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Abstract. We study a variant of the standard stochastic multi-armed

bandit problem when one is not interested in the arm with the best mean,

but instead in the arm maximising some coherent risk measure criterion.

Further, we are studying the deviations of the regret instead of the less

informative expected regret. We provide an algorithm, called RA-UCB to

solve this problem, together with a high probability bound on its regret.

Keywords: Multi-armed bandits, coherent risk measure, cumulant gen-
erative function, concentration of measure.

1 Introduction

The setting of the stochastic multi-armed bandit problem is an old and well-
known problem (see [30], [31] and [26]), with a simple formalization that is
nevertheless extremely powerful, leading to a large range of beautiful theoret-
ical developments as well as important practical questions (medical treatment
strategies, web advertisement, economy, etc.). The standard stochastic setting
considers an agent facing a finite number of distributions (arms) that she can
sample one at a time. Each sample is considered as a reward and the goal is to
maximize after T trials the cumulative sum of rewards in some sense. Generally
one measures performance with the expected regret criterion, that compares the
expected cumulative reward of the learner to that of the strategy that constantly
pulls the arm with highest mean. However in a number of applications, this cri-
terion is not sufficient. For instance a medical treatment that is very effective
on average may still have a high variability and may potentially endanger the
patients. Thus, we are interested in this paper in a so-called risk-averse rather
than expected measure of performance.

Risk-aversion is an old notion, however with no consensus about its defini-
tion (see [24, 23, 1]). However, any risk measure that is coherent (see [27]) is
considered to be a good measure. We here use a standard risk measure that is
coherent, defined in equation (3). In the relevant field of reinforcement learning,
risk-aversion is also quite old (see [18]), and a number of works try to solve
risk-averse problems [25, 2, 9, 21], although generally on the algorithmic and not
on the theoretical side. Risk-aversion has been more closely looked in the on-
line learning setting (where one sees all the rewards after pulling an arm and
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not only that of the chosen arm), with tight positive and negative results (see
e.g. [12, 32]) on what can be done. Now in the bandit literature, the expected re-
gret criterion has been extensively looked over the past, with recent, extremely
tight, non-asymptotic results for various algorithms [16, 17, 13, 22, 19]. However,
much less attention has been put on the risk-averse problem. One can cite [11]
about optimality of index policies, for exponential utility and with the Gittins
index perspective, which is however quite different than our goal. More recently,
the work of [28] goes in the direction we target as it analyses the deviations
of the regret for algorithms that compete with the best expected arm, however
no risk-aversion measure is considered. Of special interest is [29] that explicitly
considers the risk-aversion problem in multi-armed bandits, targeting finite time
performance guarantees. They use the very standard risk-measure called the
mean-variance (see [23]), and show that it is possible to get sub-linear regret for
such a setting, for a specific definition of regret that they introduce. However,
the regret analysis is not completely satisfactory, since their notion of regret
takes into account not only the variability of each arms but also the variability
of the learning algorithm itself (that is, an algorithm is somehow penalized for
switching between arms). Due to that, the considered regret is difficult to inter-
pret and debatable (it is not clear whether penalizing an algorithm for switching
is a desired feature).

The present work is inspired by the works of [27, 28, 22] and [29]. We consider
a notion of regret different from [29], that we believe to be more natural and
easier to interpret, where only the variability of the distribution of arms defines
the regret on the one hand, while a control on the tail of the regret is provided
on the other hand, similarly to [28]. We consider a coherent risk measure that
generalizes the mean-variance criterion in the sense that the two measures co-
incide in the special case of Gaussian distributions, while the former takes into
account the entire tail distribution of the random variables, not only the first two
moments. We introduce the RA-UCB algorithm, inspired from [22] and provide a
regret analysis in Proposition 1, Theorem 1 that we believe to be tight up to
constant factor (note that the focus of this work is not on optimising the leading
constants, such as in [17, 13, 22], which would require a much more technical and
uninformative analysis).

The paper is organized as follows. In Section 2, we introduce the regret and
the coherent risk measure that is considered here, together with intuition about
its meaning. In Section 3, we provide a generic robust (high-probability) non-
asymptotic upper bound on the regret of any algorithm (Proposition 1) that
depends only on the risk measure and on a control of the number of pulls of
suboptimal arms by the algorithm. Section 4 introduces the RA-UCB algorithm,
that is inspired by the Kinf strategy of [6, 22], together with a dual formulation
that enables effective implementation. Section 5 concludes the paper with a high-
probability bound on the regret of the RA-UCB (Theorem 1, Corollary 1). The
analysis makes use of adaptation of concentration tools that are detailed in the
Appendix.
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2 Setup and Notations

We consider a standard multi-armed bandit game with A many unknown distri-
butions {νa}a=1,...,A where for each a, νa ∈ M

+
1 (R). At each time step, a learning

algorithm A must choose an arm AA
t ∈ {1, . . . , A}, and then receives one new

sample (the reward) from the corresponding distribution νAA
t
. We write Yt ∼ νAA

t

for the random reward received when the strategy A pulls the arm AA
t at time t,

Xi,a to refer to the ith random variable sampled from arm a from the beginning

of the game, and we finally introduce the quantity NA

T,a
def
=

A
∑

t=1

I{AA

t = a}. Using

these notations, the cumulated reward received by algorithm A up to time T is
given by

T
∑

t=1

Yt =
A
∑

a=1

NA

T,a
∑

i=1

Xi,a .

2.1 Measure of risk-aversion

As mentioned in the introduction, there exists many possible ways to define
risk-aversion. From a practical point of view, being risk-averse generally implies
avoiding situations when we receive too bad reward (think of a medical treat-
ment strategy, where the actions are the possible treatments, and the reward
correspond to the health state of a patient). That is, we want to have a control
on the tails, and more specifically on the lower-tail (the mass below the mean).

More formally, let us recall that for arbitrary random variable X admitting a
finite cumulant generative function around 0, then the two following properties
hold (this is by a simple application of Markov’s inequality)

P

[

X ≥ inf
{ 1

λ
logE exp(λX) +

log(1/δ)

λ
: λ > 0

}

]

≤ δ , (1)

P

[

X ≤ sup
{

−
1

λ
logE exp(−λX)−

log(1/δ)

λ
: λ > 0

}

]

≤ δ . (2)

Note that (1) measures the probability that X is big, while (2) measures
the probability that X is small, which is what we want to be protected against.
Now, for the sake of clarity, it makes sense to introduce the value of the cumulant
generative function of the variable X at point λ, rescaled by λ, that we denote

κλ,ν =
1

λ
logEν exp

(

λX
)

, (3)

and similarly we denote κ−λ,ν the value of κλ′,ν for λ′ = −λ. This quantity is
at the heart of many key-results and tools of concentration of measure (e.g. the
Cramer-Chernoff method, the Chernoff transform, the log-Laplace transform).
More importantly here, κ−λ,ν is a key quantity to control the probability that X
is small. We now provide more intuition for people unfamiliar with that quantity.

