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Abstract. We present and evaluate FreeRec, an anonymous decentral-
ized peer-to-peer architecture, designed to bring personalization while
protecting the privacy of its users. FreeRec’s decentralized approach
makes it independent of any entity wishing to collect personal data
about users. At the same time, its onion-routing-like gossip-based overlay
protocols effectively hide the association between users and their inter-
est profiles without affecting the quality of personalization. The core
of FreeRec consists of three layers of overlay protocols: the bottom
layer, rps, consists of a standard random peer sampling protocol ensur-
ing connectivity; the middle layer, PRPS, introduces anonymity by hid-
ing users behind anonymous proxy chains, providing mutual anonymity;
finally, the top clustering layer identifies for each anonymous user, a
set of anonymous nearest neighbors. We demonstrate the effectiveness
of FreeRec by building a decentralized and anonymous content dis-
semination system. Our evaluation by simulation and through extensive
PlanetLab experiments show that FreeRec effectively decouples users
from their profiles without hampering the quality of personalized content
delivery.

1 Introduction

The Web 2.0 has transformed the way users interact with the Internet. Users are
no longer pure consumers, but they now generate a large portion of the avail-
able content. As a result, personalized services have become a requirement for
most online applications. While personalization and social applications greatly
enhance user experience, they amplify the Internet’s inherent privacy risks and
concerns. For instance, personalization in a social application can lead to the
revelation of potentially embarrassing information to friends, family, and col-
leagues. In addition, users publishing controversial or prohibited information on
social platforms can easily be identified and located through their IP addresses.

The reason for the privacy risks associated with personalized services lies
in their inevitable dependence on personal data. As another example, consider
one of the most common forms of personalized services: recommendation. A
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common technology providing this service is user-based Collaborative Filtering
(CF) [24]. This paradigm leverages interest similarities to identify correlations
between the preferences of different users. While users are not generally aware
of who else shares their own interests, their centralized implementation requires
service providers to store accurate information about the interests of users. This
clashes with the need to protect personal data.

Anonymity services provide an attractive way to overcome the privacy issues
associated with personalized services. They hide the real identity (i.e. IP ad-
dress) of a user through pseudonym (e.g. IP address of another node). Several
such solutions are available on the Internet [1] and offer users the possibility
to navigate anonymously behind a proxy. However, the use of a single proxy is
vulnerable to adversaries that can observe traffic going in and out of the proxy.
Distributed solutions, such as Tor [11] provide better guarantees. Nonetheless,
they do not eradicate the concentration of personal data within the servers of
a single provider. Decentralized personalization based on the P2P paradigm [5,
8] addresses the issue of concentrated data while providing naturally scalability.
Yet, they remain vulnerable to the presence of malicious users.

Clearly anonymity alone does not protect users privacy, nor does decentral-
ization alone. In this work, we seek to address these issues by combining the
benefits of decentralized personalization and anonymity. The result is FreeRec,
an anonymous and distributed personalization architecture. Our solution imple-
ments a distributed user-based (CF) scheme through an anonymous and interest-
based topology and uses the resulting overlay to recommend items to users.
Unlike existing decentralized personalization platforms, FreeRec protects the
interest profiles stored at every node by means of anonymous exchanges with
other peers. This makes FreeRec a generic personalization architecture that
can be leveraged to build a number of distributed applications that may benefit
from recommendation services.

FreeRec builds anonymous chains of nodes by relying on three layers of gos-
sip protocols providing mutual anonymity. A standard random-peer-sampling
protocol provides nodes with the members of their anonymous chains. A sec-
ond private peer-sampling protocol uses these chains to provide each node with
an anonymous sample of the network. A top clustering layer implements a de-
centralized collaborative-filtering overlay by creating decentralized clusters of
anonymous profiles. This layered architecture makes FreeRec self organizing
and capable to adapt to the arrival and departure of nodes and to changes in
the interests of users. We evaluate FreeRec using both simulation and a real
deployment on PlanetLab. Our results on a news-personalization use case show
that users are able to effectively receive and publish content even in presence of
path failure with reasonable overhead.

