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We develop a multiexposure image fusion method based on texture features, which exploits the edge preserving and intraregion
smoothing property of nonlinear di usion lters based on partial di erential equations (PDE). With the captured multi-exposure
image series, we rst decompose images into base layers and detail layers to extract sharp details and ne details, respectively. e
magnitude of the gradient of the image intensity is utilized tweurage smoothness at homogeneous regions in preference to
inhomogeneous regions. en, we have considered texture features of the base layer to generate a mask (i.e., decision mask) that
guides the fusion of base layers in multiresolution fashion. Finally, well-exposed fused image is obtained that combines fused base
layer and the detail layers at each scale across all the input exposures. Proposed algorithm skipping complex High Dynamic Range
Image (HDRI) generation and tone mapping steps to produce detail preserving image for display on standard dynamic range display
devices. Moreover, our technique is e ective for blending ash/no- ashimage pair and multifocus images, thatis, images focused on

di erent targets.

1. Introduction each exposure gives us trustworthy information about certain

. . ) ) pixels, that is, the optimally exposed pixels for that image. In
Itis impossible to capture the entire dynamic range of the realgch type of images, for dark pixels, the relative contribution
Worlq scene with single exposure. Human eye is sensitive tgf noise is high and for bright pixels, the sensor may have
relative rather than absolute luminance valugsflumaneye  peen saturated. erefore, it is desirable to ignore very dark
can observe both indoor and outdoor details smultaneouslyand very bright pixels to achieve suprathreshold viewing con-
is is because the eye adapts locally as we scan the di erentgitions [ ]. Consequently, the scene contains very dark and
regions of the scene and can adapt orders of magnitudeyery pright areas which are partially under- or overexposed
of intensity variations in the scene][ while standard digital i, the optimally exposed photograph (sEgure (a). is

cameras are unable to record the luminance variation inig pacause of limited dynamic range (DR) of the standard
the entire scene. Currently, there are many applications tha&i ital cameras (i.e., 2). e solution is to photograph the
involve variable exposure photography to determine the g LI . P grap

details to be captured optimally in the photographed sceneScene several times with variable exposures and reconstruct
e intention of exposure setting determination is to control  Plénded image that contains the whole details, even in
charge capacity of the Charge Coupled Device (CCD). Arpngh_tly and poorly |IIum|n§\ted areas. High d_ynamlc range

example is shown irFigure (a) and long exposure yields imaging (HDRI)[ ...]techniques give the solution to recover

details in the poorly illuminated areas while short exposureradiance maps from photographs taken with conventional

provides detail in the brightly illuminated area. erefore, imaging equipment.
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(b) User driven detail layer manipulation with; = (c) Sigmoid function based
1.2

F  :(a)Imagesrepresenting multiple exposures; ((b), (c)) illustrain of our detail-preserving exposure fusion result. Note that our tesul
contains more details in brightly and poorly illuminated areas with natural contrast. e ne textures on the chair are accurately preserved.

(c) Our detail layer enhancement based on sigmoid function across all the inputs reveals more texture details in the fused image and does
not depict noticeable artifacts near strong edges.

To make the concept of dynamic range clear, let us re-s required to linearize the image data before combining LDR
de ne some useful terms. Image is said to be low dynamicexposures into HDR image]. Following the consideration
range (LDR) when its dynamic range is lower than that of theof pixel intensity based fusion, the major focus of this paper
output medium. A standard dynamic range (SDR) image isis the utilization of conceptually simple, computationally
the one whose dynamic range corresponds approximately teimple, and robust texture features, speci cally local range
that of the standard output medium (i.e., ... ORabout’)  of base layer, for the identi cation of well-exposed regions.
and is called display-referred image. A high dynamic rangee base layers across all input images are fused by using
(HDR) image has dynamic range higher than that of the multiresolution pyramid approach [] to preserve local
output medium and it is called scene-referred image. Alter-spatial structure that provides high quality spectral content
natively, the standard displays (LCD, CRT) and printers haven the fused image. We have considered texture features
limited contrast ratio (i.e., dynamic range). erefore, these of the image to generate a mask that guides the fusion
devices are unable to reproduce full dynamic range that leadef base layers computed across all the input images. e
to tone mapping problem. Tone mapping][is the technique  base layer is computed by applying nonlinear lter][that
to remap the intensities for display HDR images on SDRpreserves the locations where the magnitude of the gradient
devices. Although few HDR display devices have been devetas maximum value and the detail layer is then computed
oped and will become generally available in the near futureas the di erence between the original input image and the
this technology is very expensive and not accessible by thease layer. e algorithm overcomes the major drawbacks
most users. To display HDR data directly, a number of HDRof conventional multiresolution pyramid based fusion ]|
display prototypes are proposed recently by [ ]. Asa  namely, the blurring of edge details and the introduction of
result, there will always be a need to prepare HDR imageryrtifacts.
for display on LDR devices or directly generate an image that A rst step, in our algorithm, is multiscale decomposition
looks like tone-mapped image][ Consequently, we need (MSD) of each image to extract details at arbitrary scales,
e cient exposure fusion technique to preserve scene detaildbased on adaptive and edge preserving lter (i.e., anisotropic
without intermediate representation. e goal of exposure diusion)[ ].Ouralgorithmtakes identically sized multi-
fusion mechanism is to maximize information content of the exposure images taken from a xed viewpoint and produces
synthesized scene from a set of multiexposure images withowtutput image of the same size, in which well-exposed pixel
computing HDR radiance map and tone mapping (seevalue is computed by combining detail information from
Figures(b) and (c)). all of the input images at each scale of the decomposition.