Example: To understand (1) and (2), let us consider t Gaussian random
variables {Zk}k=1,...,t i.i.d. from a distribution ν with mean µ and variance σ2,

then X =
∑t

k=1 Zk is Gaussian with mean µt and variance σ2t, and simple
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computations show that κλ,ν = µt + λσ2t
2 , which yields, after optimizing the

previous bounds in λ, to the optimal value λ =
√

2 log(1/δ)
σ2t and the familiar

concentration bounds for Gaussian random variables

P

(

1

t

t
∑

k=1

Zk − µ ≥ σ

√

2 log(1/δ)

t

)

≤ δ and P

(

µ−
1

t

t
∑

k=1

Zk ≥ σ

√

2 log(1/δ)

t

)

≤ δ .

Let us comment on this example. First, the quantity κ−λ,ν = µt− λσ2t
2 takes

the form of an operator that measures the mean of a random variable, penalized
by some higher moment (the variance in that case). This is actually a general
property, since by the variational formula for the Kullback-Leibler divergence,
we have for a random variable X distributed according to ν ∈ M

+
1 (R) that

κ−λ,ν
def
= inf

{

Eν′(X) +
1

λ
KL(ν′||ν) : ν′ ∈ M

+
1 (R)

}

≤ Eν

[

X
]

. (4)

where KL(ν′||ν) denotes the Kullback-Leibler divergence between two distri-
butions ν and ν′. Using κ−λ,ν as a measure of risk-aversion is natural for several
reasons: Additionally to the formulation (4) and the control (2) that are impor-
tant for interpretability it is also a standard coherent risk-measure (see [27]).
Also, due to its deep link for concentration of measure, it is especially natural
for analysis.

Mixability gaps Finally, for completeness, we also introduce the two fun-
damental quantities m+

λ,ν

[

X
]

and m−
λ,ν

[

X
]

that we call here the upper (and
respectively lower) mixability gap and that are defined by

m+
λ,ν = κλ,ν − Eν

[

X
]

and m−
λ,ν = Eν

[

X
]

− κ−λ,ν .

Note that the mixability gaps are always non negative by Jensen’s inequality,
and that an upper bound on them immediately provides a high probability
confidence interval. Indeed, with these notations, the previous equations (1) and
(2), can thus be rewritten more compactly as

P

[

X − Eν

[

X
]

≥ inf
λ>0

{

m+
λ,ν +

log(1/δ)

λ

}

]

≤ δ , (5)

P

[

Eν

[

X
]

−X ≥ inf
λ>0

{

m−
λ,ν +

log(1/δ)

λ

}

]

≤ δ . (6)

2.2 Regrets for risk-averse multi-armed bandits
Optimal arm We now naturally define the optimal arm a⋆ as the one maxi-
mizing the risk aversion at some fixed level λ, that is we define

a⋆ ∈ argmax
a=1,...,A

κ−λ,νa⋆ .

Note again that in the case of Gaussian distributions with mean µa and

variance σ2
a, we simply have κ−λ,νa⋆ = µa −

λσ2
a

2 , and that in general we always
have κ−λ,νa⋆ ≤ Eνa

[

X
]

.

Regret Now we define the empirical regret RT (λ) of the strategy A with
respect to the strategy ⋆ that constantly pulls the same arm a⋆ ∈ {1, . . . , A}
by the difference between the cumulated reward received by algorithm A and
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the cumulated reward that the strategy ⋆ would have received during the same
game, that is, by introducing the fictitious plays {Xi,a⋆}NA

T,a⋆<i≤T ,

RT (λ)
def
=

T
∑

i=1

Xi,a⋆ −

A
∑

a=1

NA

T,a
∑

i=1

Xi,a =

T
∑

i=NA

T,a⋆+1

Xi,a⋆ −
∑

a 6=a⋆

NA

T,a
∑

i=1

Xi,a . (7)

Note that we are not interested here in controlling the expected regret RT

as it gives no information on the risk of the strategy A and of pulling one arm.
Indeed, we have the following standard decomposition

RT = TEνa⋆

[

X
]

− E

[ T
∑

s=1

Ys

]

=
∑

a∈A

(

Eνa⋆ [X]− Eνa
[X]

)

E

[

NT,a

]

, (8)

while one would prefer to have a more informative measure, taking into ac-
count for instance the variance of the arms or some control of the tails. For this
purpose, an other natural notion of regret is the risk-averse regret RT (λ) defined
by

RT (λ) =
∑

a∈A

(

κ−λ,νa⋆ − κ−λ,νa

)

E

[

NT,a

]

. (9)

In the sequel, we control both (7) and (9) as they both offer interesting
interpretation.

2.3 The price for risk-aversion
At a high-level, there is obviously a trade-off between trying to get maximal
rewards and being risk-averse. Being too cautious (such as, arguably, Exp3 see
[4]) avoids getting linear regret, but prevents from getting high rewards as well.
On the other hand, simply targeting the maximal mean (such as UCB see [3])
enables to get close to optimal rewards on average, but possibly very bad rewards
in difficult environments (when sub-optimal arms have fat lower tails).

A similar situation appears in the standard expected regret setting for the
class of UCB-ρ algorithms as shown by [28]: for, ρ > ρ′, UCB-ρ can compete with
a larger class of environments than UCB-ρ′. However UCB-ρ′ will beat UCB-ρ on
simpler environments.

Simple and complex environments The risk-averse regret (9) captures
the sub-optimality of an algorithm in terms of risk-aversion at some fixed level λ.
As such, it is the direct equivalent of the expected regret in multi-armed bandits,
and we control this regret for our RA-UCB procedure in Theorem 1. If such control
may seem satisfactory for many reasons, it has also some drawback. Namely, the
level of risk-aversion is here not related in any way to the actual distribution of
rewards, since it is some parameter chosen a priori by the practitioner who wants
to be protected against sampling possibly very low rewards. As a result, in easy
situations when the rewards distributions have very light tails, a high risk-averse
algorithm will be too cautious, and will get lower cumulative rewards than a less
risk-averse algorithm, such as UCB. Similarly, if the actual distributions have very
fat lower tails, a low risk-averse algorithm may not be cautious enough and thus
get bad rewards compared to a more risk-averse algorithm, such as Exp3. See
also figure 2.3.

Since such situations, that are of immediate practical interest, are not cap-
tured by the risk-averse regret (9) defined for some level λ, this motivates the
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Fig. 1. Plot of arms’ densities and their mean: left) an environment where no arm has
fat lower tail. right) an environment where for some λ, the best arm (green) does not
have best mean, and sub-optimal arms (red, blue) have fat lower tails.

study of the empirical risk-aversion regret (7) as this one is able to capture such
behaviors (this is because it makes appear the empirical rewards coming from
the actual distribution explicitly).

Note that this also raises the question of automatically adapting the level
of risk-aversion to some bandit problem, or equivalently getting the best of all
RA-UCB-λ algorithms (in terms of cumulated reward), which is very hard, (or
even impossible, see [28] for impossibility results regarding UCB-ρ in the related
problem of adaptivity in bandit problems). Since this involves orthogonal ideas
that would worsen readability and interpretation, add a difficult layer of com-
plexity, and is little justified in practice (where the level of risk-aversion is often
simply fixed), we do not study this question in the present work.