2 System model

We consider a decentralized user-based collaborative filtering (CF) system [5, 8].
Such systems build interest-based overlay networks by clustering nodes according
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to the similarity among their interest profiles3. This task relies on two protocols:
a random peer sampling (rps) and a clustering protocol (clustering). The
rps [26] protocol ensures connectivity by providing each node with a continu-
ously changing random sample of the graph. This comes in the form of a view
data structure: a list of references to other nodes. Each entry in a view consists
of (i) a node’s IP address and port, (ii) a profile describing the node’s inter-
ests, and (iii) a timestamp indicating when the associated profile was generated.
While the rps allows nodes to continuously discover new nodes, the clustering
protocol identifies, at each node, the k-nearest neighbors in term of interests, and
ensures connectivity between the node and this neighborhood.

Periodically, each protocol selects the node in its view with the oldest times-
tamp and sends it a message containing its profile with half of its view for the rps
and its entire view in case of the clustering protocol (standard parameters [14,
27]). In the rps, the receiving node renews its view by keeping a random sample
of the union of its own view and the received one. In the clustering protocol, it
computes the union of its own and the received view, and selects the nodes whose
profiles are closest to its own according to a similarity metric. Several similarity
metrics have been proposed [25], we use the Jaccard index in this paper.

3 FreeRec

Our anonymous personalization architecture extends the model described in Sec-
tion 2 to achieve anonymity by executing gossip exchanges through onion-like
encryption chains: the proxy chains. The proxy chain of a node n is a sequence
starting with n and containing a random number of other nodes – from chmin

to chmax – as depicted in Figure 1. We refer to node n, the first node in the
chain, as its initiator. The last, p, is the chain’s proxy, (or n’s proxy), while the
remaining ones are intermediate nodes. Messages can travel along the chain in
two directions: forward, from the initiator to the proxy; or backward, the other
way around. The proxy acts as a placeholder for n, hiding n’s identity in all the
gossip exchanges that include n’s interest profile.

Proxy chains effectively hide the very fact two nodes are communicating.
Two nodes n and m can learn their respective profiles without knowing their
respective identities. Moreover, their profiles are hidden from all other nodes
in the chains. A node n that wishes to send a message to another node builds
a sequence of encryption layers around it, including the corresponding routing
information. Each of the nodes along its proxy chain removes one of these layers
and sends the inner encrypted layer to the next hop indicated in the message.
The process continues until the destination node’s proxy. At this point, the
message goes through the destination chain in the backward direction using
routing information and encryption keys maintained by each node in the chain.
Each of these, starting from the proxy, adds one encryption layer and routes the
message until it arrives at the destination node, which removes all the layers.

3 We use the term node to refer both to a user and to her machine.
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3.1 Chain-Based Routing

We now present the data structures that allow nodes to build, maintain, and use
proxy chains.

Chain and Message Keys. The onion-like encryption process outlined above
relies on three types of keys: two sets of public/private key pairs, and one set of
secret keys. First, each node, n, maintains a key pair, (Kn, kn)4, called message
key pair. Nodes use it to send and receive encrypted messages through proxy
chains to and from any other node while preventing the proxies and the other
chain nodes from accessing the content of this communication.

Each node also maintains a second key pair: the chain key pair, (Cn, cn).
While the message key pair hides the content of a message from the nodes in the
chain, the chain key pair makes it possible to construct the onion-like encryption
layers when traversing the chain in the forward direction.

Finally, each node, n, generates and dispatches a secret key, sni , to each node,
i, in its own proxy chain. Nodes use this key to add onion layers to messages
that travel along the chain in the backward direction, i.e. towards n. The use of
onion-like encryption in the forward and backward directions causes messages
to change at each hop, thus preventing external observers from recognizing the
messages in a proxy chain. We summarize the roles of the three types of keys in
Table 1, and provide details about their distribution in Section 3.3.

