Low-complexity computation of plate eigenmodes with Vekua approximations and the Method of Particular Solutions

Abstract : This paper extends the Method of Particular Solutions (MPS) to the computation of eigenfrequencies and eigenmodes of thin plates, in the framework of the Kirchhoff-Love plate theory. Specific approximation schemes are developed, with plane waves (MPS-PW) or Fourier-Bessel functions (MPS-FB). This framework also requires a suitable formulation of the boundary conditions. Numerical tests, on two plates with various boundary conditions, demonstrate that the proposed approach provides competitive results with standard numerical schemes such as the Finite Element Method, at reduced complexity, and with large flexibility in the implementation choices.
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00823480
Contributeur : Gilles Chardon <>
Soumis le : dimanche 17 mai 2015 - 19:52:35
Dernière modification le : mercredi 21 mars 2018 - 18:57:44
Document(s) archivé(s) le : jeudi 20 avril 2017 - 00:44:40

Fichier

chardon_daudet_MPS_plates.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Gilles Chardon, Laurent Daudet. Low-complexity computation of plate eigenmodes with Vekua approximations and the Method of Particular Solutions. Computational Mechanics, Springer Verlag, 2013, pp.10. 〈10.1007/s00466-013-0859-2〉. 〈hal-00823480〉

Partager

Métriques

Consultations de la notice

312

Téléchargements de fichiers

92