work(j* (i), a1 (j*(0))).
But b = work(j*(i), 0™ (5*(i)) + 1)and a < b by Equation (2). Therefore, A (i +
1) > Ai(i). Finally, tpax(i + 1) < tmax(i) since only one of the tasks with the
longest execution time is modified, and its execution time can only decrease thanks to
Equation (1). O

Lemma 3. Given an optimal solution OPT, Vj, Lioom )y < COSTopr and Agpr <
pCOSTOPT.
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Proof. The first inequality is obvious. As for the second one, pCOSTgpr is the max-
imum work that can be done on p processors within an execution time of COSTgpr,
hence it must not be smaller than Aqpr, Which is the sum of the work of the tasks with
the optimal allocation. O

Lemma 4. For any step i such that tyax (i) > COSTopr, then V7, o () < o (0PT) (),
and A (1) < Aopr.

Proof. Consider a task T}. If (V) (j) = 1, then clearly ¢V (j) < o(°""(i). Otherwise,
a(i)(j) > 1, and then by definition of the algorithm, there was a step i’ < i, such
that () (j) = 0@ (j) — 1 and o+ (5) = () (§). Therefore tyayx (i) = ti.0 ()"
Following Lemma 2, we have tmax(i') > tmax(i) > COSTepr. Then necessarily,
P (5) > o) (), hence the result. Finally, A (i) < Agpr is a simple corollary of
the previous result and of Equation (2). ]

Lemma 5. For any step i such that ty,,x (i) > COSTopr, then A’%(i) < tmax(%)-

Proof. Thanks to Lemma 4, we have A‘“;)(i) < %. Lemma 3 gives us % <

COSTgpr, hence the result. O

Lemma 6. There exists ig > 0 such that tyax(ip — 1) > COSTopr > tmax(io) (we let
tmax(—1) = +00).

Proof. We show this result by contradiction. Suppose such iy does not exist. Then
tmax(0) > COSTpr (otherwise ig = 0 would suffice). Let us call i; the last step of
the run of the algorithm. Then by induction we have the following property, t;ax(0) >
tmax(1l) >+ > tmax(i1) > COSTepr (otherwise ip would exist, hence contradicting
our hypothesis). Recall that there are three ways to exit the algorithm, hence three
possible definitions for ¢1:

» o()(5*(i1)) = p, however then we would have # .., (i1) = tix(iy),p > COSTopr >
Lix(iy),0m (according to Lemma 3). This contradicts Equation (1), which states

that tj*(il)@ S tj*(il),k for all k.

* iy = n(p — 1) — 1, but then we have the same result, i.e., ¢(")(5*(i1)) = p
because this is true for all tasks.

* tmax(i1) < A‘%@l), but this is false according to Lemma 5.
We have seen that PACK-APPROX could not have terminated at step 71, however since
PACK-APPROX terminates (in at most n(p — 1) — 1 steps), we have a contradiction.
Hence we have shown the existence of 7. O

Lemma 7. A,,(ip) < Agpr-

Proof. Consider step 7¢. If i = 0, then at this step, all tasks are scheduled on ex-
actly one processor, and V7,00 (j) < o(°"") (). Therefore, Ai(io) < Aopr. If
io # 0, consider step ig — 1: tmax(io — 1) > COSTopr. From Lemma 4, we
have Vj, oo~ (j) < (" (j). Furthermore, it is easy to see that Vj # j*(ig —
1), 000)(5) = =1 () since no task other than j* (i — 1) is modified. We also have
the following properties:

* i (ig—1).00 1 (3 (ig—1)) = tmax (o = 1);
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* tmax(io — 1) > topr (by definition of step ig);
* torr Z e (i —1),000m (5 (io—1)) (Lemma 3);
o o) (j*(ip — 1)) = oo~V (j*(ip — 1)) + 1.