Data Structures and Routing IDs. To route messages along proxy chains
we use a combination of source and hop-by-hop routing. Each node maintains
information about the members of its own proxy chain in a chainTable. This
data structure is essentially a list: each entry consists of the identifier of a node,
and of its associated public chain key. The information in the table allows the
initiator of a chain to encrypt messages in onion layers.

The destination proxy, however, cannot use source routing to reach the des-
tination node: a node may in fact act as a proxy or an intermediate node in
multiple proxy chains. To route backwards along the chain, we therefore use a
set of routingIds as depicted in Figure 2. For routing purposes, all the nodes
in a chain could use the same routingId to identify their next hops. However,
this would easily allow colluding nodes to verify if they are part of the same
chain. We therefore associate a unique (with high probability) routingId with
each link in a chain. The proxy routingId (e.g. pa and pb in Figures 1 and 2)
serves as a pseudonym for the destination node, while the remaining ones (rij
in the figures) enable backward routing on the destination chain.

Nodes store the routingIds of the chains they belong to in a routingTable.
With reference to Figure 2, let node p be a proxy in the chain of node b. p’s rout-
ingTable contains an entry indexed by b’s proxy routingId (pb in the figure).
This entry contains (i) p’s secret key for the chain (sbp), (ii) the identifier of the

4 We use uppercase characters for public keys and lowercase for private or secret keys.
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previous node in the chain (v), (iii) the public chain key of v (Cv), and (iv) the
routingId of the link between p and v (rpv). Intermediate chain nodes also
have an analogous entry in their routing tables, but indexed by the routingId
of the link to the next node in the chain. Node v therefore has an entry indexed
by rpv and containing (i) v’s secret key for the chain (sbv), (ii) the identifier of z,
(iii) z’s public chain key (Cz), and (iv) the routingId of the link to z (rzv).

Fig. 1: Proxy chain creation.

3.2 FreeRec Three-Layer Architecture

Our goal in building proxy chains is to enable the architecture described in
Section 2 to operate anonymously. To make this possible, we replace the two
protocols of Section 2 with a three-layer architecture. We introduce a rps pro-
tocol layer, which provides each node with a sample of the network from which
to choose the members of its proxy chain. The rps operates like a normal peer
sampling protocol with one addition: it associates each node n with the informa-
tion required for creating the chains. This comprises only the node’s IP address,
its public chain key Cn, and a timestamp. Interest profiles do not appear in the
rps views: they are protected by the anonymous prps layer.

The prps (Proxied Random Peer Sampling) uses the information provided
by the rps to build a proxy chain for each node. It then exploits these chains in
gossip exchanges thereby providing each node with a random sample of anony-
mous nodes. In doing this, it also allows nodes to learn about the necessary
information to route messages anonymously to other nodes. Consider a prps
view containing an entry for node b. The entry does not include b’s IP address
and port. Rather, it is identified by b’s proxy routingId (pb). In addition, it
contains the IP address and port of b’s proxy (p), p’s public chain key (Cp), b’s
public message key (Kb), and b’s interest profile.

prps views allow nodes to learn about the anonymous information referring
to another node without being able to associate it with the node’s precise iden-
tity. Nodes exchange views like in a standard rps. However, they channel all view
exchanges through their proxy chains. The prps thus replaces the rps protocol
of the architecture of Section 2, thus enabling anonymous profile exchanges.
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(Cn, cn) Chain key pair of node n cn private key, Cn public key

(Kn, kn) Message key pair of node n kn private key, Kn public key

sxn Secret key generated by node x and shared with node n

rps Random peers sampling @ip, timestamp, Cn

prps Random proxies sampling @ip, timestamp, routingId, Cn, profile, Kn

clustering Interest-based neighborhoods @ip, timestamp, routingId, Cn, profile, Kn

RT routingTable [rpv] sbv, z, Cz, rzv

Table 1: Data structures maintained on a node v, followed by p and preceded by z in
b’s chain.