Compositing is done on the pixel intensity values rather Unlike earlier image-based compositing techniqueg jpur
than irradiance values. is approach does not care about the approach separates coarse scale details (i.e., base layer) from
exposure times and camera response function (CRF), whichne details (i.e., detail layer), while our approach is similar in
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spirit to the multiscale shape and detail enhancement fromto di erent pixels. However, global operators are computa-
multilight image collections (MLIC) approach of Fattal et al. tionally simple than local operators. Most of the tone map-
[ 1. erefore, our approach is e ective to control ne and  ping algorithms su er from halo artifacts and require human
coarse details separately during the compositing process aridtervention in the parameter adjustment process. Transform
needs no further postprocessing. A er the manipulation of domain tone mapping approaches | became popular
each redundant layer and fused base layer, the detail layecompared to intensity domain. Dynamic range compression
across all input images are recombined to produce wellbased on the properties of human visual system in gradient
exposed image (s&&ure ). us, the magnitude ofthebase domain [ ] is almost free of halo artifacts and require
layer is modi ed based on the decision map to ensure thatno manual parameter tweaking. ey involve the gradient
resulting fused image contains well-exposed regions, whilenanipulation of local neighboring pixel at various scales to
the magnitude of the detail layer is unchanged, thereby presimulate adaptation behavior of human visual system. en
serving detail. To be able to deal with strong edges separately)e image is reconstructed by solving the Poisson equation
we use a nonlinear multiscale edge-preserving image deconon the modi ed gradient elds. Recently frequency based
position which permits us to manipulate and combine detailsalgorithm [ ] typically decomposes HDR image into base
at multiple scales without introducing visible halos and arti- layer and detail layer. Only the magnitude of the base layer is
facts. compressed in the log domain, thereby preserving detail. e
Although the proposed framework does not require base layer of input HDR image is computed using an edge-
human intervention, in practice, we provide set of parameterspreserving lter called the bilateral Iter and the detail layer
in Section that allow users to interactively control the detail is the division of the input intensity by the base layer. e
enhancement in the fused image. e rest of this paper is detailed review of various tone-mapping operators is given
organized as follows. A comprehensive review of previoudy Reinhard et al. |.
work related to exposure fusion and HDR generation is  In recent years, various fusion algorithms have been
provided inSection . Section presents a description oftwo- developed to assemble information from several source
scale decomposition based on ASD, texture features (i.e., locmhages to extend the depth-of- eld and dynamic range of
range) of the base layer that provides the weight map to guidéhe fused image. However, the large variations in the source
the fusion process, and the multiresolution decompositionimages, such as exposure value, focusing, modality, and envi-
that reconstruct a single well-exposed base layer from a set obnmental conditions, o en make fusion extremely challeng-
given multiple exposures acquired from the static sceneing. Ogden et al. [ ] has proposed the use of Gaussian and
Section illustrates the experimental results and the com- Laplacian pyramid for image fusion. e Laplacian pyramid
parison with the popular exposure fusion and tone-mappingrepresentation expresses an image as a sum of spatially band-
operatorsSection discusses future directions for this work passed images while retaining local spatial information in
and concludes this paper. each band[]. Image Gradient based fusion [] provides the
solution to handle strong highlights and remove self-re ec-
tions from ash and ambient images []. Li and Yang [ ]
2. Previous Works described region segmentation and spatial frequency based
multifocus image fusion. Weighted nonnegative matrix fac-
Image fusion techniques blend information present in dif- torization and focal point analysis based multifocus fusion
ferent images into a single image. Burt and Adelsoh [ method [ ]has been proposed to preserve feature informa-
rst introduced the idea of image fusion based on Laplaciantion in fused image.
pyramid. Image fusion techniques are generally classi edinto  Raman and Chaudhuri[ ] have utilized edge-preserving
three categories: pixel level, feature level, and decision levelter (i.e., bilateral Iter) for the fusion of multiexposure
which are reviewed by Smith and Heather][ Standard images, in which appropriate matting function is generated
capturing devices can only capture either detail present in thdased on local contrast for automatic compositing process.
poorly illuminated or brightly illuminated regions. Debevec Image entropy based exposure fusion method was proposed
and Malik [ ] and Mann and Picard [] proposed a HDRIto by Goshtasby [ ], in which an image is considered best-
record the entire range of the scene radiances from di erentexposed within an area if it carries more information about
exposures that were acquired with a standard camera. Varioue area than any other image. e optimal block size and
possible formats to store radiance maps are described byidth of the blending functions were determined using a
Reinhard etal. |. *Floating pointti Z can encode avery high gradient-ascent algorithm to maximize information content
dynamic range ( orders of magnitude) without losing in the fused image. e optimal block size was varied from
information. image to image. Images representing scenes with highly
Unfortunately, HDR images cannot be displayed on ordi- varying re ectances, highly varying surface orientations, and
nary display devices with limited dynamic range. Many dif- highly varying environmental factors such as shadows and
ferentglobal operators| ... Jandlocal operators|, ... ] specularities produce smaller optimal block size
have been suggested for dynamic range reduction for display- Unlike previous multiexposure fusion method proposed
ing HDR images on standard display devices. Global operby Goshtasby [ ], our approach calculates local range within
ators apply spatially uniform remapping function on every a xed -by- block size that reduces complexity for com-
pixel independently. For the local operators, di erent opera- puting weight function to control the contribution of pixels
tions based on adaptation of human visual system are applietom input bracketed images. Szeliski | produces fused
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F : Proposed image domain fusion framework. Observation model illustrating the conceptual framework of the proposed texture
feature based pyramid fusion approach. Note that for the concept simplicity here we have generated base layers and detail layers of two input
exposures.

