V. Arsigny, O. Commowick, X. Pennec, and N. Ayache, A Log-Euclidean Framework for Statistics on Diffeomorphisms, pp.924-931, 2006.
DOI : 10.1007/11866565_113

URL : https://hal.archives-ouvertes.fr/inria-00615594

J. Ashburner, A fast diffeomorphic image registration algorithm, NeuroImage, vol.38, issue.1, pp.95-113, 2007.
DOI : 10.1016/j.neuroimage.2007.07.007

J. Ashburner and K. Friston, Voxel-Based Morphometry???The Methods, NeuroImage, vol.11, issue.6, pp.805-821, 2000.
DOI : 10.1006/nimg.2000.0582

B. Avants, C. Anderson, M. Grossman, and J. Gee, Spatiotemporal Normalization for Longitudinal Analysis of Gray Matter Atrophy in Frontotemporal Dementia, pp.303-310, 2007.
DOI : 10.1007/978-3-540-75759-7_37

B. B. Avants, C. L. Epstein, M. Grossman, and J. C. Gee, Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain, Medical Image Analysis, vol.12, issue.1, pp.26-41, 2008.
DOI : 10.1016/j.media.2007.06.004

R. Bajcsy, J. C. Gee, and M. Reivich, Elastically deforming 3D Atlas to match anatomical brain images, Journal of Computer Assisted Tomography, vol.17, pp.225-261, 1993.

M. F. Beg, M. I. Miller, A. Trouvé, and L. Younes, Computing Large Deformation Metric Mappings via Geodesic Flows of Diffeomorphisms, International Journal of Computer Vision, vol.61, issue.2, pp.139-157, 2005.
DOI : 10.1023/B:VISI.0000043755.93987.aa

M. Bossa, M. Hernandez, and S. Olmos, Contributions to 3D diffeomorphic atlas estimation: Application to brain images., in: Medical Image Computing and Computer-Assisted Intervention -MICCAI, pp.667-674, 2007.

R. Boyes, D. Rueckert, P. Aljabar, J. Whitwell, J. Schott et al., Cerebral atrophy measurements using Jacobian integration: Comparison with the boundary shift integral, NeuroImage, vol.32, issue.1, 2006.
DOI : 10.1016/j.neuroimage.2006.02.052

P. Cachier and N. Ayache, Isotropic Energies, Filters and Splines for Vector Field Regularization, Journal of Mathematical Imaging and Vision, vol.20, issue.3, pp.251-265, 2004.
DOI : 10.1023/B:JMIV.0000024042.88755.4f

P. Cachier, E. Bardinet, D. Dormont, X. Pennec, and N. Ayache, Iconic feature based nonrigid registration: the PASHA algorithm, Computer Vision and Image Understanding, vol.89, issue.2-3, pp.272-298, 2003.
DOI : 10.1016/S1077-3142(03)00002-X

URL : https://hal.archives-ouvertes.fr/inria-00615633

O. Camara, J. Schnabel, and G. Ridgway, Accuracy assessment of global and local atrophy measurement techniques with realistic simulated longitudinal Alzheimer's disease images, NeuroImage, vol.42, issue.2, 2008.
DOI : 10.1016/j.neuroimage.2008.04.259

M. Chung, K. Worsley, and T. Paus, A Unified Statistical Approach to Deformation-Based Morphometry, NeuroImage, vol.14, issue.3, 2001.
DOI : 10.1006/nimg.2001.0862

L. D. Collins, C. J. Holmes, T. M. Peters, and A. C. Evans, Automatic 3-D model-based neuroanatomical segmentation, Human Brain Mapping, vol.16, issue.2, pp.190-208, 1995.
DOI : 10.1002/hbm.460030304

B. Davis, P. Fletcher, E. Bullit, and S. Joshi, Population shape regression from random design data, pp.375-405, 2007.
DOI : 10.1109/iccv.2007.4408977

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

L. Dong and A. L. Boyer, An image correlation procedure for digitally reconstructed radiographs and electronic portal images, International Journal of Radiation Oncology*Biology*Physics, vol.33, issue.5, pp.1053-1060, 1995.
DOI : 10.1016/0360-3016(95)02082-9

S. Durrleman, X. Pennec, A. Trouvé, N. Ayache, and J. Braga, Comparison of the endocranial ontogenies between chimpanzees and bonobos via temporal regression and spatiotemporal registration, Journal of Human Evolution, vol.62, issue.1, pp.74-88, 2012.
DOI : 10.1016/j.jhevol.2011.10.004

URL : https://hal.archives-ouvertes.fr/hal-00816048

V. S. Fonov, A. C. Evans, R. C. Mckinstry, C. R. Almli, and D. L. Collins, Unbiased nonlinear average age-appropriate brain templates from birth to adulthood, NeuroImage, vol.47, p.102, 2009.
DOI : 10.1016/S1053-8119(09)70884-5

N. Fox, S. Cousens, R. Scahill, R. Harvey, and M. Rossor, Using Serial Registered Brain Magnetic Resonance Imaging to Measure Disease Progression in Alzheimer Disease, Archives of Neurology, vol.57, issue.3, pp.339-344, 2000.
DOI : 10.1001/archneur.57.3.339