The prps serves as a basis for the top layer of our architecture: a clustering
protocol, like the one in Section 2. However, unlike in Section 2, the clustering
protocol also performs all its view exchanges using the proxy chains built by
the prps layer. This allows our architecture to build decentralized personalized
services in a completely anonymous manner.

3.3 Protocol Details

In the remainder of this section, we provide additional details about how the
prps protocol manages chains and encrypted routing.

Building Proxy Chains. A node a can start building its proxy chain once
its rps view is filled with a random set of nodes. Specifically, a first determines
how many other nodes should be in its chain by extracting a random number
k from chmin to chmax included. Then it extracts k nodes from its rps view and
it sets the first extracted node as a proxy p and the remaining ones (if any) as
intermediate nodes i in the order they were extracted. a builds a create-chain
message as described on Figure 1.

The message consists of concentric onion layers. Each layer is a createChain
message encrypted with the chain key of one of the nodes that will constitute the
chain. The innermost message, M3 in the figure, is encrypted with the proxy’s
chain key and contains (i) the proxy’s secret key (saq ), (ii) the proxy routingId
for the chain (pa in the figure), and (iii) the routingId for the link between
the proxy and the last intermediate node (ryq in the figure), (iv) the previous
node’s IP address and port (y), and (v) its public chain key (Cy).

After creating M3, the initiator creates a message for the last intermediate
node in the chain (y in the figure). This message contains (i) the previously
encrypted message for the proxy (M3), (ii) the next node’s IP address (the IP
address of the proxy q in this case) and port (q), (iii) node y’s secret key (say), (iv)
the routingId of the link between y and the next node in the chain (ryq), (v) the
routingId of the link between y and the previous node in the chain (rxy), (vi)
the previous node’s IP address and port (x), and (vii) its public chain key (Cx).
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The initiator encrypts M2 with y’s chain key and then it repeats the process
by adding a layer for each of the nodes it selected for its chain, the last of these
being the one closest to the initiator itself, x in the figure. The initiator then
sends the outermost message to this node initiating the chain-creation process.

Each node receiving a createChain message decrypts it and uses its content
to update the information in its routing table. It then forwards the encrypted
inner-layer message to the next node in the chain, which operates analogously.
The proxy performs the same operations except that it does not forward the
message further. If a chain node is already part of another chain with the same
routingId, it replies with an error message to the initiator, which will recreate
the chain using a different routingId.

Sending Messages through Chains FreeRec achieves mutual anonymity:
when two nodes exchange messages, both the sender and the receiver are anony-
mous. Nodes use their proxy chains to send and receive encrypted messages as
part of the prps and clustering protocols. Consider the example in Figure 2.
Node a is sending a message m to a node with proxy p (not knowing b’s id),
public message key Kb, and proxy routingId pb. Node a will have discovered
this node, which happens to be b, through prps or clustering exchanges. As
a result, the association between b’s identity and p, Kb or pb is unknown to a as
well as to every other node in the system. The process unfolds as follows.

Fig. 2: Message exchange between nodes a and b: a knows b’s profile, the identity of p,
but not the identity of b. Node b knows a’s profile, the identity of q, but not the identity
of a. Nodes in the chain cannot access a’s or b’s profile.