image with improved uniformity in exposure and tone basedand the intensity domains which are used to manipulate
on simple averaging the pixel brightness levels across aut@smooth regions while preserving strong edges. Bilateral Iter
bracketed shots. Multi-dimensional histogram was used tdased exposure fusion introduced by Raman and Chaudhuri
analyze a set of bracketed images that projects pixels onto[a ] uses the concept of local contrast | to preserve edge
curve that ts the data. Histogram equalization was used agletails. e edge-preserving MSD proposed by Perona and
postprocessing operator for optimal contrast enhancementirMalik [ ] advocates the utilization of heat conduction PDE:
the fused image. (,,) = div( ) . atis, the intensity of each pixel
Recently Mertens et al. [| propose a technique for fusing is seen as heat and is propagated over time to its neighbors
a bracketed exposure sequence into a high quality imageccording to the heat spatial variation.
without converting to HDR rst, which is processed based In this paper, we exploit anisotropic di usion for the
on Laplacian Pyramid. In that technique, sgoodZ pixels arefusion of images captured at di erent exposure settings. e
selected from image sequence guided by simple qualithase layer and detail layers are fused separately to preserve
measures such as saturation, well-exposedness, and contrasixture details. InSection , we will discuss the two-scale
Zhao et al. [ ] introduced a Quadrature Mirror Filters decomposition of input exposures for base layer and detail
(QMFs) based subband approach for exposure fusion. Moditayer extraction in detail. Our technique is exible enough to
ed subbands based on calculated gain control maps accordfuse ash/no- ash images and images focused on di erent
ing to image appearance measurements such as exposutargets (multifocus images), whereas methods proposed in
contrast, and saturation are blended to remove nonlineaf , Jand[ , ]are specically designed for the fusion
distortion. of ash/no- ash and multifocus image series, respectively.
A number of non-adaptive MSD techniques have been

proposed recently [ ... ] and have some limitations. e
rstone is the introduction of distortionsincluding halosand 3 proposed Algorithm
visible artifacts. Secondly, it fails to preserve edges during the
decomposition. e e ectiveness of edge preserving image e objective of our exposure fusion approach is to preserve
coarsening has been recognized as valuable tool for MSBetails in both brightly and poorly illuminated areas that
decomposition. Recently, the edge preserving MSD in.[  signi cantly improve the quality of the fused image. It must

] has been widely used by the graphics researchers for therovide optimal contrast within the capabilities of the con-
image processing and the computational photography appliventional displaying medium and must not lead to artifacts
cations. Weighted least square (WLS)][ bilateral Iter  suchascontrastreversalorblack halos. Additionally, it should
(BLF) [ ], anisotropic diusion (ASD) [ ], and guided produce realistic and pleasant images. e principal char-
image Iter [ ] are the popular MSD computation tech- acteristic of our exposure fusion is an adaptive adjustment
niques. Among these, BLF and ASD are the well-poseaf local spatial information in the Laplacian pyramid ][
approaches for preserving edges while the textures ardepending on texture features (i.e., local range). To control
smoothed out. BLF was rst proposed by Tomasi and Man-the contribution of pixels, we calculate weight that depends
duchi[ ]in . e BLFisan adaptive smoothing frame- on the maximum and minimum intensities of the neighbor-
work that does a weighted sum of the pixels in a local neigh-ing pixels from the pixel under consideration. e weight
borhood; the weights depend on both the spatial domainfunction and Gaussian-Laplacian pyramid are derived in
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the following sectionsFigure shows that the proposed functionZ or sconduction coe cientZ that controls the dif-
scheme contains three steps, which analysis, scene detail fusion strength(, ) species spatial position, andis the
manipulation based on decision mapdsynthesis process ordering time parameter.

More speci cally, the goal of our exposure fusion algo- e di usion strength in the image is in uenced by the
rithm to produce well-exposed image by combining the conduction coe cient which depends on the magnitude of
information across all of the input multiexposure images.the gradient of the image intensity. e process of gradient
In our implementation, two-scale decomposition based oncomputation from the neighbors in D and D structure is
anisotropic di usion [ ]is used to separate coarser and ner illustrated in Figures(a) and (b), respectively. If the con-
details from each inputimage. e base layéB ) and detail  duction coe cient is replaced by a constant value (i.€), =

layer(D ) across all inputimages are de ned as 1), the di usion process will be isotropic linear di usion that
) . leads to Gaussian smoothing. Since isotropic di usion does
B =aniso b= SB, not consider image structure, ne textures as well as edges

where =1 () are smoothed. us for anisotropic di usion the conduction
B coe cient is chosen to satisfy() 0  when
e well-exposed image is generated as so that the di usion process is sstoppedZ across the region
boundaries (i.e., edges) at locations of high gradients.
=B +D, () Two di erent di usion functions () have been proposed

where B is the fused base layer that maximizes the coarsekr)y Perona and Malik [], which result in edge preserving

details across all of the input base imagesBs,... B lter de ned as

and D is the residual (i.e., fused detail layer) that maxi- _ G H Y 0
mizes the ner details across all of the input detail layers 10 )= '

D,,D,...,D . Before introducing the proposed approach, 1

we brie y introduce anisotropic di usion used to create two- 2( )= o 17 ()

scale decomposition and local range used to generate weight
map for nonuniform scaling to control contribution of pixels \where is a scale parameter (i.e., constant) to be tuned for

from base layers across all of the input exposure. a particular application. Perona and Malik | proposed that
the value of canbe xed manually or using the noise esti-
.. Data Acquisition and Two-Layer Decomposition matorZ described by Canny | In our algorithm ne details

are separated using ), which favors high contrast sharp
... Scene Data AcquisitionConventional digital photogra-  transitions across multiexposure input series and the value of
phy struggles with the high contrast scenes and can capture= 1/7 was xed manually based on experimentation.
brightest part (i.e., highlights) by choosing a low exposure e discrete formulation of Perona and Malik [ ] aniso-
level (i.e., short exposure time) or the darkest part (i.e., shadtropic di usion (i.e., base layer (B) in our case) is as given by
ows) by choosing a high exposure level (i.e., long exposure
time). e information present in the fused LDR output +1 _

depends on the number of input exposures captured at o ' o 0
di erent exposure settings. We assume that all input multiple

exposure images are photographed from static scene withthgrare  is a discrete version of input signal,determine

help of tripod to ayoid any spatial and global misalignment. the sample position in the discrete signal, andetermines

To apply our technique successfully, sequence of exposures;is ations. e constant  is ascalar that determines the rate of

captured from a scene with very dark and very bright details ; usion, represents the spatial neighborhoods of current

e aperture priority and the camerass white balance are xed sample position, and| | is the number of neighbors.