The three first properties and Equation (1) allow us to say that o (%0 —1)( J*(ip— 1)) <
o(©") (j*(ig — 1)). Thanks to the fourth property, o) (j*(ip — 1)) < o(©")(4).
Finally, we have, for all j,o()(j) < o(°") (), and therefore A (ig) < Aopr by
Equation (2). O

We are now ready to prove the theorem. For ¢ introduced in Lemma 6, we have:
A
COSTm < 3max (tmax(io)v t()l(“)))
p

A
< 3max (COSTOPT, m)
p
< 3COSTopr

The first inequality comes from Lemma 1. The second inequality is due to Lemma 6
and 7. The last inequality comes from Lemma 3, hence the final result. O

5 Heuristics

In this section, we describe the heuristics that we use to solve the k-IN-p-COSCHE-
DULE problem.

RANDOM-PACK- In this heuristic, we generate the packs randomly: as long as there
remain tasks, randomly choose an integer j between 1 and k, and then randomly select
j tasks to form a pack. Once the packs are generated, apply Algorithm 1 to optimally
schedule each of them.

RANDOM-PROC- In this heuristic, we assign the number of processors to each task
randomly between 1 and p, then use Algorithm 2 to generate the packs, followed by
Algorithm 1 on each pack.

A word of caution— We point out that RANDOM-PACK and RANDOM-PROC are not
pure random heuristics, in that they already benefit from the theoretical results of Sec-
tion 4. A more naive heuristic would pick both a task and a number of processor ran-
domly, and greedily build packs, creating a new one as soon as more than p resources
are assigned within the current pack. Here, both RANDOM-PACK and RANDOM-PROC
use the optimal resource allocation strategy (Algorithm 1) within a pack; in addition,
RANDOM-PROC uses an efficient partitioning algorithm (Algorithm 2) to create packs
when resources are pre-assigned to tasks.

PACK-APPROX~- This heuristic is an extension of Algorithm 3 in Section 4.4 to deal
with packs of size k rather than p: simply call MAKE-PACK (n,p, k, o) instead of
MAKE-PACK (n, p, p, o). However, although we keep the same name as in Section 4.4
for simplicity, we point out that it is unknown whether this heuristic is a 3-approximation
algorithm for arbitrary k.

PACK-BY-PACK (g)- The rationale for this heuristic is to create packs that are well-
balanced: the difference between the smallest and longest execution times in each pack
should be as small as possible. Initially, we assign one processor per task (for 1 < ¢ <
n, o(i) = 1), and tasks are sorted into a list L ordered by non-increasing execution
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times (<, values). While there remain some tasks in L, let T;« be the first task of
the list, and let tyax = %+ o(i+). Let Vieq be the ordered set of tasks T; such that
tio(i) = (1 — €)tmax: this is the sublist of tasks (including T;- as its first element)
whose execution times are close to the longest execution time ¢,.x, and € € [0, 1] is
some parameter. Let p,., be the total number of processors requested by tasks in V...
If preq > p, anew pack is created greedily with the first tasks of V..q, adding them into
the pack while there are no more than p processors used and no more than & tasks in
the pack. The corresponding tasks are removed from the list L. Note that 73« is always
inserted in the created pack. Also, if we have o (i*) = p, then a new pack with only T«
is created. Otherwise (prq < p), an additional processor is assigned to the (currently)
critical task T;«, hence o (i*) := o(i*) + 1, and the process iterates after the list L is
updated with the insertion of the new value for 7;+ Finally, once all packs are created,
we apply Algorithm 1 in each pack, so as to derive the optimal schedule within each
pack.

We have 0 < € < 1. A small value of € will lead to balanced packs, but may end
up with a single task with p processors per pack. Conversely, a large value of ¢ will
create new packs more easily, i.e., with fewer processors per task. The idea is therefore
to call the heuristic with different values of ¢, and to select the solution that leads to the
best execution time.

Summary of heuristics— We consider two variants of the random heuristics, either
with one single run, or with 9 different runs, hence hoping to obtain a better solution,
at the price of a slightly longer execution time. These heuristics are denoted respec-
tively RANDOM-PACK-1, RANDOM-PACK-9, RANDOM-PROC-1, RANDOM-PROC-9.
Similarly, for PACK-BY-PACK, we either use one single run with ¢ = 0.5 (PACK-BY-
PACK-1), or 9 runs with ¢ € {.1,.2,...,.9} (PACK-BY-PACK-9). Of course, there is
only one variant of PACK-APPROX, hence leading to seven heuristics.