First, a encrypts m using the destination node’s public message key yield-
ing Kb(m). Then it prepares the first layer of its onion message. Specifically, a
includes Kb(m), and the destination’s proxy incoming routingId, pb in the fig-
ure. Then it encrypts the resulting message with the destination proxy’s public
chain key, yielding M4 in the figure. Node a continues the creation of the onion
message by adding one layer from each of the nodes in its own chain, starting
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from the proxy. The first of these layers, M3 is encrypted with the proxy’s public
chain key, and contains both M4 and the address of M4’s target: the destination
node’s proxy. The subsequent one, M2 contains M3 and the address of M3’s
target, q in the figure. In general, consider a node n that is followed by a node
m in a proxy chain. The corresponding onion layer will be encrypted with n’s
public chain key and will contain the IP address and port of m together with
the immediate inner onion layer encrypted with m’s public chain key. In the case
of the figure, the outermost onion layer (M1) will be encrypted with node x’s
public chain key and will contain M2 and the IP address and port of node y.

After creating M1, node a sends it to x, which starts peeling off the first
layer. It first decrypts the message using its private chain key and then forwards
the contained encrypted message (M2) to the node indicated in M1 (y). Upon
receiving the corresponding onion layer, each node in the chain proceeds analo-
gously until the source node’s proxy (q) forwards the innermost layer (M4) to
the destination’s proxy (p). This completes the first part of the routing process.

The destination’s proxy (p) initiates the second part. It decrypts M4 and
retrieves its content: a routingId, pb, and an encrypted message for the des-
tination node (Kb(m)). p first looks up pb in its routing table and it retrieves
(i) the associated secret key (sbp), (ii) the address and port of the previous node
in the destination chain (v), and (iii) the routingId of the link leading to
this node (rvp). It then encrypts Kb(m) using the retrieved secret key, yield-
ing (sbp(Kb(m))). Finally it builds a message containing sbp(Kb(m)), and the
routingId of the link to the previous node in the destination chain (rvp). It
encrypts this message using v’s public chain key, yielding M5, and sends it to v.

When v receives M5, it decrypts it using its private chain key and retrieves
sbp(Kb(m)) and the routingId of its link to p (rvp). It looks up this routingId

in its routing table and retrieves its own secret key sbv, the IP address and port
of the previous node in the chain (z), z’s public chain key, and the routingId of
the link leading to it (rzv). Node v encrypts sbp(Kb(m)) using sbv and places it in
a message together with the retrieved routingId. It then further encrypts this
message with z’s public chain key and sends it to z. This process repeats at each
of the intermediate nodes in the chain. Each adds an onion layer by encrypting
the content of the message with its secret key and then wraps the result into a
message with the routing information for the previous node in the chain.

When the destination node (b) receives the final message, it first decrypts
it using its private chain key. Then it starts peeling off each of the onion layer
added by the nodes in its proxy chain. To do so, it uses the secret keys it stored
in its chainTable, starting with the one associated with the first intermediate
node. After decrypting the layer added by its proxy, it obtains Kb(m), which
it further decrypts using its own private message key, ultimately retrieving the
original message m.

Initialization For this process to work, the source of a message must not only
have built its proxy chain, but it must also have the necessary information about
the destination node. This consists of the destination node’s public message key
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(Kb), and of its proxy’s IP address, public chain key (Cp), and routingId
(pb). During normal operation, nodes obtain this information through prps ex-
changes. However, this poses a problem during initialization when the prps view
of a node is still empty.

Consider a node n with an empty prps view. The first time n establishes
a proxy chain, it sends a prps view containing only its information to all the
nodes in its rps view. The corresponding messages go through the proxy chain
of n until its proxy and then go directly to their targets. Consider a target node
t receiving one such message. If t is a proxy for another node m, then it forwards
the message to m along m’s proxy chain. Otherwise t caches the message until it
becomes a proxy for some other node. When a node m receives the initialization
message forwarded by its proxy, it adds its content to its prps view.

In principle, the target node t could also add the information received from
n to its own prps view. However, this would weaken the protocol’s anonymity
guarantees. An attacker n could send its entry to only one target node t. If it
subsequently received a message from a proxy p, it could conclude that p is likely
to be the proxy of t.