fqr the entire sequence. Sqmple input.set of images with 14 see the behavior of the Perona and Malik][ Iter

di erent exposure settings is illustrated Figure (a) at edges, we rst analyze one-dimensional signal into base
layer and detail layer. As can be seefrigure , at base layer

.. . Edge Preserving Anisotropic Di usiorAnisotropic dif-  (i.e., the coarser level a er di usion), high-frequency textures

fusion hasledtoane cientnew eldtoremove noise froman disappear. e high texture details lost at the base layer are

image by modifying the image via a Partial Di erential Equa- exactly reconstructed at the detail layer. However, detail layer

tion (PDE). e goal of edge preserving di usion [ Jisto s the di erence between the input signal and the base layer,

encourage smoothing at homogeneous region in preferencghich is dominated by the large discontinuities characterized

to inhomogeneous region (i.e., edge). Mathematically, thepy the rapid oscillations (high-frequency variations) in the

isotropic di usion equation (, , ) = div( ) isreplaced input signal. As a result, we are able to separate high texture
with details from edge transitions that are to be preserved during
the fusion process. e continuous di usive process for -D
—  =div ( ) , () network structure (seBigure (a)) is as follows:
where isthe image gradient, is the magnitude of the G iy ) 0O

gradient of image intensity( ) is an eedge-stopping
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current sample position, the subscripts L and R depicting
le andright, respectively, anfl |isthe number of neighbors
(i.e., two in -D case), where , and g are the conduction
coe cients across le and right spatial locations, respectively.
esymbols | and gindicate the di erence ofle and right
neighbor, respectively:

L &S .

0

=  sample locationin -D grid

: R aS . ()
" c*1 e anisotropic di usion of two-dimensional grid shown in

Figure (b)is given by the relation

Q Base layer (B¥ **
= + — + ( )

(b) D structure te et w ow

oo
S
sy

8

% J

& 3
L

F  : Gradient computation. (a) One-dimensional (D) grid  where is a discrete version of input image determine
structure: the signal ow is calculated between two neighboringthe pixel position in the discrete image, andietermines
nodes (solid connection). (b) Two-dimensional ( D) grid structure: jtarations. e constant is a scalar that determines the
the sign_al ow is calculated between four neighboring nodes (solidrate of diusion, represents the spatial neighborhood of
connection). current pixel (North, South, East, and West), aid | is
the number of neighbors (usually four), wherg, s g,
Nnput I-D signal and , are the conduction coe cients across North, South,
East, and West spatial locations. e symbolg;, ¢, g, and
w indicate the di erence of North, South, East, and West

3 Time A .
2 Base layer (B) neighbor, respectively:
[=5
S .
< - & S
TDetaiI layer (D) Time N S1, ! 0)
‘ Timé for =, pixellocationin -D grid ,
F : Two layer decomposition of -dimensional signal based s, i, S ()
on Anisotropic Di usion aer iterations with = 30, = 1/3 o~
and| | = 2 (West & East). e -dimensional input signal() is E , 1S ()
decomposed into two main components: a low frequency base layer L
(B) and a high-frequency detail layer (D). Notice that the edges are W, 81S ()
preserved in the di used image (i.e., base layer) and the detail layer ) 8
yields ne details only. Detail layer(D) S B. ()

e base layer decomposition in () and detail layer de-
compositionin ( ) of JUIT image are illustrated iRigure .
FromFigure , it can be visually seen that the base layer pro-
1 vides coarse details and the textures are almost eliminated. In
= +f— L Lt R R () Figure , we have illustrated the intensity pro les of base lay-

ers (blue color) and detail layers (red color) computed from

where is a discrete version of input signaldetermine the ~ Multiexposure images. It is noticed that coarser and ner
sample position in the discrete signal, andetermines iter- ~ details are.extracted across th_e visible details r?ldaptlvely when
ation. We found one iterationg = 1) to be su cient forthe  the scene is captured with variable exposure times.

detail layer extraction across all of the input images we exper-

imented at low computational time. e detailed analysis .. Weight Map Computation: Texture Filter Based on Local
of e ect of number of iteration on computational time and Range.In the proposed algorithm, local range is used to gen-
information present (i.e., entropy) in the fused image is givenerate weight map for nonuniform scaling to control contribu-

in Section . e constant  is a scalar that determines the tion of pixels from base layers across all the multiple expo-
rate of di usion, represents the spatial neighborhood of sures. InFigure , we have illustrated that how local range

and discrete formulation is written as
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(i.e., JUIT image) based on anisotropic di usion (a) aer &) Pixels
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pixels). Intensity pro les (b) along a scan lines of two-dimensional
input signal (red), base layer (blue), and detail layer (green). Noticd= : Intensity plots (b) along a scan lines of base layers (blue)
that the strong edges are preserved in the di used image (i.e., basand detail layers (red) obtained with the anisotropic di usion a er
layer) and the detail layer yields ne details only. Details compressedve iterations with = 30, = 1/7, and| | = 4 (region size of
in the base layer are exactly reconstructed in detail layer. pixels) across all of the input exposures (a). Notice that coarser and

ner details are extracted across the visible details adaptively when
the scene is captured with variable exposure times.

is calculated in the range- Itered image from -by- neigh-
borhood. is local range is likely to be very di erent from Maximurm value

region to region in dierent images captured at variable in neighborhood Pixel in interest  Local range
exposure time. Well-exposed area will yield higher local range

as compared to the overexposed and underexposed regions, | 11| 68 101> <——Ja;2- 6246|3430
which is illustrated in Figuresand . Local range is de ned 06|54 GY 84| 84| 801(33| 39
as follows: 18] 90 L__Minimum value ing4| 84| 80| 87 39
& 28|46 |88 |13 |12 hetghborhood 72| 72| 80| 87|12
! = I-maxSI-minv ( )
F . lllustration of local range calculation that is used as
where Lyay, Lnin " local spatial window (i.e., -by-)inthe |ocation adaptive weight map. e gure depicts how local range
th base layer is calculated in the range- Itered image from -by- neighborhood.