Variants— We have investigated variants of PACK-BY-PACK, trying to make a better
choice than the greedy choice to create the packs, for instance using a dynamic pro-
gramming algorithm to minimize processor idle times in the pack. However, there was
very little improvement at the price of a much higher running time of the heuristics.
Additionally, we tried to improve heuristics with up to 99 runs, both for the random
ones and for PACK-BY-PACK, but here again, the gain in performance was negligible
compared to the increase in running time. Therefore we present only results for these
seven heuristics in the following.

6 Experimental Results

In this section, we study the performance of the seven heuristics on workloads of par-
allel tasks. First we describe the workloads, whose application execution times model
profiles of parallel scientific codes. Then we present the measures used to evaluate the
quality of the schedules, and finally we discuss the results.

Workloads— Workload-I corresponds to 10 parallel scientific applications that involve
VASP [14], ABAQUS [3], LAMMPS [17] and Petsc [1]. The execution times of these
applications were observed on a cluster with Intel Nehalem 8-core nodes connected by
a QDR Infiniband network with a total of 128 cores. In other words, we have p = 16
processors, and each processor is a multicore node.

Workload-1II is a synthetic test suite that was designed to represent a larger set of sci-
entific applications. It models tasks whose parallel execution time for a fixed problem
size m on g cores is of the form ¢(m,q) = f x t(m,1) + (1 — f)% + k(m, q),
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where f can be interpreted as the inherently serial fraction, and « represents overheads
related to synchronization and the communication of data. We consider tasks with se-
quential times t(m, 1) of the form em, cm logy n, em? and cm3, where ¢ is a suitable
constant. We consider values of f in {0,0.04,0.08, .16, .32}, with overheads k(m, q)
of the form log, ¢, (logs q)?, qlog, ¢, % log, ¢, v/m/q, and mlog, q to create a work-
load with 65 tasks executing on up to 128 cores.

The same process was also used to develop Workload-III, our largest synthetic test suite
with 260 tasks for 256 cores (and p = 32 multicore nodes), to study the scalability of
our heuristics. For all workloads, we modified speedup profiles to satisfy Equations (1)
and (2).

As discussed in related work (see Section 2) and [21], and confirmed by power

measurement using Watts Up Pro meters, we observed only minor power consumption
variations of less than 5% when we limited co-scheduling to occur across multicore
nodes. Therefore, we only test configurations where no more than a single application
can be scheduled on a given multicore node comprising 8 cores. Adding a processor
to an application 7; which is already assigned o; processors actually means adding 8
new cores (a full multicore node) to the 8c; existing cores. Hence a pack size of k cor-
responds to the use of at most 8k cores for applications in each pack. For Workloads-I
and II, there are 16 nodes and 128 cores, while Workload-III has up to 32 nodes and
256 cores.
Methodology for assessing the heuristics— To evaluate the quality of the schedules
generated by our heuristics, we consider three measures: Relative cost, Packing ratio,
and Relative response time. Recall that the cost of a pack is the maximum execution
time of a task in that pack and the cost of a co-schedule is the sum of the costs over all
its packs.

We define the relative cost as the cost of a given co-schedule divided by the cost of
a 1-pack schedule, i.e., one with each task running at maximum speed on all p proces-
SOrSs.

For a given k-IN-p-COSCHEDULE, consider Y. | t; ,(;) X o(i), i.e., the total work
performed in the co-schedule when the i-th task is assigned o (i) processors. We define
the packing ratio as this sum divided by p times the cost of the co-schedule; observe
that the packing quality is high when this ratio is close to 1, meaning that there is al-
most no idle time in the schedule.

