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ABSTRACT

In this article we present a framework for modeling a building with a single Digital Elevation Model (DEM). The model

is constructed in two stages. A first stage segments the DEM into planar surface patches to describe the building. Then, a

polygonalisation stage generates the final polygonal model of the building by using constraints. We use robust estimation

methods at different stages of our framework to develop an efficient and insensitive to noise system of modeling. The

system that we propose is fully automatic and does not use any a priori information about the shape of the buildings. We

present results with simple buildings and with a large area of a real city.



1 INTRODUCTION AND RELATED WORKS

Extracting building descriptions from an urban scene in 3D

is an essential task for a variety of applications such as

telecoms, urban planning, cartography, etc. Because of the

difficulty of this task (complexity, number and diversity of

3D objects of the urban environment), this is usually done

by human operators. The cost and time involved are high

in manual reconstruction of buildings, therefore there is

much active research on automatic 3D detection and re-

construction of the buildings. In this context, we present in

this paper a system for the automatic modeling of buildings

with a single Digital Elevation Model (DEM).

A variety of methods have been used for building recon-

struction, namely building segmentation using a DEM, fea-

ture grouping in 2D or 3D, image segmentation or com-

bined strategies. H. Mayer presented in (Mayer, 1999)

a survey on automatic object extraction from aerial im-

agery and emphasized the complexity of this difficult prob-

lem. We can cover the knowledge of the field into model

and strategy approaches. TheModel approaches integrated

into the model some knowledge about the 3D real world,

geometric or topologic regularity of the scene or the spa-

tial context. In these approaches, we recover the building

model from images. The Strategy approaches are those

that use a strategy to construct the model. This strategy

can be either grouping, matching of primitives in multi-

ple images, robust approximation of hypotheses extracted

from a DSM. This list (Bignone et al., 1996), (Nevatia and

Huertas, 1998), (Weidner and Förstner, 1995), (Stilla et al.,

1996), (Collins et al., 1996) and (Moons et al., 98) is nei-

ther complete or exhaustive but represents the main publi-

cations in this domain .

2 MOTIVATION AND OVERALL STRATEGY

Our global strategy for modeling a building or a set of

buildings is composed of three main stages. In the first

stage, we construct a dense and reliable DEMusing a correlation-

based stereo method. The second stage is the segmentation

of this DEM into locally planar surfaces. The objective

of this second stage is to describe the scene using surface

patches which correspond to the various facets of the build-

ings. The third and last stage is the vectorization of the

boundaries of each surface patch to obtain the final model

of the buildings. The first stage is presented in (Vestri and

Devernay, 2000). The framework that we propose in this

article corresponds to the two last stages of our global strat-

egy, the DEM being the input of our framework. We pro-

pose to use several robust methods to solve the complex

problems of this framework. We begin by a quick review

of the various robust methods for parameter estimation.

3 ROBUST METHODS FOR PARAMETER

ESTIMATION

Classic methods for parameter estimation suppose that the

data are corrupted by a small-scale noise. If there are gross

errors (outliers) in the data, these methods can produce

nonsense results. Robust methods are designed to esti-

mate correctly the model of the dominant population even

if there is an important amount of outliers. These meth-

ods have been proposed and developed both in statistics

and computer vision domains. We propose in this section

to present the robust methods that we used. We orient the

readers to the review of (Zhang, 1997) for more precisions.

The two main robust methods used in computer vision are

M-estimator and Least-Median of Squares (LMS). The M-

estimator is a generalization of Least Squares (LS) estima-

tor. LS estimator tries to minimize the sum of the squared

residuals which is unstable in the presence of outliers. The

M-estimator reduces the effects of outliers by replacing the

squared residuals by another function of the residuals. This

function reduces the importance of data that have a high

residual. Like LS estimator, M-estimator requires a good

initial estimate to converge to the optimal solution. The

principle of the Least-Median of Squares estimator is to

select the best model from a set of estimated models that

are randomly sampled. A crucial parameter of this method

is the number of sets to estimate. The method chooses the

model which has the minimum median squared residual.

This method can recover the model with the presence of

��� of outliers. The computational time can increase dra-

matically with an important number of data.

