HRF estimation improves sensitivity of fMRI encoding and decoding models

Fabian Pedregosa 1, 2 Michael Eickenberg 3, 2 Bertrand Thirion 2, 3 Alexandre Gramfort 4, 5
1 SIERRA - Statistical Machine Learning and Parsimony
DI-ENS - Département d'informatique de l'École normale supérieure, ENS Paris - École normale supérieure - Paris, Inria Paris-Rocquencourt, CNRS - Centre National de la Recherche Scientifique : UMR8548
Abstract : Extracting activation patterns from functional Magnetic Resonance Images (fMRI) datasets remains challenging in rapid-event designs due to the inherent delay of blood oxygen level-dependent (BOLD) signal. The general linear model (GLM) allows to estimate the activation from a design matrix and a fixed hemodynamic response function (HRF). However, the HRF is known to vary substantially between subjects and brain regions. In this paper, we propose a model for jointly estimating the hemodynamic response function (HRF) and the activation patterns via a low-rank representation of task effects.This model is based on the linearity assumption behind the GLM and can be computed using standard gradient-based solvers. We use the activation patterns computed by our model as input data for encoding and decoding studies and report performance improvement in both settings.
Type de document :
Communication dans un congrès
3nd International Workshop on Pattern Recognition in NeuroImaging, Jun 2013, Philadelphia, United States. 2013
Liste complète des métadonnées

https://hal.inria.fr/hal-00821946
Contributeur : Fabian Pedregosa <>
Soumis le : lundi 13 mai 2013 - 15:57:47
Dernière modification le : jeudi 9 février 2017 - 15:20:09

Fichiers

paper.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00821946, version 1
  • ARXIV : 1305.2788

Collections

Citation

Fabian Pedregosa, Michael Eickenberg, Bertrand Thirion, Alexandre Gramfort. HRF estimation improves sensitivity of fMRI encoding and decoding models. 3nd International Workshop on Pattern Recognition in NeuroImaging, Jun 2013, Philadelphia, United States. 2013. <hal-00821946>

Partager

Métriques

Consultations de
la notice

2025

Téléchargements du document

258