An individual user could be concerned about an increase in response time and a cor-
responding degradation of individual productivity. To assess the impact on response
time, we consider the performance with respect to a relative response time measure
defined as follows. We consider a 1-pack schedule with the n tasks sorted in non-
decreasing order of execution time, i.e., in a “shortest task first” order, to yield a
minimal value of the response time. If this ordering is given by the permutation
m(i),i = 1,2,...,n, the response time of task ¢ is r; = Z;Zl tr(j),p and the mean
response time is R = % >i, ri. For a given k-IN-p-COSCHEDULE with u packs
scheduled in increasing order of the costs of a pack, the response time of task ¢ in pack
v, 1 < v < wu, assigned to (i) processors, is: 7; = 25;11 cost(l) + t; 5(:), Where
cost(?) is the cost of the ¢-th pack for 1 < ¢ < w. The mean response time of the
k-IN-p-COSCHEDULE R is calculated using these values and we use % as the relative
response time.

Results for small and medium workloads— For Workload-I, we consider packs of size
k = 2,4,6,8,10 with 16 processors (hence a total of 128 cores). Note that we do not
try k = p = 16 since there are only 10 applications in this workload. For Workload-1II,
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Figure 2: Quality of co-schedules: Relative costs are shown in (a) for Workload-I and
in (b) for Workload-II. The horizontal line in (a) indicates the relative cost of an optimal
co-schedule for Workload-I.
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Figure 3: Quality of packs: Packing ratios are shown in (a) for Workload-I and in (b)
for Workload-II. The horizontal line in (a) indicates the packing ratio of an optimal
co-schedule for Workload-I.
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Figure 4: Relative response times are shown in (a) for Workload-I and in (b) for
Workload-II; values less than 1 indicate improvements in response times. The hor-
izontal line in (a) indicates the relative response time of an optimal co-schedule for
Workload-1.
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Figure 5: Relative costs, packing ratios and relative response times of co-schedules for
Workload-III on 256 cores.

we consider packs of size k = 2,4,6,8,10,12,14, 16.

Figure 2 shows the relative cost of co-schedules computed by the heuristics. For
Workload-I (Figure 2(a)), the optimal co-schedule was constructed using exhaustive
search. We observe that the optimal co-schedule has costs that are more than 35%
smaller than the cost of a 1-pack schedule for Workload-1. Additionally, we observe
that PACK-APPROX and PACK-BY-PACK compute co-schedules that are very close to
the optimal one for all values of the pack size. Both RANDOM-PACK and RANDOM-
ProC perform poorly when compared to PACK-BY-PACK and PACK-APPROX, espe-
cially when a single run is performed. As expected, RANDOM-PROC does better
than RANDOM-PACK because it benefits from the use of Algorithm 2, and for this
small workload, RANDOM-PROC-9 almost always succeed to find a near-optimal co-
schedule. The results are similar for the larger Workload-II as shown in Figure 2(b),
with an increased gap between random heuristics and the packing ones. Computing
the optimal co-schedule was not feasible because of the exponential growth in running
times for exhaustive search. With respect to the cost of a 1-pack schedule, we observe
very significant benefits, with a reduction in costs of most than 80% for larger values
of the pack size, and in particular in the unconstrained case where k& = p = 16. This
corresponds to significant savings in energy consumed by the hardware for servicing a
specific workload.

Figure 3 shows the quality of packing achieved by the heuristics. The packing
ratios are very close to one for PACK-BY-PACK and PACK-APPROX, indicating that
our methods are producing high quality packings. In most cases, RANDOM-PROC and
RANDOM-PACK also lead to high packing ratios.

Finally, Figure 4 shows that PACK-BY-PACK and PACK-APPROX produce lower
cost schedules with commensurate reductions in response times. For Workload-II and
larger values of the pack size, response time gains are over 80%, making k-IN-p-CO-
SCHEDULE attractive from the user perspective.

Scalability— Figure 5 shows scalability trends for Workload-III with 260 tasks on 32
processors (hence a total of 256 cores.) Although the heuristics, including RANDOM-
PACK and RANDOM-PROC, result in reducing costs relative to those for a 1-pack
schedule, PACK-APPROX and PACK-BY-PACK are clearly superior, even when the ran-
dom schemes are run 9 times. We observe that for pack sizes of 16 and 32, PACK-
APPROX and PACK-BY-PACK produce high quality co-schedules with costs and re-
sponse times that are respectively 90% and 80% lower than those for a 1-pack sched-
ule. PACK-BY-PACK-1 obtains results that are very close to those of PACK-BY-PACK-9,
hence even a single run returns a high quality co-schedule.