N. Fox, W. Crum, R. Schaill, J. Stevens, J. Janssen et al., Imaging of onset and progression of Alzheimer's disease with voxel-compression mapping of serial magnetic resonance images, The Lancet, vol.358, issue.9277, pp.201-205, 2001.
DOI : 10.1016/S0140-6736(01)05408-3

N. Fox, G. Ridgway, and J. Schott, Algorithms, atrophy and Alzheimer's disease: Cautionary tales for clinical trials, NeuroImage, vol.57, issue.1, pp.15-23, 2011.
DOI : 10.1016/j.neuroimage.2011.01.077

P. Freeborough and N. Fox, The boundary shift integral: an accurate and robust measure of cerebral volume changes from registered repeat MRI, IEEE Transactions on Medical Imaging, vol.16, issue.5, 1997.
DOI : 10.1109/42.640753

G. Hermosillo and O. D. Faugeras, Well-Posedness of Two Nonrigid Multimodal Image Registration Methods, SIAM Journal on Applied Mathematics, vol.64, issue.5, pp.1550-1587, 2004.
DOI : 10.1137/S0036139903424904

Z. Hou, A Review on MR Image Intensity Inhomogeneity Correction, International Journal of Biomedical Imaging, vol.5, issue.4, part ii, 2006.
DOI : 10.1155/IJBI/2006/49515

M. P. Jolly, C. Guetter, and J. Guehring, Cardiac segmentation in MR cine data using inverse consistent deformable registration, 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp.484-487
DOI : 10.1109/ISBI.2010.5490305

S. Joshi, B. Davis, B. M. Jomier, and G. G. , Unbiased diffeomorphic atlas construction for computational anatomy, NeuroImage, vol.23, pp.151-160, 2004.
DOI : 10.1016/j.neuroimage.2004.07.068

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. Klein, J. Andersson, and B. Ardekani, Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration, NeuroImage, vol.46, issue.3, pp.786-802, 2009.
DOI : 10.1016/j.neuroimage.2008.12.037

URL : https://hal.archives-ouvertes.fr/inserm-00360790

A. Leow, I. Yanovsky, M. Chiang, and A. Lee, Statistical Properties of Jacobian Maps and the Realization of Unbiased Large-Deformation Nonlinear Image Registration, IEEE Transactions on Medical Imaging, vol.26, issue.6, pp.822-832, 2007.
DOI : 10.1109/TMI.2007.892646

K. K. Leung, M. J. Clarkson, J. W. Bartlett, S. Clegg, C. R. Jack et al., Robust atrophy rate measurement in Alzheimer's disease using multi-site serial MRI: Tissue-specific intensity normalization and parameter selection, NeuroImage, vol.50, issue.2, 2009.
DOI : 10.1016/j.neuroimage.2009.12.059

H. Lombaert, L. Grady, X. Pennec, N. Ayache, and F. Cheriet, Spectral Demons ??? Image Registration via Global Spectral Correspondence, pp.30-44
DOI : 10.1007/978-3-642-33709-3_3

URL : https://hal.archives-ouvertes.fr/hal-00813833

M. Lorenzi, N. Ayache, G. Frisoni, and X. Pennec, Probabilistic flux analysis of cerebral longitudinal atrophy, MICCAI 2012 Workshop on Novel Imaging Biomarkers for Alzheimer's Disease and Related Disorders
URL : https://hal.archives-ouvertes.fr/hal-00813846

M. Lorenzi, N. Ayache, G. B. Frisoni, and X. Pennec, Mapping the effects of A? 1?42 levels on the longitudinal changes in healthy aging: hierarchical modeling based on stationary velocity fields, in: Medical Image Computing and Computer-Assisted Intervention -MICCAI, pp.663-670, 2011.

M. Lorenzi, N. Ayache, and X. Pennec, Regional flux analysis of longitudinal atrophy in Alzheimer's disease., in: Medical Image Computing and Computer-Assisted Intervention -MICCAI, 2012.

M. Lorenzi, N. Ayache, X. Pennec, and G. Frisoni, Disentangling the normal aging from the pathological Alzheimer's disease progression on cross-sectional structural MR images, MICCAI Workshop on Novel Imaging Biomakers in Alzheimer's Disease

F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens, Multimodality image registration by maximization of mutual information, IEEE Transactions on Medical Imaging, vol.16, issue.2, pp.187-198, 1997.
DOI : 10.1109/42.563664

T. Mansi, X. Pennec, M. Sermesant, H. Delingette, and N. Ayache, LogDemons revisited: Consistent regularisation and incompressibility constraint for soft tissue tracking in medical images, in: Medical Image Computing and Computer-Assisted Intervention -MICCAI, pp.652-659, 2010.

