The game Grundy number of graphs

Frédéric Havet 1 Xuding Zhu 2
1 COATI - Combinatorics, Optimization and Algorithms for Telecommunications
CRISAM - Inria Sophia Antipolis - Méditerranée , COMRED - COMmunications, Réseaux, systèmes Embarqués et Distribués
Abstract : Given a graph G = (V;E), two players, Alice and Bob, alternate their turns in choosing uncoloured vertices to be coloured. Whenever an uncoloured vertex is chosen, it is coloured by the least positive integer not used by any of its coloured neighbours. Alice's goal is to minimize the total number of colours used in the game, and Bob's goal is to maximize it. The game Grundy number of G is the number of colours used in the game when both players use optimal strategies. It is proved in this paper that the maximum game Grundy number of forests is 3, and the game Grundy number of any partial 2-tree is at most 7.
Type de document :
Article dans une revue
Journal of Combinatorial Optimization, Springer Verlag, 2013, 25 (4), pp.752-765. <10.1007/s10878-012-9513-8>
Liste complète des métadonnées

https://hal.inria.fr/hal-00821597
Contributeur : Frederic Havet <>
Soumis le : dimanche 23 octobre 2016 - 16:11:54
Dernière modification le : lundi 12 décembre 2016 - 11:36:37

Fichier

gameGrundy.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Frédéric Havet, Xuding Zhu. The game Grundy number of graphs. Journal of Combinatorial Optimization, Springer Verlag, 2013, 25 (4), pp.752-765. <10.1007/s10878-012-9513-8>. <hal-00821597>

Partager

Métriques

Consultations de
la notice

155

Téléchargements du document

85