G. Aubert and P. Kornprobst, A Mathematical Study of the Relaxed Optical Flow Problem in the Space $BV (\Omega)$, SIAM Journal on Mathematical Analysis, vol.30, issue.6, pp.1282-1308, 1999.
DOI : 10.1137/S003614109834123X

J. L. Barron, D. J. Fleet, S. S. Beauchemin, and T. A. Burkitt, Performance of optical flow techniques, Proc. IEEE CVPR, pp.236-242, 1992.

B. Horn and B. Schunck, Determining optical flow, Artificial Intelligence, vol.17, issue.1-3, pp.185-203, 1981.
DOI : 10.1016/0004-3702(81)90024-2

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.185.1651

A. Brox, N. Bruhn, J. Papenberg, and T. Weickert, High Accuracy Optical Flow Estimation Based on a Theory for Warping, Proc. 8th ECCV, pp.25-36, 2004.
DOI : 10.1007/978-3-540-24673-2_3

A. Bruhn, J. Weickert, T. Kohlberger, and C. Schnorr, Discontinuity-Preserving Computation of Variational Optic Flow in Real-Time, ScaleSpace05, pp.279-290, 2005.
DOI : 10.1007/11408031_24

A. Bruhn, J. Weickert, C. Feddern, T. Kohlberger, and C. Schnörr, Variational optical flow computation in real time, IEEE Transactions on Image Processing, vol.14, issue.5, pp.608-615, 2005.
DOI : 10.1109/TIP.2005.846018

R. Deriche, P. Kornprobst, and G. Aubert, Optical-flow estimation while preserving its dis- FIG. 7 ? Résultats sur des données réelles : en haut à gauche, la composante flot optique verticale v du flot de scène montre clairement la reconstruction de la discontinuité créée par la bouche. L'image de droite au temps 0 (en haut a droite) et la paire stéréo à 1.5s ont été warpées vers l'image de gauche à l'instant 0, montrant où le flot de scène a été correctement estimé. continuities : A variational approach, Proc. ACCV, pp.71-80, 1995.
DOI : 10.1007/3-540-60793-5_63

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.54.287

F. Pedro, D. P. Felzenszwalb, and . Huttenlocher, Efficient belief propagation for early vision, International Journal of Computer Vision, vol.70, issue.1, 2006.

M. Gong and Y. Yang, Disparity flow estimation using orthogonal reliability-based dynamic programming, Proc. 18th ICPR, pp.70-73, 2006.

F. Huguet and F. Devernay, A Variational Method for Scene Flow Estimation from Stereo Sequences, 2007 IEEE 11th International Conference on Computer Vision, 2007.
DOI : 10.1109/ICCV.2007.4409000

URL : https://hal.archives-ouvertes.fr/inria-00166589

M. Isard and J. P. Maccormick, Dense Motion and Disparity Estimation Via Loopy Belief Propagation, ACCV06, pages II, pp.32-41, 2006.
DOI : 10.1007/11612704_4

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.512.1723

M. Lefébure and L. D. Cohen, Image Registration, Optical Flow, and Local Rigidity, J. Math. Imaging Vis, vol.14, issue.2, pp.131-147, 2001.
DOI : 10.1007/3-540-47778-0_3

D. Min and K. Sohn, Edge-preserving simultaneous joint motion-disparity estimation, ICPR06, pages II, pp.74-77, 2006.

J. Pons, R. Keriven, O. Faugeras, and G. Hermosillo, Variational stereovision and 3D scene flow estimation with statistical similarity measures, Proceedings Ninth IEEE International Conference on Computer Vision, 2003.
DOI : 10.1109/ICCV.2003.1238402

J. Pons, R. Keriven, and O. Faugeras, Modelling Dynamic Scenes by Registering Multi-View Image Sequences, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), pp.822-827, 2005.
DOI : 10.1109/CVPR.2005.227

D. Scharstein and R. Szeliski, A taxonomy and evaluation of dense two-frame stereo correspondence algorithms, Proceedings IEEE Workshop on Stereo and Multi-Baseline Vision (SMBV 2001), pp.7-42, 2002.
DOI : 10.1109/SMBV.2001.988771

N. Slesareva, A. Bruhn, and J. Weickert, Optic Flow Goes Stereo: A Variational Method for Estimating Discontinuity-Preserving Dense Disparity Maps, DAGM05, p.33, 2005.
DOI : 10.1007/11550518_5

C. Strecha, R. Fransens, and L. J. Van-gool, Widebaseline stereo from multiple views : A probabilistic account, Proc. IEEE CVPR, pp.552-559, 2004.

C. Strecha, R. Fransens, and L. J. Van-gool, A Probabilistic Approach to Large Displacement Optical Flow and Occlusion Detection, ECCV Workshop SMVP, pp.71-82, 2004.
DOI : 10.1006/cviu.2001.0930

S. Vedula, S. Baker, P. Rander, R. Collins, and T. Kanade, Three-dimensional scene flow, Proc. IEEE ICCV, pp.722-729, 1999.
DOI : 10.1109/iccv.1999.790293

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.23.3563

S. Vedula and S. Baker, Three-dimensional scene flow, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.27, issue.3, pp.475-480, 2005.
DOI : 10.1109/TPAMI.2005.63

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.23.3563

Y. Zhang and C. Kambhamettu, Integrated 3D scene flow and structure recovery from multiview image sequences, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662), pp.674-681, 2000.
DOI : 10.1109/CVPR.2000.854939

Y. Zhang and C. Kambhamettu, On 3D scene flow and structure estimation, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, p.778, 2001.
DOI : 10.1109/CVPR.2001.991044