4 DETECTION OF BUILDINGS

All the views of the scene are supposed to be calibrated.

The initial DEM is made by robust fusion of several DEMs,

each of them corresponding to the matching of two adja-

cent views. To keep the computational time low, the whole

process is applied only to the neighborhood of a build-

ing, then we merge all results to obtain the final model of

the scene. We automatically detect and extract, from the

raw DEM, each building or group of adjacent buildings.

For this detection, we substract the Digital Terrain Model

(DTM which corresponds to the ground) of the scene from

the raw DEM to obtain a height map. Then, we extract

a local DEM for each blob in our height map by using a

threshold. We keep only the buildings which are higher

enough and have a sufficient size. We apply the segmenta-

tion and vectorization processes to each building (the local

DEM) independently.

5 SEGMENTATION OF THE DEM

The first objective is to extract a simple and representative

description of each building of the scene without any pre-

vious knowledge of their shape. This is the segmentation



problem that we propose to solve. By using a DEM as ini-

tial data, this problem can be viewed as modeling a cloud

of 3D noisy data. Many techniques to solve this problem

use the model selection and the robust estimation methods.

Recent reviews of these two domains are the paper of P.

Torr (Torr, 1999) for the model selection and the paper of

C. Stewart (Stewart, 1999) for robust estimation.

Our approach is based on the ExSel++ framework pre-

sented in (Stricker and Leonardis, 1995). The authors de-

fine in this article a general and robust framework to extract

parametric models from dense or sparse data. One speci-

ficity of their framework is the ability to use and select

multiple models to describe the data. The DEM is a �D
�

�

map. Data from this map mainly correspond building roofs

and ground. We choose the planar surface patch model to

describe data in our segmentation process. We are able

to describe all the buildings of the scene with this simple

model, except some which have second order surfaces in

their structure (dome, cylindric shape, ...). The segmenta-

tion process is composed of three main stages that we will

present independently: a stage of exploration of the data

which generates a list of hypotheses of models, a stage of

merging which suppresses redundancy of the hypotheses

and a stage of selection which chooses the best set of hy-

potheses to describe the data.

5.1 Exploration stage

The purpose of this stage is to produce a list of hypothe-

ses which can later be used by the selection stage to de-

scribe the data. All the different parts of the final model

of the building must be found in this stage. The explo-

ration stage is based on the RANSAC procedure (RAN-

dom SAmple Consensus) which was proposed in (Fischler

and Bolles, 1981). Like Least-Median of Squares (LMS,

see (Rousseeuw and Leroy, 1987)), this method computes

a model by solving a system of equations defined for a ran-

domly chosen subset of points. All data are then classified

relatively to this model and points which are in the error

tolerance are called consensus set of the model. If the sup-

port of this consensus set exceeds a threshold, the model is

validated and then is recomputed. We adapt this procedure

to search and compute the hypotheses of model which will

describe the different parts of the data.

The exploratory procedure is iterative and each step can be

described as follows:

� randomly select a minimal set of points for the model,

� grow this subset with consistent data and reject invalid
points and

� test the validity of the model hypothesis.

With a simple planar patch model, the minimal set of point

to construct a plane is defined by three points which are

not lined up.

We implement two additional features to conduct the ex-

ploration procedure and to improve the consistency of the

results. First, we choose a deterministic growing from the

initial set of data that we randomly select in the scene.

Actually, only the first point of the minimal subset is ran-

domly chosen in the scene. The two others are chosen in a

restrictive window centered on the first point. We validate

the three initial points with two verifications: we verify

that there are not lined up and we verify that they do not

correspond to a near-vertical plane. We take advantage of

the �D
�

� map to conduct the sampling and the growing.

The second feature is the usage of a recency map to con-

duct the exploration of the scene. When we have found

a valid hypothesis of model, we store this hypothesis in

this recency map for a finite number of the procedure iter-

ations (the values in the map are decreased after each ini-

tial random sampling even if there is no valid hypothesis).

The random selection of the initial set of points cannot take

points which are in the recency map.

We developed two modes of exploration for our experi-

ments. In the first mode, we constrained the hypotheses

of model to be horizontal features. In this case, we sim-

ply compute the median value of the altitudes to estimate

the parameters of the planar surface patch. In the second

mode, the planar surface patch is not constrained. We use a

simple Least Squares estimator to compute the parameters

of the planar surface patch. We can find all kind of roofs.