Green numbers are the neighbors considered to compute local range

St for the pixel of interest (i.e., displayed in red number).
Lo=# 1 81, )
. - 1[I 1] 2] 2
where Ly, and L,;, are the maximum and minimum values 1111 2] 2
of the neighboring pixels within a -by- square window, 11171[1] 1
respectively, antl  (Normalized local range) is the weigh e 8 8 8 g 8
map at locatior(, ) in th base imagéB ). Underexposed regiomy 0 0] 0/ 0] 0
It is commonly accepted that the higher the luminance 01010[0]0
variation region is the stronger the local range of that region
. e . 0[0J0T0[0
to shield a pixel is. However, we nd that the dierence ololololo
between the maximum and the minimum value of luminance 0101010l0} 313727775
also in uences the probability of shielding the appropriate 010 % olo 151 171 3;3, 2 %
pixel. To compute such local range, our basic ideaisiillustrated Overexposed regiohLLI L1 3[ 6 6

in Figure . en, the Gaussian pyramid of weight map is
used to remove the in uence of very high intensities and g . g ect of underexposed, normally exposed, and overex-
very low intensities present across the multiple exposures foposed regions on local range. Note that local range will be di erent
producing the high-resolution image, which is described in(i.e., zero for underexposed and overexposed regions) for the same
Section . To illustrate the variation of local range in multiple region under di erent exposure values. e optimal window size for
exposures, we give four representative images as shown iange calculationis -by- and the numerical values given in the box
Figures(a), (b), (c), and (d). are calculated from the eight neighbors (&égure ).
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@ (b) (© (d)

F - lllustration of local range analysis of base layers across the multiple exposures. e local ranges are varying with respect to the

di erent exposure times. ((a), (b)) Base layers of underexposed images (top) and their corresponding texture features (bottom); (c) base
layer of normally exposed image (top) and their corresponding texXeatires (bottom); (d) base layer of overexposed image (top) and their
corresponding texture features (bottom). Note that well-exposed pixels have the brighter texture features (i.e., higher weights) across di erent
exposure values. Input images: Jacques Jo re HDR Chief Photographer.

. Pyramid Generation and Construction of Fused Basavhere the expandedimage GHs the same size asthe B
Layers(B ) across All Input Base LayelResearchers have and LB is the level of Laplacian pyramid ofh base image.
attempted to synthesize and manipulate the features at severghch Laplacian level contains local spatial information at
spatial resolutions [, ]Jthatavoid the introduction of seam increasing ne details.
and artifacts such as contrast reversal or black halos. In the e patches extracted from the input base |ayers are used
proposed algorithm, the bandpass components at di erentfor texture analysis (i.e., local range). We calculate a weight
resolutions are manipulated based on texture features thaground every pixel within a -by- window. e value of the
determine the pixel value in the reconstructed fused basgueighting function for each pixel depends on the maximum
layer (B). We begin by constructing a Gaussian pyramidand minimum intensity value of the neighbors within the
GB’,GB',....GB of input base layers across the input window. Next, the local range calculated from base layer (i.e.,
|mages,whered>Bsthe full resolution base layerand GB ~ di used image) in ( ) is computed in top-down fashion,
the coarsest level of theh base layer in the pyramid. Low- Similar to that described in [].

pass ltering (convolving) a base layer ®ith an equivalent 5

weighting function and subsampled by removing every other GR = %(&, " )GRgl 2 4+8 2 +' ()
pixel and every other row yields a Gaussian pyramifi [ s =& ’ '
2 2 3 where*and denote the level of Gaussian pyramid of local
GB = %(&"')GB™ 2 +&,2 +'. () range GR,GR,....GR of th input range ltered image

=52 =52 with GR as the full resolution image and G the coarsest
level in the pyramid.

Gaussian pyramid of texture feature (i.e., local range) acts
as weight map that determines the contribution of pixels from
the base layers across all of the multiple exposures. e Lapla-
cian pyramid of base layer LBnultiplied with the corre-
sponding Gaussian pyramid of texture feature GRd sum-

fming over yields modi ed Laplacian pyramid L

Here* (0 < * < -) refers to the number of levels in the
pyramid and (1 < < ) refers to the number of input
base layers anth(&, ") is an equivalent weighting function.
In our case, the Gaussian pyramid is generated with 0.4
[ ], which yields more Gaussian-like equivalent weighting
functions. A Laplacian pyramid of input base layers’|.B
LBY,... LB is created containing band-pass images o
decreasing size and spatial frequency:

L = LB GR . ()
LB =1
=GB SEXPAND GB™ . =1... . *=0,... .- Inthe case ofthelmage_averaglng,the output pixels are an
average of input pixelss luminance values, which reduce noise
) in the nal image, but the contrast of details is compromised
and the images can look washed out. Note, however, we have
LB = EXPAND GB | 0) J

found that Pyramid fusion [ ] performs very well on base
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layer fusion when modi ed with weight maps giving more in the fused image is based on monotonic nonlinear activa-

pleasing results with optimal contrast enhancement. tion function, where the resultant residual layer is computed

e fused base layer that contains well-exposed pixels is as follows:

reconstructed from Lby expanding each level and summing g pi)
— 2- —

B =%+ +12+ +L. 0) D = _ =1,...,, ()

We found that the modi cation of Laplacian pyramid in
top-down fashion eliminates underexposed and overexpose
regions in the fused base layer that leads to well-expose
image without the introduction artifacts. SEgure for an

illustration of the proposed idea. v 1
1() = 1+ 5 ()

pproach in most cases) ar(d is the -dimensional sigmoid

%hereB2 isa xedweight 8, = 2is found to be suitable in our
unction

.. Construction of Fused Detail Lay@D ) and Detail Layer where " R is the independent variable aréi " R is a