Contribution The difficult situation for risk-aversion appears when the sub-
optimal arms produce rewards much lower than their mean (heavy lower tail)
while the best arm produces rewards much higher than its mean (heavy upper
tail): this creates maximal regret. We introduce in section 4 the RA-UCB algorithm
that guarantees a low regret in such difficult environments (contrary to e.g. UCB).

For clarity purpose, we clearly separate in two dedicated sections the analy-
sis that is tighten and intrinsic to the risk-aversion problem (Proposition 1 that
holds for any algorithm) from the more standard techniques used in stochas-
tic bandits (Theorem 1). We derive on the way some non-trivial concentra-
tion results needed for the proof (Lemma 1, Lemma 2, equation (14)). The
regret of RA-UCB essentially scales as O(log(T )) with the time horizon T up to
a distribution-dependent complexity factor.

3 A Generic Decomposition of the Empirical Regret
We now introduce a generic decomposition of the regret, valid for any strategy
A, that is the direct equivalent of (9) for the empirical regret.

Proposition 1. Let us define, for some non negative constants {ua}a=1,...,A the
event that sub-optimal arms are pulled too much

Ω
def
=

{

∃a 6= a⋆ : NA

T,a > ua

}

,
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and let us fix some value of λ such that κ−λ,νa
exists for all a = 1, . . . , A.

Then, for all δ ∈ (0, 1), with probability higher than 1 − δ − P(Ω), the regret of
the strategy A is upper bounded by

RT (λ) ≤
∑

a 6=a⋆

ua

(

κ−λ,νa⋆ − κ−λ,νa

)

+

(

m−
−λ,νa⋆

∑

a 6=a⋆

ua +
(A− 1) log(2A/δ)

λ

)

+ inf
λ′>0

{

m+
λ′,νa⋆

∑

a 6=a⋆

ua +
log(2A/δ)

λ′

}

. (10)

The first term of (10) makes appear a quantity very similar to that of the
optimal regret bounds for the expected regret in the stochastic setting, where the
standard optimality gaps Eνa⋆

[

X
]

− Eνa

[

X
]

are replaced by κ−λ,νa⋆ − κ−λ,νa
,

as expected. Now the second and third terms involve the mixability gaps of the
optimal arm. The third term is intuitive: indeed, a regret minimizing algorithm
will try to understand κ−λ,νa

for each arm, and prevent from large deviations
below the mean (bad rewards). However, this does not prevent the optimal arm
to have large deviations above the mean (that is, unexpected good rewards),
which is precisely captured by the third term. Now the presence of the second
term comes from another phenomenon: λ is a parameter of the algorithm that
tries to pull the arm with highest risk-aversion at level λ. As such, this goal may
be successful or not depending on intrinsic properties of the environment. We
say that λ is well-adapted to the environment if it is such that the second term
in (10) is negligible before the first term.

So as to provide some intuition, let us now specialize Proposition 1 to the
case of Example 1 for illustration purpose. In this case, the mixability gaps of the
optimal arm a⋆ equal λ

2σ
2
a⋆ and λ′

2 σ
2
a⋆ , so that if we introduce for convenience

the quantity u
def
=

∑

a 6=a⋆ ua, one can rewrite (10) as

RT (λ) ≤
∑

a 6=a⋆

ua

(

κ−λ,νa⋆ − κ−λ,νa

)

+

(

uλ

2
σ2
a⋆ +

(A− 1) log(A/δ)

λ

)

+
√

2u log(A/δ)σa⋆ . (11)

Thus λ is well-adapted to the environment for instance when λ = Ω(u−1/2).
Since any reasonable algorithm will pull sub-optimal arms only ua = O(log(T ))
times with high probability, this indicates that a well-adapted level of risk aver-
sion for a Gaussian game of length T is of order1 λ = Ω(log(T )−1/2). A similar
reasoning holds for the sub-Gaussian and thus the bounded case as well, since we
only need an upper-bound on the mixability gaps rather than an equality here.
In the sequel, we consider such a case, disregarding the extremely challenging
question of defining and estimating a distribution-dependent optimally-adapted
value of λ (it also conveys difficult interpretation since the optimal arm depends
on λ). Note finally that contrary to the empirical regret, the risk-averse regret
(9) is completely blind to such situations, as it basically corresponds to the first
term in (10).

1 Such (weak) dependency with T is intuitive: if we only have 10 trials do to something,
we would be much more risk-averse (big λ) than with 1000 trials.
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Proof. We begin the proof with the following decomposition. For non negative
values λ and λ′, using the property that T −NA

T,a⋆ =
∑

a 6=a⋆ NA

T,a, one has by a
simple rewriting

RT (λ) =

T
∑

i=NA

T,a⋆+1

(

Xi,a⋆ − κλ′,νa⋆

)

+
∑

a 6=a⋆

NA

T,a

(

κλ′,νa⋆ − κ−λ,νa

)

+
∑

a 6=a⋆

NA

T,a
∑

i=1

(

κ−λ,νa
−Xi,a

)

.

Now, we have on the one hand that RT (λ) ≤ T under the event Ω, while on
the other hand, under its complement Ωc, we have

RT (λ) ≤
∑

a 6=a⋆

ua

∣

∣

∣

∣

κλ′,νa⋆ − κ−λ,νa

∣

∣

∣

∣

+ max
s≤

∑
a 6=a⋆ ua

T
∑

i=T−s+1

(

Xi,a⋆ − κλ′,νa⋆

)

+
∑

a 6=a⋆

max
s≤ua

s
∑

i=1

(

κ−λ,νa
−Xi,a

)

.

In this decomposition, the two last terms are controlled by means of concen-
tration of measure, following suitable adaptations of (1) and (2), and the first
term can be further decomposed due to the inequality

∣

∣

∣

∣

κλ′,νa⋆ − κ−λ,νa

∣

∣

∣

∣

≤ m+
λ′,νa⋆

+m−
−λ,νa⋆

+

∣

∣

∣

∣

κ−λ,νa⋆ − κ−λ,νa

∣

∣

∣

∣

,

where we made appear the mixability gaps of the optimal arm a⋆. More
precisely, the generic bound on the regret of a learning algorithm A now relies
on the previous decomposition and on the following two concentration results,
whose proof is in the Appendix.
Lemma 1. Let τ⋆ ∈ N be some positive constant, and λ′ > 0 be such that κλ′,νa⋆

is finite. Then we have the property that for all ǫ > 0, then

P

(

max
s≤τ⋆

T
∑

i=T−s+1

(

Xi,a⋆ − κλ′,νa⋆

)

≥ ǫ

)

≤ exp(−λ′ǫ)