To ensure a quick convergence of the estimation, the first

estimated plane is constrained to be horizontal.

We use two stopping conditions for our exploratory proce-

dure. First, the procedure is stopped when we have found

enough hypotheses. Second, the procedure is also stopped

when we cannot find another hypothesis from the data (the

points which are not in the recency table). The first stop-

ping criterion depending on the complexity of the scene.

We evaluate the number of hypotheses to search at 50. The

second stopping criterion is empirically chosen at 50 failed

samples. The error tolerance threshold depends on the res-

olution of the DEM (see section 7.1).

5.2 Merging stage

After the exploration stage, we propose a merging stage in

the segmentation process. This stage allows to limit the

redundancy in the list of hypotheses and decrease the com-

putational time of the selection stage. The remaining hy-

potheses after this stage are generally more consistent. The

principle of this stage is to merge two hypotheses if they

have an important overlapping surface or if there is a high

probability that they correspond to the same surface.

The implementation of the first condition test is simple.

We estimate the overlapping surface by using the number

of common points of the two planes. We express this sur-

face as a percentage in the plane which has the smallest

surface (eg. the smallest number of points). The use of the

percentage value avoids the confusion between two planes
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Figure 1: a and f are two initial local DEMs of buildings. The black areas in the other images are examples of hypotheses

which are extracted by the exploration stage.

which correspond to the same surface and an intersection

of two different planes. We use a decision threshold of

80% to determine if the planes must be merged.
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Figure 2: Merging of the hypotheses: Each of the different

pairs of images (a b ), (c d ) and (e f ) presents two hypothe-

ses (black regions on the building image) that correspond

to the same plane. These hypotheses are merged.

The second condition of merging is based on a statistic test:

the F-TEST. This test is only used in the unconstrained

mode of the exploratory searching. We use it to decide

if the resulting plane of the combination of two hypothe-

ses of planes is better than each of them in the sense of the

test. The estimator of the parameters of the plane is unbi-

ased. We use the variance of the error of the data with their

model to quantify the quality of each hypothesis.

The F-Test allows to compare the variances of two sam-

ples of data by maximizing the rejection of the equivalent

case. The advantage of this test is to compare the variance

of two samples of data which have different sizes. We use

the F-test to compare individually the quality of the com-

bined plane with the quality of each of the two plane. We

compute the probabilities that the combined plane is better

than each of the two other planes. If these probabilities are

upper than 0.9, we merge the two planes.

5.3 Selection stage

The purpose of the selection stage is to decide which hy-

potheses must be kept to describe the data. We want to

remove the randomness of the exploration stage and select

the minimum and the best set of hypotheses. The selection

stage is performed by changing the selection problem in an

optimization problem. We adopt the solution proposed by

A. Leonardis in (Leonardis, 1994) which implements the

MDL principle (Minimum Description Length).

The description length functions The MDL principle

is based on the notion of performing inductive inference

by minimal coding. In the selection problem, we want to

select the minimal number of models which are necessary

to describe the data. We also want to preserve a minimal

measure of error between the data and the selected models.

We use an objective function � , computed for a subset of
model hypotheses of the list of hypothesis�. This function
is a combination of two components: the first component

����� which expresses the benefit value for a particular
model�� of the list, and a second component ��������



which expresses the cost value of the interaction between

the models�� and�� .

The component����� expresses the quality of an hypoth-
esis of the list. This quality measure is composed by two

terms: a term of benefice and a term of cost. The benefice

term expresses the importance of the hypothesis. It de-

pends on the size �� of the support �� of the model ��

(eg. the number of data use to generate this hypothesis:

�� � ����). The cost term expresses the quality of descrip-
tion of the hypothesis. It depends on the measure of error

�� of the data which support the model�� (�� is the sum

of residuals). We compute the quality component �����
as follows:

����� � 	� � �� � �	�	�� ��� (1)

with 	� � 
�� 	℄. We obtain a simpler component than A.
Leonardis because we only use one kind of model. 	� is a

weight which allows us to adjust the preference of one of

the two terms. The quality component allows to select the

models from the list which have a big support and a little

measure of error.