Changing proxy Nodes change their proxy chains periodically. This provides
several benefits. It sustains anonymity over time by limiting the impact of at-
tackers that may corrupt a node’s proxy. It provides protection from attackers
that may guess a node’s keys. Moreover, it allows a node to react to path failures
in its chain as a result of churn.

To change proxy chain, a node repeats the chain creation process every t1
time units. Once it has established a new anonymous path, it informs all the
nodes in its prps and clustering view of its new proxy. To keep track of these
changes, all proxies and intermediate nodes associate a timer t2 with each of the
entries in their routing tables. When t2 expires, they delete the corresponding
entry. Nodes choose the timer value so that t2 > t1 + δ where δ is an upper
bound on the time required to create a chain.

After a node has set up a new chain, it initiates a prps exchange with
all nodes in its prps view and a clustering exchange with all those in its
clustering view. A node that receives a fresher prps entry with the same
proxy routingId as an existing entry (i.e. entry pointing to the same destina-
tion node) updates this entry with the new proxy identifier, proxy chain key,
message key, and profile.

An important side effect of changing proxies is that the minimum length of
the chain chmin should be at least as large as 1. If chmin = 0, then a node n would
be its own proxy with probability 1/chmax. An attacker could easily exploit the
fact that this is significantly larger than the probability of choosing a random
proxy. For chmin ≥ 1, a node that serves in n’s proxy chain for several times could
still observe that n appears as a previous chain node more often than others.
Yet, inferring this information would require n to choose the attacker as the first
node in its chain for several times. This makes the attack for chmin ≥ 1 very
unlikely to succeed in practice.
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4 Evaluation

4.1 Experimental setup

We evaluated FreeRec by simulating its behavior and by deploying its im-
plementation on PlanetLab in the context of a news-personalization use case.
We combine FreeRec with a gossip-based dissemination protocol to recom-
mend news items to a population of users. A user interest profile contains the
news items she received and liked. When a user generates an item or expresses
a positive opinion on a received item, she forwards it to her neighborhood in
FreeRec’s anonymous interest-based topology. Gossip frequency in all proto-
cols is set to one per simulation cycle and of one every 2s in PlanetLab.

Dataset. We use a real dataset: we conducted a survey on around 250 news
items (selected randomly from a set of RSS feeds on various topics). We exposed
the item list to around 100 colleagues and relatives and gathered their reactions
(like/dislike) to each news item. This provided us with a small but real dataset of
users exposed to exactly the same news items. To scale our system, we generated
5 instances of each user and news item in the experiments. The resulting dataset
gathers 1235 news items for 530 users. We inject each item into the system at a
random time instant by selecting a random source node.

Metrics. We evaluate FreeRec along two metrics of performance and quality.
Firstly we measure the overhead of the system in terms of the network traffic
it generates. For simulations, we compute the total number of sent messages,
the number of messages which have not reached its destination due to message
loss and the number of hops for messages. For our PlanetLab deployment, we
instead measure the average consumed bandwidth and the latency to receive
a message. Secondly, to assess the impact of FreeRec on the quality of the
recommendation, we compute recall and precision. Both measures are in [0, 1].
For an item, a recall of 1 means that all interested users have received the
item. Yet, this measure does not account for spam since a trivial way to ensure
a maximum recall is to send all news items to all users. This is precisely what
precision accounts for. A precision of 1 means that the news item has reached only
the users that are interested in it. An important challenge in information retrieval
is to provide a good trade-off between these two metrics. This is expressed by
the F1-Score, defined as the harmonic mean of precision and recall [25].