Lemma 2. Let τ ∈ N be some positive constant, and λ > 0 be such that κλ,νa

is finite. Then we have the property that for all ǫ > 0, then

P

(

max
s≤τ

s
∑

i=1

(

κ−λ,νa
−Xi,a

)

≥ ǫ

)

≤ exp(−λǫ)

In order to conclude the proof of Proposition 1, we then apply Lemma 1 to

the value τ⋆ =
∑

a 6=a⋆ ua with ǫ = log(2A/δ)
λ′ and then Lemma 2 to τ = ua with

ǫ = log(2A/δ)
λ . We deduce, by a union bound, that with probability higher than

1− δ − P(Ω), then

RT (λ) ≤
∑

a 6=a⋆

ua

(

κ−λ,νa⋆ − κ−λ,νa

)

+
∑

a 6=a⋆

log(2A/δ)

λ

+ inf
λ′>0

{

∑

a 6=a⋆

ua

(

m+
λ′,νa⋆

+m−
−λ,νa⋆

)

+
log(2A/δ)

λ′

}

.
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4 The Risk-Averse Upper Confidence Bound algorithm
We introduce in this section a strategy A that we call the RA-UCB algorithm.
From now on, we restrict to the case when all distributions belong to M

+
1 (RB),

where RB = (−∞, B] for some known value of B. Thus, let us introduce for all
a ∈ A, the empirical distribution ν̂t(a) ∈ M

+
1 (RB) associated to νa, built using

the past observations Y1, . . . , Yt; we define

ν̂t(a)
def
=

1

NA
t,a

t
∑

s=1

δYs
I{As = a} where NA

t,a
def
=

t
∑

s=1

I{As = a} .

Further, for clarity purpose, we now use the notation ν̂n,a (with a in sub-
script) in order to denote the empirical distribution built from the n first samples
drawn from νa, while we reserve the functional notation ν̂t(a) for the empirical
distribution built from the samples received from arm a up to time t. Naturally,
we have that ν̂t(a) = ν̂NA

t (a),a. More generally, for some distribution ν, we also
write ν̂n for its empirical distribution built from n samples.

The RA-UCB algorithm is inspired from the strategies introduced by [20, 6, 22,
13, 7] as it selects at time t+1 the arm At+1 = argmaxa∈A Ut(a), where Ut(a) is
an upper confidence bound on the risk aversion of arm a at level λ, defined by

Ut(a)
def
= sup

{

κ−λ,ν : K(ν̂t(a), κ−λ,ν) ≤
f(t)

Nt,a

}

, (12)

and where we introduced the following quantity

K(ν̂t(a), r)
def
= inf

{

KL(ν̂t(a)||ν) : ν ∈ M
+
1 (RB), κ−λ,ν ≥ r

}

. (13)

Note that UCB-like algorithms are unnatural in this setting: they are based on
empirical means only, while we really need to control the tail distributions here.
KL-based algorithm are more suitable, and produce much stronger results. Note
also that the parameter λ is here the same that defines the level of risk aversion
used in the definition of the regret. The algorithm requires another parameter,
that is a non-decreasing function of the time f . A typical choice is such that
f(t) = O(log(t)), as mentioned in Theorem 1.

A Useful Formulation with Dual Optimality Conditions The definition of the
bound (12) may seem quite abstract. In order to make it more computable and
explicit, we now provide the following result, that is a dual formulation of the
optimization problem appearing in the definition of K(ν̂t(a), r) (see the proof in
the appendix).
Lemma 3. Let ν̂n denote with a finite number n of atoms. Then the following
dual formulation holds

K(ν̂n, r) = max

{

1

n

n
∑

i=1

log

(

1−
γ⋆

λ

(

1−e−λ(xi−r)
)

)

: 0 ≤ γ⋆ ≤
λ

1− e−λ(B−r)

}

.

This result shows that the optimization problem (12) can actually be solved
numerically. and is deeply linked to the numerically efficient dual formulation
considered for instance in [5], [14], or re-derived more recently in [15] for the
related problem of optimal regret bounds in the stochastic multi-armed bandit
with expected regret criterion. For completeness, it makes sense to introduce the
quantity for distributions ν ∈ M

+
1 (RB)

K̃(ν, r) = sup

{

E

[

log
(

1−
γ⋆

λ

(

1− e−λ(X−r)
)

)

]

: 0 ≤ γ⋆ ≤
λ

1− e−λ(B−r)

}

.



10 Odalric-Ambrym Maillard

5 Regret Analysis of the RA-UCB Algorithm
By the generic decomposition result of Proposition 1, we only have to provide a
high-probability upper bound on the number of pulls of any sub-optimal arm a,
more precisely on the event

Ω
def
=

{

∃a 6= a⋆ : NA

T,a > ua

}

,

In order to control the probability of such on event, let us introduce, for all
a 6= a⋆, the random time ta corresponding to the last round when a is chosen,
that is we have NA

ta,a = NA

T,a − 1 and NA
ta+1,a = NA

T,a. For such a ta, we also

have by definition AA
ta+1 = a.

Decomposition of Events (step 1) We start by considering the event AA
t+1 = a

for a sub-optimal arm. By definition of the algorithm, we have the property that
Ut(a) ≥ Ut(⋆). This event can be decomposed as
{

AA

t+1 = a
}

⊂
{

Ut(⋆) ≤ κ⋆
}

∪
{

Ut(⋆) > κ⋆ and AA

t+1 = a
}

⊂
{

Ut(⋆) ≤ κ⋆
}

∪
{

Ut(a) > κ⋆ and AA

t+1 = a
}

⊂
{

K(ν̂t(⋆), κ
⋆) ≥

f(t)

NA
t,⋆

}

∪
{

K(ν̂t(a), κ
⋆) ≤

f(t)

NA
t,a)

and AA

t+1 = a
}

,

where we introduced here some quantity κ⋆. We now make use of this de-
composition in order to show that, for all choice of constant {ua}a=1,...,A with
ua > 1, we have

P

(

∃a 6= a⋆ : NA

T,a > ua

)

≤ P

(

∃a 6= a⋆ : NA

ta,a > ua − 1 and Ata+1 = a

)

≤ P

(

∃a 6= a⋆ : NA

ta,a ≥ ua and K(ν̂ta(⋆), κ
⋆) ≥

f(ta)

NA
ta,⋆

)

+P

(

∃a 6= a⋆ : NA

ta,a ≥ ua and K(ν̂ta(a), κ
⋆) ≤

f(ta)

NA
ta,a

and AA

ta+1 = a

)

≤ P

(

∃n ≤ T : K(ν̂n,⋆, κ
⋆) ≥

f(n)

n

)

+
∑

a 6=a⋆

T
∑

n=ua

P

(

K(ν̂n,a, κ
⋆) ≤

f(T )

n

)

,

where we used in the last line that f(ta) ≥ f(NA
ta,⋆) for the first term, since f

is non-decreasing, and similarly that f(ta) ≤ f(T ) together with a union bound
for the second term.