Because we have an overlap between the different mod-

els, we need to take into account this interaction in the op-

timization to limit this phenomenon. Like A. Leonardis,

we only consider pairwise overlaps of the models. We use

an interaction component �������� between two models
which have the same form as the quality component. These

component is evaluated on the overlapping part of the two

models. But because we want a minimal overlap between

the models, the terms of the interaction component are op-

posed to the terms of the quality component. We compute

the Interaction component �������� as follows:

�������� �
��	� � ��� ��� �� �	�	�� � ����

�
(2)

with:

��� � 
��

�
� �
�������


��������
�

�������


�������

�
�


 is the Euclidean distance between a point � and a model
��. The interaction component allows to limit the overlaps

between the models of the subset that we are evaluating.

The boolean optimization problem Each hypothesis of

model must be selected or not in this stage, this is a boolean

optimization problem. The number � of hypothesis in

the list � is the size of the problem. Let vector �� �

������ 
 
 
 ��� ℄ denote a set of models. �� is a boolean

variable which expresses the presence (�� � 	) or not
(�� � �) of the model �� in the solution �

� . The de-

scription length � value for the subset �� is defined as fol-

lows:

� � ��� �
�

������

�� ������ (3)

�
�

����������������

�� ��� � ��������

� must be maximized to find the best subset of models. We
solve this as a quadratic boolean problem. The objective

function to be maximized is the following :

� ��� � ���� (4)

Figure 3: Results of the selection stage: The segmentation

procedure uses 22 planes to describe the building (in the

mode that does not use the horizontal constraint).

This function allows to take into account the quality of a

model and the interaction between all of them (by pair).

The diagonal terms of the matrix� express the cost-benefit
value for a particular model��, we take the quality com-

ponent �����. The off-diagonal ��� �� terms handle the
interaction between the overlapping models �� and �� ,

we take the interaction component ��������. The matrix
� is symmetric. Because off-diagonal terms depend on the
overlap of the models, the matrix can be sparse or banded.

Tabu search To solve this boolean optimization prob-

lem, we need a procedure of discrete optimization. We

use the Tabu search procedure to solve the system. Tabu

search is a general heuristic procedure for global optimiza-

tion which can be viewed as an extension of a steepest as-

cent method. We do not describe this algorithm in this

article. The idea of Tabu search is to begin the steepest

ascent from multiple initial conditions. For each iteration,

we evaluate the objective function for the current subset

of selected models and for the neighbor subsets and then

we choose the best move. We save all the local maxima

found by the procedure in a table. The global solution cor-

responds to the subset of models with the maximum value

of all the local maxima. We implemented this procedure

with the components proposed by (Stricker and Leonardis,

1995)
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Figure 4: The images of a present three ortho-images of

buildings. The images of b are the corresponding local

DEMs. The synthetic local DEMs of the building that we

construct after the segmentation process are presented in c.

We only use horizontal planes to describe the buildings.

6 CONSTRUCTION OF THE POLYGONAL

BUILDING MODEL

Once we have extracted each planar surface patch from

the roof of the building, we want to obtain the polygonal

model of the building. We adopt a �D
�

� strategy to simplify

the implementation and to give consistency to the final 3D

model of the building. We propose a strategy in two main

stages. The first stage is the polygonalisation of the con-

tours of the selected hypotheses. The second stage is an

iterative procedure of refining. This procedure of refining

constrains angles of the polygonal model to be orthogonal

or straight.

6.1 Polygonal approximation of the building

The list of planar surface patches, generated by the seg-

mentation process, describes the different parts of the sur-

face of the roof. There are two problems we need to solve

before we apply our polygonal approximation: first, some

overlapping regions remains between the patches and sec-

ond, some holes appear between the models and in the mid-

dle of the models. Most of these holes come from the ini-

tial DEM, where the matching process failed. We begin the

polygonal approximation stage with a pre-treatment stage

to correct these problems. Then, we present a framework

for extracting a polygonal model with a segmented DEM.