Enhancement.e detail layers D,,D,, ... D computed weight parameter of the sigmoid functiofigure showsa -

from () contain the smaller changes in intensity. ere are dimensional sigmoid with di erent weight values. e weight
mainly three parameters that control the behavior of base 9 9 ' 9

layer and detail layer computation in our exposure fusion param(?ter used in our approach was setto .
approach. Referring to (), and constant determine Let; be a xed threshold to further control the sharpness

the iterations and the rate of di usion, respectively. e of S|gm0|_d func_t|on,w_h|ch IS manu_ally c_hosen by the.o_pera-
. tor. e -dimensional sigmoid function with threshold; is
constant value can be chosen manually or by using the

enoise estimatorZ proposed by Perona and Malif.[As a given by
consequence, we can vary these three parameters to moderate 1
texture details in the fused image. Wheimcreases, adjacent O=Tr@a ()

pixels with large intensity di erences are ignored (i.e., more

smoothing at edges), which leads to larger detailsinthe resid- In our approach; is responsible for global contrast
ual layers across di erent exposures. However,iecomes management. e detailed analysis of selection of these
too small, fewer details are preserved in the residual layergarameters is given isection . Minai and Williams [ ]
across all of the input exposures with smaller computationahave presented the sigmoid with threshold as a neuron acti-
time. In order to balance the computational time and detail vation function in arti cial neural networks and recurrence
in the fused image, we have xed and suggested 1, relations for calculating derivatives of any order. e rst

= 1/7,and = 30 in all experiments, which reveals derivative of sigmoid function () is computed as
reasonably good results. More detailed analysis of e ects of .
these free parameters is giverSaction . We have presented D()=6:()(@S:()). ()

two alternative options for constructing the residual image

(i.e., detail layer D) and manipulating the details in the

fused image. We believe that both options can be utilized,

depending on the application. 4. Experimental Results and Analysis

... User Driven. In order to compute residual layer having -- Comparison with Other Exposure Fusion, Multifocus
rich texture detail, we use a weighting facrdetermined ~ Fusion, and Tone Mapping Methods. this paper, we have
the residual layer is obtained as a linear combination of the®C with . GHz i processorand GB of RAM. As shown in

detail layers across the input multiexposure images: Figures (b) and (b), note that the fused image provides
natural contrast and has no noticeable artifacts. We tested
~9_,8D 0) our proposed algorithm on a variety of bracketed sequences.

e proposed approach is computationally simple and results
are comparable to several tone mapping algorithirigure
is straightforward option allows the user to control the  shows the block diagram of the proposed texture feature
contribution of texture details direCtly from the input detail based deta” enhancing exposure fusion technique_
layers across all of the inputimages. We found that this simple Figures , , , and show the comparison of
technique is e ective to boost weak details in the fused |ma.the proposed experimenta| results. In these experimentS,
but yield overenhancement at the strong edges. Furthermorebptima| block size for weight map calculation was -by- .
to manipulate detail layers across all of the input imageq:igures (@) and (a) show image pairs of the *iglooZ and
precisely, we present a second technique that enhances weglgorz image sequence (siz@@fl x 33> x:and223x 332 x>
details, while avoids artifacts near the edges. resp.). We can see froffigure (b) that all the light in the
scene that appears to come from natural light source is opti-
... Sigmoid Function Based Detail Layer Manipulation and mally reproduced with crisp shadows.figure , one auto-
Fusion. e second alternative option to enhance ne details exposure image captured with the digital camera and two
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F : Base layer manipulation and fusion: illustrating the conceptual framework of texture feature (i.e., decision map) based pyramid

fusion approach of coarser detail across input images. Note that for the concept simplicity, here we have generated the Laplacian pyramid of
single base layer and the Gaussian pyramid of the corresponding texture features, glvhegr,e L L% are the modi ed Laplacian pyramid
of base layers across all of the multiexposures.
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(@) (b)
F : eeectofweight (i.e.,  6) onsigmoid function and derivative of sigmoid function. (a) e sharpness of the sigmoid in)(varies

according to the value of weight. With larger valuépthe sigmoid becomes a threshold function. (b) e rst derivative of sigmoid function
in( )for6=2and6 =3

recently proposed fusion results of siglooZ are demonstratedlluminated region (i.e., sky area) is overexposed in the result
It can be noticed that the proposed technique provides betteproposed by Shen et al. [] (seeFigure (e)). Figure (b)
texture details in highlights and shadows as compare to theshows more comparison example of our result for scene
results of autoexposuré&igure (c)) and Mertens et al. [] depicting outdoor and indoor details. e proposed tech-
(Figure (d)). It may also be observed that the brightly niques is visually compared with the results of autoexposure
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(b) (© (d) (e)

F : (a) Images representing multiple exposures of an outdoor scene depicting highlights from natural sun light and shadows. (b) Our
technique fuses the multiple exposures to obtain high quality image. Note that the fused image yields more texture details and natural contrast
without the introduction of artifacts. (¢) Autoexposure, (d) Mertens et al],[Jand (e) Shen et al. []. Input images are courtesy of Shree

Nayar.

(Figure (c)), and recently proposed Mertens et al.][  curvature image simpli er (LCIS) hierarchical decomposi-
(Figure (d)) and Zhang and Cham [] (Figure (e)). By tion[ ]. Asshown inFigure (b), ourtechnique yields ne
contrast, it is seen that our method combines the best of multexture details in the fused image with natural contrast that
tiple exposures into one realistic-looking image that is muchis entirely free of halo artifacts. To illustrate the e ectiveness
closer to what our eyes originally saw. However, both indoorof proposed approach, we illustrate close-up comparison in
and outdoor details of input LDR image§ifure (a)) are  Figures (b) ...(f) . Larson et al. [ ] presented a dynamic
simultaneously produced in the fused image with optimalrange compression method based on a human visual system
contrast and without the introduction of artifacts. Although adaptation, and it was also found to su er from halo artifacts
Mertens et al. [ ] have produced comparable results, it doesand does not o er good color information (sdggure (e)).
not preserve all details from input LDR images. As shown inTumblin and Turk [ ] preserve ne details in the image,
Figure (e), the results produced by Zhang and Cham][  while weak halo artifacts are present around certain edges
depict washed out details in underexposed regions which ar@n strongly compressed areas (§égure (f)). Experimental
not able to preserve texture details from input LDR shots. results have demonstrated that proposed method worked
To further compare our results visually with Mertens et al. very well on a variety of multiple exposures and preserved
[ Tand Shenetal.[ ], respectively, Figurega) , (b) ,and the original sceness relative visual contrast impression.