Concentration Inequalities (step 2) We now make use of concentration inequal-
ities. More precisely, we first use that for the optimal arm it holds that for the
value κ⋆ = κ−λ,νa⋆ and for all ǫ > 0, then

P

(

K(ν̂n,⋆, κ
⋆) ≥ ǫ

)

≤ e(n+ 2) exp(−nǫ) , (14)

(the proof of which is provided in the Appendix, Proposition 2) and that for
any suboptimal arm a, for all ǫ > 0 one can resort to an application of non-
asymptotic Sanov’s lemma. Indeed, under some conditions that we detail below,
an easy consequence of [10, Exercise 2.2.38] is that
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P

(

K(ν̂n,a, κ
⋆) ≤ ǫ

)

≤ exp
(

− nχa(ǫ)
)

, (15)

where the quantity χa(ǫ) is intrinsic to the complexity of the problem of
testing whether a is a good arm and is defined by

χa

(

ǫ
) def
= inf

{

KL(ν||νa) : K̃(ν, κ⋆) ≤ ǫ

}

. (16)

Note that this term satisfies that χa

(

K̃(νa, κ
⋆)
)

= 0 and that for all ǫ <

K̃(νa, κ
⋆) then χa

(

ǫ
)

> 0. In particular, the inequality (15) is non trivial only

for such ǫ < K̃(νa, κ
⋆).

Important remark Note at this point that there may be some topological
difficulty in order to meet the conditions needed for (15). As a reminder, these
conditions are that χa(ǫ) < ∞, that the set {ν : K̃(ν, κ⋆) ≤ ǫ} is convex and
moreover that it is close (for the weak topology). The first condition is not
restrictive (the case when it is not met is actually even a favorable situation).
Now, the convexity of the considered set easily follows from the biconvexity
of the Kullback-Leibler divergence (see [8]) and of the convexity of the set of
distributions with high risk-aversion. The latter follows from the concavity of the
log function. Now, in order to show that this set is close, it is sufficient to show
that K̃(·, κ⋆) is lower semi-continuous on a set including the limit distribution
νa, which is also not difficult to prove (following [15] for instance).

Final Control of the Number of Pulls (step 3) So far, by combining the initial
decomposition with (14) and (15) together with a union bound, we have shown

P

(

∃a 6= a⋆ : NA

T,a > ua

)

≤

T
∑

n=1

e(n+ 2)e−f(n) +
∑

a 6=a⋆

T
∑

n=ua

exp

(

− nχa

(f(T )

n

)

)

.

The first sum in the right hand side of this inequality is easily controlled. For
instance if the parameter function f satisfies that f(n) ≥ log(2e(n + 2)n2/δ),
then it is less than δ. The last sum can be made more explicit. Let us now define

the quantity ua = (1 + ǫa)
( f(T )

K̃(νa,κ⋆)
+ 1

)

for all a 6= a⋆ and some ǫa > 0, and

further define ǫa by

ǫa = inf

{

ǫ > 0 :
1 + ǫ

K̃(νa, κ⋆)
χa

(K̃(νa, κ
⋆)

1 + ǫ

)

≥ 1

}

. (17)

Note that such an ǫa exists and is finite since χa is a non increasing function,

so that 1+ǫ
K̃(νa,κ⋆)

χa

(

K̃(νa,κ
⋆)

1+ǫ

)

is an increasing function of ǫ. With such notation,

we deduce
T
∑

n=ua

exp

(

− nχa

(f(T )

n

)

)

≤ exp

(

− uaχa

(f(T )

ua

)

)(

1 +

∞
∑

n=1

exp

(

− nχa

(f(T )

ua

)

))

≤ exp

(

− f(T )
1 + ǫa

K̃(νa, κ⋆)
χa

(K̃(νa, κ
⋆)

1 + ǫa

)

)(

1 +

∞
∑

n=1

exp

(

− nχa

(K̃(νa, κ
⋆)

1 + ǫa

)

))

≤
δ

2e(T + 2)T 2

(

1 +
1

1− exp
(

− χa

(

K̃(νa,κ⋆)
1+ǫa

)

)

)

.
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where we used in the first line that n > ua and that χa is non increasing, in
the second line that

ua

f(T )
= (1 + ǫa)

( 1

K̃(νa, κ⋆)
+

1

f(T )

)

>
1 + ǫa

K̃(νa, κ⋆)
,

and finally in the third line the bound on f(T ) and the definition of ǫa.

The previous analysis together with the result of Proposition 1 for the empir-
ical risk-averse regret (7) on the one hand, and the definition of the risk-averse
regret (9) on the other hand enable us to deduce the following bound on the re-
gret of the RA-UCB algorithm, which is the main result of this paper. We further
provide Corollary 1 for illustration purpose.

Theorem 1. Assume that for all a = 1, . . . , A, then νa ∈ M
+
1 (RB), and define

ǫa by equation (17). Let us define f(t) = log(2e(t+ e)t2/γ) for some γ ∈ (0, 1).
Then, the risk-averse regret of the RA-UCB algorithm is upper bounded at time T
by

RT (λ) ≤
∑

a 6=a⋆

(1 + ǫa)∆a

Ka
log

(

2e(T + e)T 2/γ
)

+
∑

a 6=a⋆

(1 + ǫa)∆a

+
∑

a 6=a⋆

γ∆aT +
γ∆a

2e(T + 2)T

(

1 +
1

1− exp
(

− χa

(

Ka

1+ǫa

)

)

)

.

Further, the empirical regret of the RA-UCB algorithm at time T is upper bounded
for all δ ∈ [0, 1] by

RT (λ) ≤
∑

a 6=a⋆

(1 + ǫa)∆a

Ka
log

(

2e(T + e)T 2/γ
)

+
∑

a 6=a⋆

(1 + ǫa)∆a +
∑

a 6=a⋆

log(2A/δ)

λ

+ inf
λ′>0

{

∑

a 6=a⋆

(1 + ǫa)
(∆a

Ka
log

(

2e(T + e)T 2/γ
)

+ 1
)

(

m+
λ′,νa⋆

+m−
−λ,νa⋆

)

+
log(2A/δ)

λ′

}

,

where we introduced the optimality gaps ∆a = κ−λ,νa⋆ − κ−λ,νa
, and Ka =

K̃(νa, κ−λ,νa⋆ ), with probability higher than

1− δ − γ −
γ

2e(T + 2)T 2

∑

a 6=a⋆

(

1 +
1

1− exp
(

− χa

(

Ka

1+ǫa

)

)

)

.

Note that the quantity 1− exp
(

− χa

(

Ka

1+ǫa

)

)

appearing in the high proba-

bility bound is problem dependent but is actually a constant, and that similarly
ǫa is also a problem dependent constant. In particular, both quantities are inde-
pendent on T and on the algorithm. Taking into account these remarks together
with the discussion after Proposition 1 regarding well-adapted values of λ leads
to the more readable corollary
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Corollary 1. Under the same assumptions as Theorem 1, for γ = Θ(T−1), then

RT (λ) ≤ 5
∑

a 6=a⋆

(1 + ǫa)∆a

Ka
log

(

T
)

+O
(

1
)

. (18)

Further, assuming moreover that the distributions of rewards are all sub-Gaussian,
and that the level of risk-aversion is λ = Θ(log(T )−1/2), then for a choice of
γ = Θ(T−β) for some β ≥ 0 the empirical regret of the RA-UCB algorithm at
time T is bounded as

RT (λ) ≤ c
∑

a 6=a⋆

(1 + ǫa)∆a

Ka
log

(

T
)

+O
(

√

log(T )
)

, (19)

with probability of order 1− δ − o(1) for some constant c ≤ 4 + β.