6.1.1 Pre-treatments We propose to construct a syn-

thetic local DEM from our list of models where each pixel

is affected to only one model. This synthetic DEM allows

to guarantee a �D
�

� consistency of the future polygonal

model. If a pixel belongs to multiple models, the pixel is

affected to the model with the lowest altitude. We choose

this mode of affectation because roofs are generally out of

their real limits. If a pixel does not belong to any model,

we use another complete DEM. This DEM corresponds to

the interpolated map of the local DEM. We take the alti-

tude value of the pixel into the complete DEM. Then, we

affect this pixel to the model which is the nearest (in Z

component) from this altitude.

After the construction of this synthetic and complete DEM,

we apply a filtering procedure with two stages. The first

stage suppresses the small and residual regions which have

a surface inferior than 	���. The second stage is a mor-

phologic filtering. We use this filtering for smoothing the

boundaries between the different models and mainly near

the junctions. We use the open/close then close/open mor-

phologic filters.

The synthetic local DEM can be viewed as a segmented

image. We propose a framework for extracting the polyg-

onal model from this segmented DEM. We begin by ex-

tracting two features from this image: the junctions and

the chains. Chains are lists of successive points which de-

limit the different regions. Junctions are the limits of the

chains and can have different types : a simple junction is

the intersection of the border of the DEM and a chain, a



double junction closes a chain and a triple or higher de-

gree junction corresponds to the limit of multiple regions.

We present the framework in two distinct processes. The

first process does a polygonal approximation of each chain,

junctions are fixed. The second process treats the different

configurations of the junctions and simplifies the model if

this is necessary.

6.1.2 Polygonal approximation of the chains We pro-

pose an algorithm of polygonal approximation of chains

based on the work by (Pavlidis and Horowitz, 1974). This

choice was conducted by a comparative study of polygonal

approximation methods presented in (Filbois, 1995). The

original algorithm uses successive split and merge stages

while the polygonal chain changes. Then, a Least Squares

approximation stage estimates the parameters of each seg-

ments and the final stage compute the new positions of the

points of the polygonal chain. We adopt the same merging

and splitting tests in our algorithm. The chain is splitted

if 
	
� the maximum distance of the points of the chain

to the current polygonal chain is upper than a threshold

�� (fig. 5a). Two successive segments of the polygonal
chain are merged if the distance 
 between themiddle point
(which is at the intersection of them) and the straight line

defined by the other points of the polygonal chain is greater

than a threshold �� (fig. 5b).

We propose to improve the original algorithm of Pavlidis

with the next features:

� We add another merge criteria based on the surface of
the triangle that is defined by three successive points

of the polygonal chain. It allows to suppress residual

noise in the polygonal chain (fig. 5c).

� We add in thewhile loopwith split and merge stages a
new stage of corner correction. This correction treats

the case where angles are too smooth and the chain is

described by two points instead of one (fig. 5d).

� The fitting stage of the segments and intersection points
is put in the while loop because this stage can still re-

quire split and merge stages.

� We use a Least Median of Squares (LMS) instead of
Least Squares (LS) estimator to avoid initialization

problems and to obtain a more robust and represen-

tative solution of segments.

We describe our algorithm in the figure 6.

Because we add the correction of the corners, the estima-

tion of the segments and the computing of intersection of

segments stages in the loop, the points of the polygonal

chain can be out of the chain. For selecting the represen-

tative points of the chain, we search for each point of the

polygonal chain the nearest points of the chain. We use

these points to delimit the lists of points that we use to fit a

model of segment (fig. 5e).

����

����
����

���� � �� ���� � ������ � ��

a. Split stage: while 
	
� � �� , the chain is splitted

�

� � ��

b. Merge with the distance criteria.

�

� � � � ��

c. Merge with the surface criteria.

���� ��

����

����

� ���� ��

����

�

and � � ��

������ � � � ��

d. Correction of the corners: if the two tests are valid in

the polygonal chain, we recover

a corner of the model and then correct the polygonal chain.

��
����

��

����
e. Estimation of parameters of a segment with the chain:

we use the list of points of the chain which are between

�� and ���� to estimate the parameters of the segment
������ of the polygonal chain.