T. Mansi, X. Pennec, M. Sermesant, H. Delingette, and N. , iLogDemons: A Demons-Based Registration Algorithm for??Tracking Incompressible Elastic Biological Tissues, International Journal of Computer Vision, vol.28, issue.12, pp.92-111, 2011.
DOI : 10.1007/s11263-010-0405-z

URL : https://hal.archives-ouvertes.fr/inria-00616187

K. Mcleod, C. Seiler, M. Sermesant, and X. Pennec, A Near-Incompressible Poly-affine Motion Model for Cardiac Function Analysis, MICCAI Workshop on Statistical Atlases and Computational Models of the Heart: Mapping Structure and Function (STACOM2012), 2012.
DOI : 10.1007/978-3-642-36961-2_33

URL : https://hal.archives-ouvertes.fr/hal-00813852

M. Modat, G. Ridgway, P. Daga, M. Cardoso, D. Hawkes et al., Log-Euclidean free-form deformation, Medical Imaging 2011: Image Processing, 2011.
DOI : 10.1117/12.878189

B. Patenaude, S. Smith, M. Kennedy, and . Jenkinson, A Bayesian model of shape and appearance for subcortical brain segmentation, NeuroImage, vol.56, issue.3, pp.907-922, 2011.
DOI : 10.1016/j.neuroimage.2011.02.046

S. Resnik, A. Goldszal, C. Davatzikos, S. Golski, M. Kraut et al., One-year Age Changes in MRI Brain Volumes in Older Adults, Cerebral Cortex, vol.10, issue.5, pp.464-472, 2000.
DOI : 10.1093/cercor/10.5.464

W. R. Riddle, R. Li, J. M. Fitzpatrick, S. C. Donlevy, B. M. Dawant et al., Characterizing changes in MR images with color-coded Jacobians, Magnetic Resonance Imaging, vol.22, issue.6, pp.769-777, 2004.
DOI : 10.1016/j.mri.2004.01.078

C. Seiler, X. Pennec, and M. Reyes, Geometry-Aware Multiscale Image Registration via OBBTree-Based Polyaffine Log-Demons, pp.631-638, 2011.
DOI : 10.1007/978-3-540-85988-8_90

URL : https://hal.archives-ouvertes.fr/inria-00616215

V. Siless, J. Glaunés, P. Guevara, J. F. Mangin, C. Poupon et al., Joint T1 and Brain Fiber Log-Demons Registration Using Currents to Model Geometry, pp.57-65, 2012.
DOI : 10.1007/978-3-642-33418-4_8

URL : https://hal.archives-ouvertes.fr/hal-00723367

J. Sled, A. Zijdenbos, and A. Evans, A nonparametric method for automatic correction of intensity nonuniformity in MRI data, IEEE Transactions on Medical Imaging, vol.17, issue.1, pp.87-97, 1998.
DOI : 10.1109/42.668698

S. Smith, Fast robust automated brain extraction, Human Brain Mapping, vol.20, issue.3, 2002.
DOI : 10.1002/hbm.10062

S. Smith, M. Zhang, J. Jenkinson, P. Chen, A. Matthews et al., Accurate, Robust, and Automated Longitudinal and Cross-Sectional Brain Change Analysis, NeuroImage, vol.17, issue.1, 2002.
DOI : 10.1006/nimg.2002.1040

R. Stefanescu, Parallel nonlinear registration of medical images with a priori information on anatomy and pathology, 2005.

C. Studholme, D. Hill, and D. Hawkes, Automated 3-D registration of MR and CT images of the head, Medical Image Analysis, vol.1, issue.2, pp.163-175, 1996.
DOI : 10.1016/S1361-8415(96)80011-9

A. Sweet and X. , Pennec, Log-domain diffeomorphic registration of diffusion tensor images, Proc. of WBIR: Workshop on Biomedical Image Registration, 2010.

P. Thompson, K. Ayashi, G. Zubicaray, A. Janke, S. Rose et al., Dynamics of gray matter loss in Alzheimer's disease, The Journal of Neuroscience, vol.23, pp.994-1005, 2003.

A. Vasilevskiy and K. Siddiqi, Flux maximizing geometric flows, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.24, issue.12, pp.1565-1578, 2002.
DOI : 10.1109/TPAMI.2002.1114849

T. Vercauteren, Image Registration and Mosaicing for Dynamic In Vivo Fibered Confocal Microscopy, 2008.
URL : https://hal.archives-ouvertes.fr/tel-00221481

T. Vercauteren, X. Pennec, A. Perchant, and N. Ayache, Diffeomorphic demons: Efficient non-parametric image registration, NeuroImage, vol.45, issue.1, pp.61-72, 2008.
DOI : 10.1016/j.neuroimage.2008.10.040

URL : https://hal.archives-ouvertes.fr/inserm-00349600

T. Vercauteren, X. Pennec, A. Perchant, and N. Ayache, Symmetric Logdomain diffeomorphic registration: A Demons-based approach., in: Medical Image Computing and Computer-Assisted Intervention -MICCAI, pp.754-761, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00280602

W. Wells, P. Viola, H. Atsumi, S. Nakajima, and R. Kikinis, Multi-modal volume registration by maximization of mutual information, Medical Image Analysis, vol.1, issue.1, pp.35-51, 1996.
DOI : 10.1016/S1361-8415(01)80004-9