Note also that assuming λ = Ω(log(T )−1/2) only makes the second to last terms
in Theorem 1 o(log(T )) instead of O(log(T )). Thus even for others value of λ
(that is a constant), we still have O(log(T )) empirical regret (with possibly larger
constants).

Discussion The bound (19) makes appear a first order term scaling with a log(T ),
which looks very much like the results for the standard multi-armed bandit with
expected regret. Note that that such a dependency is achievable is not obvious
since working with risk-aversion is usually considered as much more difficult
than working with expectation. This should also be compared to the result of
[29], although they consider a different, trickier to interpret, setting. We show
however that this is possible.

The constant before the logarithmic term consists of the ratio ∆a

Ka
that is

also very similar to the known bounds for the expected regret ([6, 22]), up to
the constant c, that could definitely be reduced by a more careful analysis and
parameter tuning (this is not the main focus of this work), and more importantly
the constant 1 + ǫa. Theorem 1 holds for a larger class of distributions than the
one considered e.g. in [22]. The reason for this is precisely because we accept
to loose the constant 1 + ǫa (as opposed to 1 in their work). This term is not
entirely intrinsic: one could easily change the threshold 1 in the definition (17)
to a smaller constant at the price of an increased probability term (in the o(1)),
so that one may a priori optimize this term further. It also more complex than
the quantities ∆a and Ka whose interpretation is immediate. However, under-
standing the function x → xχa(1/x), which is related, by the definition of χa, to
understanding how K̃(ν, κ−λ,νa⋆ ) varies when ν moves from νa to distributions
having higher risk-aversion, is definitely needed, and can not be done simply
using ∆a and Ka (one could use for instance the derivative of K̃(·, κ−λ,νa⋆ ) in
the direction of high risk-aversion, but this is not a lot more easier to inter-
pret either and still difficult to handle in specific cases). Thus, we here prefer to
let the term 1 + ǫa as it is, since it is anyway fully explicit, and captures such
distribution-dependent behavior in a fairly concise way. Note also that a similar
difficulty appears in the expected regret setting (see [16], [22], [13]).
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Conclusion

In this work, the variant of the stochastic multi-armed bandit problem when one
considers looking for the maximally risk-averse arm for a user-defined level of
risk-aversion (instead of the mean) is considered. We first provide a generic de-
composition of the regret (Proposition 1) for any algorithm that enables to focus
on the number of plays of sub-optimal arms only. We make use of a coherent risk
measure based on the cumulant generative function and show that it is possible
to achieve optimal performance up to a regret that is logarithmic (Corollary 1)
in the time horizon (with distribution dependent constants). This logarithmic
regret is achieved by some adaptation of existing algorithms designed for the ex-
pected regret, together with new concentration results precisely introduced for
the control of risk-aversion rather than of the mean, which are of independent
interest.
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15. J. Honda and A. Takemura. An asymptotically optimal bandit algorithm for

bounded support models. In Proceedings of the 23rd Annual Conference on Learn-

ing Theory, Haifa, Israel, 2010.
16. J. Honda and A. Takemura. An asymptotically optimal policy for finite support

models in the multiarmed bandit problem. Machine Learning, 85:361–391, 2011.
17. J. Honda and A. Takemura. Finite-time regret bound of a bandit algorithm for

the semi-bounded support model. arXiv:1202.2277, 2012.
18. Ronald A. Howard and James E. Matheson. Risk-sensitive markov decision pro-

cesses. Management Science, 18:356–369, 1972.
19. E. Kaufmann, N. Korda, and R. Munos. Thompson sampling: An asymptotically

optimal finite-time analysis. Lecture Notes in Computer Science, Proceedings of

the Algorithmic Learning Theory conference, 7568:199–213, 2012.
20. T. L. Lai and H. Robbins. Asymptotically efficient adaptive allocation rules. Ad-

vances in Applied Mathematics, 6:4–22, 1985.
21. Yaxin Liu and Sven Koenig. An exact algorithm for solving mdps under risk-

sensitive planning objectives with one-switch utility functions. pages 453–460,
2008.

22. O-A. Maillard, R. Munos, and G. Stoltz. A finite-time analysis of multi-armed
bandits problems with Kullback-Leibler divergences. In Proceedings of the 23rd

Annual Conference on Learning Theory, Budapest, Hungary, 2011.
23. Harry Markowitz. Portfolio selection. The Journal of Finance, 7(1):77–91, 1952.
24. J. Neumann and O. Morgenstern. Theory of games and economic behavior. Prince-

ton University, 1947.
25. Stephen D. Patek. On terminating markov decision processes with a risk-averse

objective function. Automatica, 37(9):1379–1386, 2001.
26. H. Robbins. Some aspects of the sequential design of experiments. Bulletin of the

American Mathematics Society, 58:527–535, 1952.
27. R. Tyrrell Rockafellar. Coherent approaches to risk in optimization under uncer-

tainty. Tutorials in operation Research, pages 38–61, 2007.
28. A. Salomon and J.-Y. Audibert. Robustness of stochastic bandit policies. Theo-

retical Computer Science, Special issue, 2012.
29. A. Sani, A. Lazaric, and R. Munos. Risk-aversion in multi-armed bandits. In

Proceedings of Advancezs in neural information processing system, 2012.
30. W.R. Thompson. On the likelihood that one unknown probability exceeds another

in view of the evidence of two samples. Biometrika, 25:285–294, 1933.
31. W.R. Thompson. On the theory of apportionment. American Journal of Mathe-

matics, 57:450–456, 1935.
32. Manfred K. Warmuth and Dima Kuzmin. Online variance minimization. In Pro-

ceedings of the 19th Annual Conference on Learning Theory, pages 514–528, 2006.



16 Odalric-Ambrym Maillard

A Generic Decomposition of the Regret

In this section, we provide a proof for Lemma 1 and for Lemma 2.