Figure 5: a, b, c and d present the different procedures and

tests of the polygonal approximation process. e present

the choice of the list of points of the chain that we use for

estimating a segment model of the polygonal chain.
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Figure 8: a, b and c present the vectorization of three buildings. The first images correspond to the result of the polygonal

approximation of the chains. The second images are the results of the refining process.



while modification by split or merge phase

� split phase of the chain based on distance between
chain and polygonal chain

� merge phase of the chain based on distance between
chain and polygon chain and surface between three

consecutive polygonal points

� correct the corners

� adjust segments of the polygonal chain with LMS es-
timation

� compute new intersections of segments to obtain the
final polygonal chain

end while

Figure 6: Algorithm of polygonal approximation of the

chains.

6.1.3 Treatment of the junctions In the polygonal ap-

proximation process, the limits of the chains (the junc-

tions) are fixed to avoid a deconnection in the polygonal

model of the building. In this process, we want to adjust

the positions of the junctions to obtain a more representa-

tive polygonalmodel. We treat all the junctions at the same

time. Each type of junction has an adapted process that we

present in the figure 7.

	�
�

�
	�

�

�

a. Simple junction

	�

��




��




	�

���� ��

b. Double junction

	�

�




�

�




�

	�

c. Triple junction

Figure 7: a, b and c present the treatments of the different

junctions to correct their positions in the polygonal model.

A simple junction point �� is the intersection of the border
of the DEM and a polygonal chain. First, we search the

points of the chain which correspond to the current seg-

ment. Like in the polygonal approximation process, we

compute the nearest point � of the chain from the other

extremity of the segment � . We compute the new segment
by fitting a segment model which passes through � to the

points of the chain which are between �� and �. Then,
we move the junction point to the intersection of the new

segment and the border of the image.

A double junction point �� corresponds to a closed polyg-
onal chain. We use the same strategy with two segments.

We compute the two parts of the chain ���� and ���


which respectively correspond to the two segments ���
and ���. We fit with a LMS estimator the two segments
which pass through the initial extremities � and �. Then,
we move the junction at the position of their intersection.

For triple junction points, we compute the junction posi-

tion which minimizes the sum of residuals of the three

segments starting from the junction. We search the best po-

sition of the junction when other extremities do not move.

Our LMS strategy consists in randomly sampling two points

in two different chains. We estimate the position of the

junction point and compute residuals for all random-sets.

Then, we select the solution which minimizes the median

of residuals. We do not treat the junctions with a highest

degree.

6.2 Refining the model with angle constraints

We have extracted a polygonal model of the building using

a segmented DEM. In this extraction, we have not sup-

posed any a priori knowledge on the form of the building.

We obtain polygons with any angles. In man-made envi-

ronments, straight and orthogonal angles are often present.

We propose now a process which tries to impose these con-

straints to the global polygonal model of the building.

The initial polygonalmodel�� of the building is composed

by segments which are linked by junctions or vertices of

the polygonal chains of the building model. Because we

want to preserve a global consistency of the model, the

strategy must be applied to the global model. We propose

to solve the problem of orthogonalization of the model by

the optimization of an objective function�. The best solu-
tion �� corresponds to the minimum of the objective func-

tion :

�� � 
������� � 
��
�
����� � �����

�
(5)

We explain in the following the construction of this objec-

tive function which comprises two components : a com-

ponent � which constrains angles to be ��Æ or 	��Æ and a
component � which attaches the result to the initial data.

The first component gives priority to ��Æ and 	��Æ angles.
We use the �������� function to estimate the weight of an
angle � of the polygonal model. This function is minimal
for the angles we want to privilege (�Æ MODULO ��Æ).
We use one variable angle for each point of the polygonal

chains, two variable angles for the junction triple, etc. The

simple junctions are fixed because they correspond to bor-

ders of the images. Let � be the ensemble of all the angle’s



variables of the polygonal model, we have:

����� �
�
�����

�� � ���
����� (6)

The component � allows to force the polygonal model to

have privileged angles.