Precision =
| {interested users} ∩ {reached users} |

| {reached users} |

Recall =
| {interested users} ∩ {reached users} |

| {interested users} |

F1− Score = 2 · precision · recall

precision + recall
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4.2 Results

Overhead We start by considering the overhead of the proxy chain in terms
of number of messages. Clearly the longer the chain, the more anonymous the
system. This cost is a function of the length of the proxy chain: the more the
intermediate nodes in the chain, the higher the cost. Figure 3 depicts the number
of messages according to the size of the proxy chain with a neighborhood fixed to
25. Results (Fig. 3a) show that a chain with only one proxy without intermediate
nodes (i.e. size=2) brings a three-fold increase in the number of messages with
respect to a chain-less system (size=0). This is because a message needs to
go through two proxies (i.e. 3 hops) to reach its destination. Further adding
intermediate nodes in the proxy chain proportionally increases the number of
hops and the number of messages. Fig. 3b shows the overhead in PlanetLab
of the two protocols RPS and PRPS in terms of bandwidth consumption. We
observe that the RPS overhead remains stable regardless of the size of the proxy
chains for RPS exchanges carry only information about chain keys while PRPS
carries the encrypted messages. For this reason, the cost of PRPS increases
linearly with the length of the chain.5
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Fig. 3: Overhead according to the size of the proxy chain, in function of number of
messages and bandwidth consumption for simulation and PlanetLab deployment.

The impact of proxy changes To remain anonymous over time, nodes peri-
odically renew their proxy chains. After setting up a new chain, a node advertises
the information about its new proxy through prps and clustering exchanges.
However, propagating this information takes time and some nodes only learn
about the new proxy after several cycles. During this interval, a node that is un-
aware of the proxy change will send its messages to the old proxy. Consequently,
messages will correctly go through the source node’s possibly-new proxy chain,
but they will reach the destination node’s old proxy chain. If any of the nodes in
this chain has already removed the corresponding entries from its routing table,
it will silently discard the message.

As explained in Section 3.3, nodes remove entries from their routing tables δ
time units after the creation of the new chain. During this time, the nodes in the

5 Clustering (not shown) has a similar behaviour as PRPS with a bandwidth con-
sumption exactly twice as much as that of the PRPS due to the larger gossip size.
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old chain can still forward information backwards towards the chain owner. This
leaves some time for the propagation of the new chain’s information, but it does
not eliminate the possibility of losing messages. Figure 4 evaluates the impact
of this aspect in the context of our news-dissemination testbed as a function of
the size of the clustering view, with δ = 10 cycles.

Figure 4a shows that the impact of message loss on the F1-Score is very
limited. When nodes change proxy every 80 cycles (i.e. t1=80), performance is
almost indistinguishable from the stable case where nodes keep the same proxy
over the whole experiment. When the chain changes more frequently (smaller
values of t1) the percentage loss in F1-Score is slightly higher, but it remains
lower than 10%. Figure 4b completes these results by comparing the number
of sent messages with those that are actually received. Clearly message loss
increases with the frequency of proxy changes. When nodes change proxies every
40 cycles (i.e. three times in the experiment) the number of lost messages is one
fourth of the total number of messages.
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Fig. 4: F1-Score and received messages for various t1 values (Simulations).

Latency Figure 5 analyzes latency in our PlanetLab deployment (PL). The
plot shows the time required by the prps protocol to establish a proxy chain,
and by a message exchange that uses the chains both on the source and on
the destination side. In the case of chain creation (CC), latency results from
key generation, encryption/decryption operations, and message transmission.
In the case of message exchanges (ME), there are only encryption/decryption
operations and message transmission; yet messages have to travel for twice as
many hops as in the case of chain creation.

The time required to create the proxy chain increases significantly with its
size, while time required for exchanging messages increases only slightly. More-
over, creating the chain takes approximately two to three times as long as for-
warding a message (40s vs 15s with 8-hop chains), even though forwarded mes-
sages have to travel for twice as many hops. This clearly shows that latency
results mainly from computational cost. To understand the reasons for this seem-
ingly poor performance, we ran the same test by instantiating all the nodes on a
local server (LS). In this case, both operations complete in less than 3s, and ex-
changing messages does take longer than creating chains. This confirms that the
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high latency exhibited in a PlanetLab setting results mainly from long process-
ing times when performing cryptographic operations on overloaded machines.6
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Fig. 5: Latency of chain creation and message forwarding (deployment).