Running times— We report in Table 1 the running times of the seven heuristics. All

RR n° 8293



Co-Scheduling Algorithms for High-Throughput Workload Execution 19

heuristics run within a few milliseconds, even for the largest workload. Note that PACK-
APPROX was faster on Workload-II than Workload-I because its execution performed
fewer iterations in this case. Random heuristics are slower than the other heuristics,
because of the cost of random number generation. PACK-BY-PACK has comparable
running times with PACK-APPROX, even when 9 values of € are used.

Workload-I | Workload-II | Workload-III

PACK-APPROX 0.50 0.30 5.12
PACK-BY-PACK-1 0.03 0.12 0.53
PACK-BY-PACK-9 0.30 1.17 5.07
RANDOM-PACK-1 0.07 0.34 9.30
RANDOM-PACK-9 0.67 2.71 87.25
RANDOM-PROC-1 0.05 0.26 4.49
RANDOM-PROC-9 0.47 2.26 39.54

Table 1: Average running times in milliseconds.

Summary of experimental results— Results indicate that heuristics PACK- APPROX
and PACK-BY-PACK both produce co-schedules of comparable quality. PACK-BY-PACK-
9 is slightly better than PACK-BY-PACK-1, at a price of an increase in the running time
from using more values of €. However, the running time remains very small, and simi-
lar to that of PACK-APPROX. Using more values of € to improve PACK-BY-PACK leads
to small gains in performance (e.g, 1% gain for PACK-BY-PACK-9 compared to PACK-
BY-PACK-1 for kK = 16 in Workload-II). However, these small gains in performance
correspond to significant gains in system throughput and energy, and far outweigh the
costs of computing multiple co-schedules. This makes PACK-BY-PACK-9 the heuristic
of choice. Our experiments with 99 values of ¢ did not improve performance, indicat-
ing that large increases in the number of € values may not be necessary.

7 Conclusion

We have developed and analyzed co-scheduling algorithms for processing a workload
of parallel tasks. Tasks are assigned to processors and are partitioned into packs of
size k with the constraint that the total number of processors assigned over all tasks
in a pack does not exceed p, the maximum number of available processors. Tasks in
each pack execute concurrently on a number of processors, and workload completes in
time equal to sum of the execution times of the packs. We have provided complexity
results for minimizing the sum of the execution times of the packs. The bad news is
that this optimization problem is NP-complete. This does not come as a surprise be-
cause we have to choose for each task both a number of processors and a pack, and this
double freedom induces a huge combinatorial solution space. The good news is that
we have provided an optimal resource allocation strategy once the packs are formed,
together with an efficient load-balancing algorithm to partition tasks with pre-assigned
resources into packs. This load-balancing algorithm is proven to be a 3-approximation
algorithm for the most general instance of the problem. Building upon these positive
results, we have developed several heuristics that exhibit very good performance in our
test sets. These heuristics can significantly reduce the time for completion of a work-
load for corresponding savings in system energy costs. Additionally, these savings
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come along with measurable benefits in the average response time for task completion,
thus making it attractive from the user’s viewpoint.

These co-schedules can be computed very rapidly when speed-up profile data are avail-
able. Additionally, they operate at the scale of workloads with a few to several hun-
dred applications to deliver significant gains in energy and time per workload. These
properties present opportunities for developing hybrid approaches that can additionally
leverage dynamic voltage and frequency scaling (DVFES) within an application. For
example, Rountree et al. [19] have shown that depending on the properties of the appli-
cation, DVFS can be applied at runtime through their Adagio system, to yield system
energy savings of 5% to 20%. A potential hybrid scheme could start with the com-
putation of a k-IN-p-COSCHEDULE for a workload, following which DVFS could be
applied at runtime per application.

Our work indicates the potential benefits of co-schedules for high performance com-
puting installations where even medium-scale facilities consume Megawatts of power.
We plan to further test and extend this approach towards deployment in university scale
computing facilities where workload attributes often do not vary much over weeks to
months and energy costs can be a limiting factor.
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