Lemma 1 Let τ⋆ ∈ N be some positive constant, and λ′ > 0 be such that κλ′,νa⋆

is finite. Then we have the property that for all ǫ > 0, then

P

(

max
s≤τ⋆

T
∑

i=T−s+1

(

Xi,a⋆ − κλ′,νa⋆

)

≥ ǫ

)

≤ exp(−λ′ǫ)

Proof. The proof follows by an application of Doob’s inequality for submartin-

gales. Let us introduce the quantity Ms =
T
∑

i=T−s+1

(

Xi,a⋆ − κλ′,νa⋆

)

, which is

a sum of s iid random variables. Note that Ms is not centered, and is a super-
martingale. Indeed, it satisfies that

E

[

Ms+1

∣

∣

∣
M1, ..,Ms

]

= Ms + E

[

XT−s,a⋆

]

− κλ′,νa⋆ ≤ Ms

On the other hand, we have the property that for suitable values of γ > 0, then
exp(γMs) is a submartingale. Indeed, we have the property that

logE
[

exp(γMs+1)
∣

∣

∣
M1, ..,Ms

]

= γMs + logE
[

exp
(

γXT−s,a⋆ −
γ

λ′
logE exp(λ′X)

)

]

= γMs + γ

(

1

γ
logE exp(γX)−

1

λ′
logE exp(λ′X)

)

= γMs + γ
(

κγ,νa⋆ − κλ′,νa⋆

)

.

Thus, for all γ > 0 such that κγ,νa⋆ ≥ κλ′,νa⋆ , then exp(γMs) is a submartingale,
and Doob’s maximal inequality applies. This shows that for all ǫ > 0, then

P

(

max
s≤τ⋆

Ms ≥ ǫ

)

= P

(

max
s≤τ⋆

exp(γMs) ≥ exp(γǫ)

)

≤ E

[

exp(γMs)
]

exp(−γǫ)

=

(

E

[

exp(γX)
]

)τ⋆
(

E

[

exp(λ′X)
]

)− γ

λ′ τ
⋆

exp(−γǫ)

= exp

(

γτ⋆
(

κγ,νa⋆ − κλ′,νa⋆

)

)

exp(−γǫ) .

We conclude by simply taking γ = λ′ (though this is a suboptimal choice).

Lemma 2 Let τ ∈ N be some positive constant, and λ > 0 be such that κλ,νa
is

finite. Then we have the property that for all ǫ > 0, then

P

(

max
s≤τ

s
∑

i=1

(

κ−λ,νa
−Xi,a

)

≥ ǫ

)

≤ exp(−λǫ)
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Proof. The proof is very similar do that of Lemma 1. We have the property

that for s = 1, . . . , τ , Ms =
∑s

i=1

(

κ−λ,νa
− Xi,a

)

is a supermartingale since

κ−λ,νa
≤ Eνa

[

X
]

, and then that exp(γMs) is a submartingale for values of γ

such that κ−λ,νa
≥ κ−γ,νa

.

B Dual Formulation of the Minimization Algorithm

Lemma 3 Let ν̂n denote the empirical distribution build from ν ∈ M
+
1 (RB) with

n i.i.d samples. We have the following rewriting

K(ν̂n, r) = max

{

1

n

n
∑

i=1

log

(

1−
γ⋆

λ

(

1−exp
(

−λ(xi−r)
)

)

)

: 0 ≤ γ⋆ ≤
λ

1− exp(−λ(B − r))

}

.

Proof. Let x1 < · · · < xn denote the support of the empirical distribution ν̂n
and note that the optimization (13) can be reduced to distributions with support
in {xi}i≤n up maybe to one extra point xn+1 that will receive extra weight if
needed. For ν ≪ ν̂n, let pi be the probability weight associated to xi, and let
q be the one associated to xn+1. The optimization problem can be rewritten in
the following form

minimize over {pi}i≤n, q :

n
∑

i=1

1

n
log

(1/n

pi

)

subject to −
1

λ
log

(

n
∑

i=1

exp(−λxi)pi + exp(−λxn+1)q
)

≥ r ,

and it is immediate to see that xn+1 < xn does not help. Now by introducing
appropriate Lagrange-multipliers, this corresponds to minimizing the following
quantity over {pi}i≤n, q ∈ R

+, γ, α, {ξi}i≤n, ξ ∈ R:

V
def
=

n
∑

i=1

1

n
log

(1/n

pi

)

+ γ

(

r +
1

λ
log

(

n
∑

i=1

exp(−λxi)pi + exp(−λxn+1)q
)

)

+α

(

1−

n
∑

i=1

pi − q

)

−

n
∑

i=1

ξipi − ξq ,

with Karush-Kuhn Tucker optimality conditions corresponding to a distribution
ν⋆ being:

– γ⋆

(

r + 1
λ log

(

∑n
i=1 exp(−λxi)p

⋆
i + exp(−λxn+1)q

⋆
)

)

= 0, with the condi-

tions γ⋆ ≥ 0 and − 1
λ log

(

∑n
i=1 exp(−λxi)p

⋆
i + exp(−λxn+1)q

⋆
)

≥ r ,

–
∑n

i=1 p
⋆
i + q⋆ = 1 ,
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– ξ⋆i p
⋆
i = 0, ξ⋆i ≥ 0, p⋆i ≥ 0 and ξ⋆q⋆ = 0, ξ⋆ ≥ 0, q⋆ ≥ 0 ,

– − 1
np⋆

i
+ γ⋆

λ

[

∑n
j 6=i=1 exp(λ(xi−xj))p

⋆
j+p⋆i+exp(λ(xi−xn+1))q

⋆
]−1

−ξ⋆i −α⋆ =

0 ,

– γ⋆

λ

[

∑n
j=1 exp(λ(xn+1 − xj))p

⋆
j + q⋆

]−1

− ξ⋆ − α⋆ = 0 .

Now, in order for K(ν̂n, ν
⋆) to be finite, we need p⋆i > 0 i.e. ξ⋆i = 0 for all i ≤ n.

If γ⋆ = 0, then we deduce that α⋆ = − 1
np⋆

i
= −ξ⋆ for all i ≤ n. In particular,

this means that ξ⋆ > 0 and thus that q⋆ = 0. Thus, since p⋆i = 1
nξ⋆ and that

∑n
i=1 p

⋆
i = 1, then ξ⋆ = 1 and p⋆i = 1

n for all i ≤ n. This correspond to the cases
when V = 0.

Now let us consider that γ⋆ > 0. In that case, we deduce that we must have
for all i ≤ n

exp(λ(xi − r)) =

n
∑

j 6=i=1

exp(λ(xi − xj))p
⋆
j + p⋆i + exp(λ(xi − xn+1))q

⋆

and also exp(λ(xn+1 − r)) =

n
∑

j=1

exp(λ(xn+1 − xj))p
⋆
j + q⋆ ,

from which we deduce that we must have

– − 1
np⋆

i
+ γ⋆

λ exp(−λ(xi − r))− α⋆ = 0 ,

– γ⋆

λ exp(−λ(xn+1 − r))− ξ⋆ − α⋆ = 0 .