5 Related Work

While personalization greatly enhances user experience, it raises privacy risks
and concerns. Several collaborative-filtering approaches [20, 21] have tried to
preserve the privacy of sensitive data address by applying randomized masking
and distortion techniques to user profiles. However, [12, 16] show that privacy-
sensitive information can be separated from such random distortion. To overcome
this limitation, [7] uses noise that is not random but depends on the interest
of users. This limits the amount of information exchanged between users to
coarse-grained user profiles that only reveal the least sensitive information. Other
decentralized approaches such as [9, 10, 19] exploit homomorphic encryption in
a P2P environment. [13], in turn, addresses privacy by trust where participants
exchange information and profile only across trusted content producer/consumer
pairs. [2] proposes a differentially private protocol to measure the similarity
between profiles. While differential privacy provides a strong notion of privacy,
[18] highlights its important trade-off between privacy and accuracy.

A number of authors have proposed to address privacy by means of anonymity.
Some, like [4] achieve receiver anonymity using group communication primi-
tives like broadcasting, multicasting, and flooding. Others [11] focus on sender
anonymity and relay messages from a node along a single anonymous path
formed by nodes within the infrastructure.

Onion routing belongs to the latter group. It uses chains of router nodes that
pack messages into onions: recursively encrypted data structures that contain
the necessary routing information at each layer. When receiving an onion, a
router removes a layer by decrypting it with its private key. At this point, it
discovers either that it is the destination of the message, or the identity of the
next router in the onion’s forwarding path. . Tor [11] uses this model but cannot
be readily integrated with decentralized personalization services.

6 PlanetLab machines are notoriously overloaded, and the proximity of the SIGCOMM
deadline might have resulted in even higher load.
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Some authors have already suggested the integration of gossip and anony-
mous services. The work in [23] uses gossip protocols to improve the robustness of
trust-based overlays to provide privacy-preserving data dissemination. More pre-
cisely, it creates and maintains additional anonymous links on top of an existing
social overlay. Similarly, [22] relies on gossip protocols to supports confidential
communications and private group membership. This solution leverages existing
multi-hops paths to circumvent network limitations such as NAT and firewalls
to form anonymous channel. Neither however combines anonymity with person-
alization. Gossple [5] does this to some extent and builds a fully decentralized
anonymous collaborative network. Its gossip-on-behalf protocol hides the asso-
ciation between a user and her profile. Yet, in Gossple, a proxy controls some of
the node’s data structures. This is a significant disadvantage if the proxy wishes
to censor specific information. In FreeRec, on the other hand, a proxy can at
most drop messages randomly as it has no way to access their content.

Other works on gossip-based protocols have focused on tolerating byzantine
faults such as BAR gossip [17], the secure peer sampling [15], Brahms [6] or
PuppetCast [3]. In this work, we do not consider that nodes can act as active
adversary by operating maliciously in the protocol. In case of malicious nodes
cheating in the protocol, FreeRec could leverage one of these solutions to
tolerate byzantine nodes. Finally, some authors [29, 28] have suggested to address
churn by replacing each onion router with a group of nodes. Such a technique
could easily be integrated with our solution.

6 Conclusions

We presented FreeRec, a decentralized architecture for building anonymous
personalized services. FreeRec equips nodes with bidirectional onion-routing-
like proxy chains that allow nodes to exchange their interest profiles without
ever revealing their identities. FreeRec’s core consists of three layers of gossip
protocols. The bottom one is a standard random-peer-sampling protocol that
provides nodes with the necessary information to build their proxy chains. The
middle layer, the prps, constitutes the main contribution of this work and is an
augmented RPS protocol: it builds and maintains proxy chains and uses them
to provide each node with a continuously changing anonymous sample of the
network. The top layer completes the picture by providing each node with a
cluster of anonymous interest profiles that most closely resemble its own.
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