(c) depict a close-up view. e rstrow of Figure depicts Furthermore, to check the e ectiveness of the proposed
the shouseZ LDR image sequence of 8&2x 500 x 4vhich  algorithm for other applications, we have employed the
is provided by Mertens et al. []. It can be observed that the same technique for the fusion of multifocus image series
texture details (see the ne textures on the chair and bookgFigures , ,and )andimages capturedwith ashand no-
behind the chair) are accurately preserved in the proposedash (Figure ).Figure (a)illustrates two partially focused
fused image (sdeigure (a)). RGB images (focused on two di erent targets). Itisillustrated

In this section, we compare our results for <Belgium in Figure (b) that the color information is preserved in the
houseZ image sequence of si@25 x 7>? x ?(see fused image with better visualization of texture details. On
Figure (a)) with the popular exposure fusion and tone- the other hand we have tested and compared our approach
mapped HDR images, which are depicted in Figurfl),  for two sets of multifocused gray scale images of stableZ

(€), (d), (e), and (f). In particular, we do compare and <clockZ, which are illustrated in Figurega) ...(d)
our results with the perceptually driven worksJand low  and Figures (a) ...(d) , respectively. As demonstrated in
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(b) (© (d) (e)

F : (&) Images representing multiple exposures of an indoor and outdoor scene depicting sunlit details and shadows. (b) Our technique
fuses the multiple exposures to obtain high quality image. Note that the fused image yields more texture details and natural contrast without
the introduction of artifacts. (c) Autoexposure, (d) Mertens et al],[Jand (e) Zhang and Cham []. Input images are courtesy of Shree
Nayar.

@) (b) (©

F : House: comparison results to other recent exposure fusion techniques. (a) Results of our new exposure fusion method, (b) Mertens
etal.[ ],and (c) Shen etal. [ ]. Note that our method yields enhanced texture and edge features. Input image sequence is courtesy of Tom
Mertens.

Figure (c)thatour results produce pleasing image with rich (see Figures(a) and (b) ). Our approach provides inter-
texture details, the results produced by P. H&dwa et al.  esting solution for fusing the ash/no-ash image pair.
[ ]in Figure (d) do notreveal ne details present across Figure (c) illustrates our results, which combine details
all input images. It can easily be noticed that our fusedfrom the ash/no- ash image pair. As shown iRigure (c),
image inFigure (c) extracts more information from the the proposed approach allows removal of highlights from
originalimages. Moreover, Adu and Wanges techniquéip ash images and yields high quality ash image with optimal
Figure (d) appears washed out, which is responsible forcontrast and detail enhancement. e experimental results
losing perception of ne texture details. in Figure (c) depict largest amount of information and has
Finally, we have also tested our technique on two setselatively better contrast than that of results of Mertens et al.
of images captured with ash and no-ash images [ ]in Figure (d).
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(a) Input series

(b) (© (d) (e) ®

F : Belgium house: (a) series of multiple exposures depicting both indoor and outdoor areas. e exposure value is varying from
(/ ofasecond)to (/ of asecond). Comparison results to other popular tone mapping techniques. (b) Results of our new exposure
fusion method, window size = -by-, (c) Mertens et al. [, (d) Shen et al. [ ], (e) results of Larson et al. [], (f) results of LCIS method

[ ]- Note that our method yields combined features that can only be recorded using di erent exposures. Input images are courtesy of Dani
Lischinski.

(a) (b)

F : Book image. (a) Two partially focused images (focused on di erent targets) and (b) image generated by the proposed approach,

which illustrate that the fused image extracts more color and texture details from the original input images (input sequence is courtesy of

Adu and Wang [ ]).

To perform visual inspection of exposure fusion resultswork such as [ ], our approach preserves more details with
of Mertens et al. [ ] shown in Figures (d), (d), (b), higher contrast and does not require further postprocessing.
(c), and (d) are produced with the help of Matlab code us, this approach can be utilized in computer graphics

provided by the authors. e original results of generalized applications.

random walks based fusion [] in Figures (e), (c),

and (d) are provided by the authors on request. All the

experimental results of Zhang and Cham]in Figure (e), .. Analysis of Free Parameter3o analyze the e ect of
tone mapped HDR [, ]in Figures (e) and (f), and iteration on quality score [ ], entropy, computational time
multifocused fusion [ , ]in Figures (d) and (d) are and mean square error (MSE), we have illustrated four plots
taken from its papers. It is noticed that unlike the previous (see Figures(a) , (b) , (c) ,and (d) ,resp.) atadierent
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@) (b)

© (d)

F : Table image. ((a), (b)) Two partially focused images (focused on di erent targets), (c) image generated by the proposed approach,
which illustrates that the fused image extracts more information from the original images, and (@kiaédet al. [ ].

@ (b) (© (d)

F : Clock Image. ((a), (b)) Two partially focused images (focused on di erent targets), (c) image generated by the proposed approach,
which illustrates that the fused image extracts more information from the original images, and (d) Adu and Waigput sequence is
courtesy of Adu and Wang [ ).

@) (b) (© (d)

F : ((@), (b)) Input images photographed with and without ash; (c) enhanced fused image by proposed algorithm which maintains
the warm appearance and the sharp details a er removing strong highlight, and (d) Mertens e} ampges taken from Agrawal et al. [].
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F : Analysis of number of iterations used for base layer computation. Mean square error is de ned as the relative di erence from the

results generated with= 1. Maximum quality score and entropy are only observed wherl. It is observed that MSE and computational
time increase asincreases. (a) E ectiveness ajn quality score, (b) entropy, (c) computational time, and (d) error introduced.