Thus, on the one hand we have p⋆i = 1/n
γ⋆

λ
exp(−λ(xi−r))−α⋆

and q⋆ = 1− 1
n

∑n
i=1

1
γ⋆

λ
exp(−λ(xi−r))−α⋆

,

and on the other hand, we have q⋆ = exp(λ(xn+1−r))− 1
n

∑n
i=1

exp(λ(xn+1−xi))
γ⋆

λ
exp(−λ(xi−r))−α⋆

,

and it remains to determine α⋆ and γ⋆.
If q⋆ > 0, then ξ⋆ = 0 and thus α⋆ = γ⋆

λ exp(−λ(xn+1−r)). Thus, this entails
that

1−
λ

γ⋆

1

n

n
∑

i=1

1

exp(−λ(xi − r))− exp(−λ(xn+1 − r))
=

exp(λ(xn+1 − r))−
λ

γ⋆

1

n

n
∑

i=1

exp(λ(xn+1 − xi))

exp(−λ(xi − r))− exp(−λ(xn+1 − r))
,

i.e. that the optimal value of γ⋆ is given by

γ⋆ =
λ

1− exp(λ(xn+1 − r))

(

1

n

n
∑

i=1

1− exp(−λ(xi − xn+1))

exp(−λ(xi − r))− exp(−λ(xn+1 − r))

)

=
λ

1− exp(−λ(xn+1 − r))
.

We thus have shown that the optimal weights are given by

p⋆i =
1

n

1− exp(−λ(xn+1 − r))

exp(−λ(xi − r))− exp(−λ(xn+1 − r))
,
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and that the corresponding value is

V =
1

n

n
∑

i=1

log

(

exp(−λ(xi − xn+1))− 1

exp(−λ(r − xn+1))− 1

)

.

Now if ξ⋆ > 0, then γ⋆

λ exp(−λ(xn+1 − r)) > α⋆, thus since we have

exp(−λ(xn+1 − r))− 1 =
1

n

n
∑

i=1

exp(−λ(xn+1 − r))− exp(−λ(xi − r))
γ⋆

λ exp(−λ(xi − r))− α⋆
,

we deduce that

exp(−λ(xn+1 − r))− 1 ≥
1

n

n
∑

i=1

exp(−λ(xn+1 − r))− exp(λ(xi − r))
γ⋆

λ exp(−λ(xi − r))− γ⋆

λ exp(−λ(xn+1 − r))
,

i.e. that γ⋆ ≤ λ
1−exp(−λ(xn+1−r)) .

On the other hand, we must have q⋆ = 0 and thus

1

n

n
∑

i=1

1
γ⋆

λ exp(−λ(xi − r))− α⋆
= 1 and

1

n

n
∑

i=1

exp(−λ(xi − r))
γ⋆

λ exp(−λ(xi − r))− α⋆
= 1

Thus combining these two equations we deduce that γ⋆

λ − α⋆ = 1 and thus that

p⋆i =
1/n

γ⋆

λ exp(−λ(xi − r))− α⋆
=

1/n

γ⋆

λ

(

exp(−λ(xi − r))− 1
)

+ 1
.

The value is thus given in that case by

V = max

{

1

n

n
∑

i=1

log
(

1−
γ⋆

λ

(

1− exp(−λ(xi − r))
))

: 0 < γ⋆ <
λ

1− exp(−λ(xn+1 − r))

}

.

C Concentration Inequalities for K(ν̂n, r)

Let us first show the following key intermediate lemma

Lemma We have the property that there exists some discrete set Γc with at
most 2 + 1/c elements such that

K(ν̂n, r) ≤ c+max
γ∈Γc

1

n

n
∑

i=1

log

(

1−
γ

λ

(

1− exp
(

− λ(xi − r)
)

)

)

,
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Proof. Using the change of variable γ = λ
1−exp(−λ(xn+1−r))u, with xn+1 = B this

corresponds to showing

max
u∈[0,1]

1

n

n
∑

i=1

log

(

1− u
1− exp

(

− λ(xi − r)
)

1− exp
(

− λ(xn+1 − r)
)

)

≤ c+ max
u′∈Uc

1

n

n
∑

i=1

log

(

1− u
1− exp

(

− λ(xi − r)
)

1− exp
(

− λ(xn+1 − r)
)

)

.

This follows from the fact that for all u ∈ [0, 1] there exists u′ ∈ Uc such that
for all x ≤ xn+1, then

log

(

1− u
1− exp

(

− λ(x− r)
)

1− exp
(

− λ(xn+1 − r)
)

)

≤ c+ log

(

1− u′ 1− exp
(

− λ(x− r)
)

1− exp
(

− λ(xn+1 − r)
)

)

.(20)

More precisely we use the fact that for all u, u′ ∈ [0, 1] such that u ≤ u′ ≤ 1/2
or u ≥ u′ ≥ 1/2, then for all y ≤ 1

log
(

1− uy
)

≤ log
(

1− u′y
)

+ 2|u′ − u| .

The proof of (20) then follows from simple algebra. We then apply this result
with the following grid that has at most 2 + 1/c elements

Uc
def
= {1/2, 1} ∪ {1/2 + c, . . . , 1/2 + ⌊1/(2c)⌋c} ∪ {1/2− c, . . . , 1/2− ⌊1/(2c)⌋c} .

We then prove the following proposition, that is the main result of this sec-
tion.

Proposition 2. Let ν̂n be the empirical distribution built from ν with n i.i.d
samples. Then, for all ǫ > 0, it holds that

P

(

K(ν̂n, κ−λ,ν) ≥ ǫ

)

≤ e(n+ 2) exp(−nǫ) .

Proof. Let r = κν . By Lemma C, we know that for all c > 0, there exist a finite
set Γc ⊂ [0, γ⋆ ≤ λ

1−exp(−λ(B−r)) ] with at most 2 + 1/c points such that

K(ν̂n, r) ≤ c+max
γ∈Γc

1

n

n
∑

i=1

log

(

1−
γ

λ

(

1− exp
(

− λ(xi − r)
)

)

)

.

Then, we thus have for any β > 0

logE exp
[

βK(ν̂n, r)
]

≤ logE exp

[

βc+ βmax
γ∈Γc

1

n

n
∑

i=1

log

(

1−
γ

λ

(

1− exp
(

− λ(xi − r)
)

)

)]

≤ log

(

∑

γ∈Γc

Eν exp

[

βc+
β

n

n
∑

i=1

log

(

1−
γ

λ

(

1− exp
(

− λ(xi − r)
)

)

)])

≤ log

(

exp
(

βc
)

∑

γ∈Γc

n
∏

i=1

Eν

[

(

1−
γ

λ

(

1− exp
(

− λ(xi − r)
)

))

β
n

])

.
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Thus, for β = n, we get, since r = − 1
λ log

(

Eν

[

exp
(

− λX
)

])

,

Eν

[

(

1−
γ

λ

(

1− exp
(

− λ(X − r)
)

))

β
n

]

= 1−
γ

λ
+ γ

1

λ
Eν

[

exp
(

− λX
)

]

exp(λr) = 1 ,

from which we deduce that

logE exp
[

βK(ν̂n, r)
]

≤ inf
c>0

log

(

exp
(

nc
)

|Γc|

)

.

In particular, for c = 1/n, we get the bound

logE exp
[

βK(ν̂n, r)
]

≤ log

(

e|Γ1/n|

)

≤ log

(

e(n+ 2)

)

,

and the result then follows via a simple Markov’s inequality.


