HRF estimation improves sensitivity of fMRI encoding and decoding models - Archive ouverte HAL Access content directly
Conference Papers Year : 2013

HRF estimation improves sensitivity of fMRI encoding and decoding models

(1, 2) , (3, 2) , (2, 3) , (4, 5)
1
2
3
4
5

Abstract

Extracting activation patterns from functional Magnetic Resonance Images (fMRI) datasets remains challenging in rapid-event designs due to the inherent delay of blood oxygen level-dependent (BOLD) signal. The general linear model (GLM) allows to estimate the activation from a design matrix and a fixed hemodynamic response function (HRF). However, the HRF is known to vary substantially between subjects and brain regions. In this paper, we propose a model for jointly estimating the hemodynamic response function (HRF) and the activation patterns via a low-rank representation of task effects.This model is based on the linearity assumption behind the GLM and can be computed using standard gradient-based solvers. We use the activation patterns computed by our model as input data for encoding and decoding studies and report performance improvement in both settings.
Fichier principal
Vignette du fichier
paper.pdf (219.65 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-00821946 , version 1 (13-05-2013)

Identifiers

Cite

Fabian Pedregosa, Michael Eickenberg, Bertrand Thirion, Alexandre Gramfort. HRF estimation improves sensitivity of fMRI encoding and decoding models. 3nd International Workshop on Pattern Recognition in NeuroImaging, Jun 2013, Philadelphia, United States. ⟨hal-00821946⟩
815 View
292 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More