The orthogonalizationprocess only uses the polygonalmodel

as input data. We need to use a component which attaches

result to the initial data and avoids too important distor-

tions on the polygonal model. Let � be the ensemble of
the points of the polygonal model (junctions and vertices

of the polygonal chains), we have:

����� �
�
�����

�� � ��� � �� (7)

���� �� � ���

� is a point of the current polygonal model and �� is the
same point of the initial model.�� and�� are two weights

which control the influence of the two components of the

objective function. We choose �� � 	� ����	�Æ� and
�� � 	��� (�� is the threshold using in the merge stage

of the polygonal approximation process) to have the same

cost for a distance of �� from the initial model and for

an angular difference of 	�Æ. Because we have an ini-
tial model closed to the solution, we use the M-estimator

method for the optimization with the Tuckey function. Af-

ter the optimization, we use a merging stage to eliminate

some bad configurations of the polygonal chains due to

constraints.

7 RESULTS

7.1 Segmentation of the DEM

The results of the segmentation process are presented in

the figure 9. We apply the process on an area of the city

of Berlin. The initial DEM has a ground resolution of 0.5

meters. All the past results that we have presented in the

figures [1-8] have been constructed by using an error tol-

erance threshold of 2 meters in the exploration procedure.

This low threshold allowed us to show that the segmenta-

tion process can recover all the planar patches to describe

the building. In the figure 9 and for all results that we

present in the area of Berlin, we use a threshold of 4 meters

for extracting only the main components of the roofs. We

can see in the figure 9 that the segmentation process has

extracted the different parts of the roofs of each building

of the scene.

We test the segmentation procedure by combining multi-

ple estimators (traditional and robust) with different esti-

mation procedures. The estimators that we use are a Least

Squares (LS) estimator, a Non Linear Least Squares (NLS)

estimator, a robust M-estimator and the Least-Median of

Squares (LMS) estimator. The different procedures that

we use for estimations of the models are: (1) search all the

points that verify the initial model then refine the model,

(2) after each growing stage, refine the parameters of the

model and (3) after each growing stage, refine the param-

eters of the model and reject the points which are not in

the tolerance domain of the new estimate model. From

the experiments, we adopt different methods for each of

the two modes: segmentation of the building with horizon-

tal planes or with planes which can have any orientation.

With the horizontal constraint, we use the LMS estimator

and the third procedure which allows to suppress the er-

roneous data along the procedure. In the not constrained

mode we adopt the third procedure with LS estimator to

keep the computational time low.

7.2 Polygonalisation of the contours

The figure 10 presents the results of the polygonal approx-

imation stage. The results of the orthogonalization stage

are presented in the figure 11. We can see in the figure that

we recover most of the straight and the orthogonal angles

of the polygonal models. We also preserve the main struc-

tures of the buildings of the DEM. Using robust estimation

techniques at the different stages of our global strategy al-

lowed us to recover a consistent and representative model

of each building. The computing times on an Sun ultra

sparc 1 are about 1 hour for the complete segmentation of

the buildings, 8 minutes to extract the polygonal models of

the buildings and 3 hours for the polygonalisation.

8 CONCLUSION

We have presented in this article a framework for modeling

a building with a single Digital Elevation Model (DEM).

This framework uses multiple robust estimation methods to

extract the main representative components of the building

despite an important amount of noise in the DEM. We con-

struct the polygonal model of the building in two stages.

The first stage segments the DEM in planar surface patches

for describing the building. Then, the polygonalisation

stage generates the final polygonal model of the building

by using constraints. This framework is fully automatic

and does not use any a priori information about the shape

of the buildings. We only constraint angles to be straight

or orthogonal if this is necessary.

We have presented results with multiple buildings and with

an area of Berlin. The polygonal model that we obtained

represents correctly the buildings of the scene. The weak-

ness of our framework is the dependence to the quality of

the initial DEM. We are working on the improvement of

the DEM to have a complete, efficient and automatic sys-

tem for modeling buildings. We are also studying a new

procedure of polygonalisation because the computing time

is too important. We wish to improve the efficiency and de-

crease the computing time by using a procedure which ran-

domly modifies the different angles, computes the quality

of the configuration and then selects the best configuration

of the model.



Figure 9: Results of segmentation: The segmentation process recovers all the planar patches of the roofs of the buildings.



Figure 10: Result of the polygonal approximation stage (black lines).



Figure 11: Result of orthogonalization of the polygonal model (black lines). The algorithm recovers most of the straight

and the orthogonal angles of the polygonal models.
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