(@) (b) (© (d) (e)

F : House image. e free parameter  in () is used to control detail enhancement. We have found thatl is su cient for ne
details extraction and gives better results for most cases. Higher valbeings in artifacts near strong edges. (& 1, (b) =2,(c) =3,
(d) =4,and(e) =5.
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@ (b) © (d) (e)

F . Igloo image. e free parameter in () is used to control detail enhancement. We have found thatl is su cient for ne
details extraction and gives better results for most cases. Higher valbgmgs in more details while introducing artifacts near strong edges.
(@ =1,(b) =2,(c) =3,(d) =4,and(e) =5.

=0.002 =0.003 = 0.004 =0.005
@) (b) © (d)

F :House image. e free parameter ; in equation is used to control sharpening. We have found {kat002 gives better results for
most cases. Higher value;obrings in more details in highly illuminated areas. (& .002, (b) ; = .003, (c); = .004, and (d); = .005.

value of iteration() for input image sequences of shouse Zview (see Figures(b), (c), (d), (b), (c),and (d))
«igloo,Z and «doorZ To assess the e ect of iteration on fusiorthat as increases, the sharp edges get brighter and therefore
performance, the quality score [| and entropy were adopted lead to artifacts at sharp edges. To analyze the error (i.e., MSE)
in all experiments. To measure computational time, all theintroduction against the one of the image produced withr

experiments were executed ona PCwith . GHzi processorl, =1/7, =30,8=2,;=.002,and6 = 27is considered
and GB of RAM. e MSE is estimated as the di erence as reference image. e error increases as the number
between pixel values implied by di erent iterations (i.es of iterations() increases. Frorfigure (d), it can also be

2,3,4,5,>,7)@nd the reference image obtained with low noticed that when = @the total error introduced is still less
iteration value (i.e., = 1).We x =1/7, =30,8 =2, than %.
and6 = 27in all experiments and they are set as default para-  Inthe analysis ofthreshold) ,we x =1, =1/7, =
meters. 30,8 = 2,and6 = 27. Four results obtained by di erents are
First, to analyze the e ect of iteration on quality score, shown in Figures(a) , (b) , (c) ,and (d) . Forthe result
entropy, and computational time the thresholg) used inFigure (a),thevalueofis. ,andinFigures (b)..(d)
in () for scale selection was set to . As shown in the values of are. ,. ,and. . Increasing the value
Figures (a) and (b) , the best fusion performance is given of ; for controlling the sharpness of sigmoid function reveals
at =1. equality score and entropy decrease afncreases. more details in strongly illuminated areas (i.e., overexposed
As shown inFigure (c), the computational time increases regions) and the image gets darker. In order to balance the
as increases. e visual inspection of e ect of on image  details and contrast, we have found that .002 generates
sequences (i.e., *houseZ and +iglooZ) is depicted in Figuresreasonably good results for all cases. Finally, from these
and |, respectively. It can easily be noticed from the close ugexperiments, we have concluded that the best results were
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obtained with =1, =1/7, =30, 8 =2, ; =.002, [1 A. Tomaszewska and R. Mantiuk, slmage registration for multi-
and6 = 27, which yield more details and good contrast. exposure high dynamic range image acquisitiongroceedings
of the International Conference on Computer Graphics, Visual-
ization and Computer VisigrPlzen, Czech Republic,
5. Conclusions [1 E.Reinhard, M. Stark, P. Shirley, and J. Ferwerda, sPhotographic
tone reproduction for digital imagesZCM Transactions on
In this paper, we have proposed texture features based expo- Graphicsvol. , no. , pp. ,
sure fusion, which has applicability to preserve the details in[] H. Seetzen, W. Heidrich, W. Stuerzlinger et al., sHigh dynamic
poorly and brightly illuminated regions. Our method uses range display systenAZM Transaction on Graphiegol. , no.
texture features to modify Laplacian pyramid of the base  ,pp. ... , .
layer across multiple exposures at di erent spatial scales and] H. Seetzen, L. A. Whitehead, and G. Ward, *A high dynamic
then constructs a well-exposed low dynamic range image range display using low and high resolution modulator2io-
by expanding, then summing all the levels of the fused ceedings of the Society for Information Display International
Laplacian pyramid for the di erent base layers. Nonlinear Symposiunvol. ,pp. ... ,
diusion lters based on partial di erential equations (PDE) [ ] P.J. Burtand E. H. Adelson, « e Laplacian pyramid as a com-
were proposed to preserve ne details. Experimental results  pact image code[EEE Transactions on Communicatipusl.

demonstrated that our approach has applicability for other »no.,pp. ...,
applications, including multifocus image fusion and fusion of[ ] P. Perona and J. Malik, Scale-space and edge detection using
ash/no- ash image pairs, in which the ne details are pre- anisotropic di usionZIEEE Transactions on Pattern Analysis

served accurately. In particular, the main contribution of our ~ @nd Machine Intelligengeol. , no., pp. ... ,

work is proposal of a novel technique that fuses details in edgle] T- Mertens, J. Kautz, and F. Van Reeth, *Exposure fusion: a
preserving manner from images captured at variable expo- ~ Simple and practical alternative to high dynamic range photo-
sure settings without the introduction of artifacts. In future, ~ 9raphyZcomputer Graphics Forymol. , no. , pp. ... ,

we will explore the applicability of single resolution tech-

niques to reduce the computational cost of the proposeci | R. Fattal, M. Agrawala, and S. Rusinkiewicz, sMultiscale shape
exposure fusion algorithm and detail enhancement from multi-light image collections,Z in

Proceedings of the International Conference on Computer Graph-
ics and Interactive Techniques (ACM SIGGRAPH vql. ,
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