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Abstract In this paper, the following problem is analyzed: Given a frictionless Lagrangian
system subject to complementarity relations (due to a set of unilateral constraints) that de-
fine a linear complementarity problem whose matrix is the so-called Delassus’ matrix, study
the influence of a set of bilateral constraints added to the dynamics on the Delassus’ matrix.
Two main paths are followed: the Lagrange multipliers method and the reduced coordi-
nates method. The link with optimization (the Gauss’ principle of mechanics) and the case
of impacts, are also examined. The kinetic angles between the bilateral and the unilateral
constraints are used to study the definiteness of the Delassus’ matrix.
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1 Introduction

The analysis, modeling, control, and simulation of mechanical systems subject to unilateral
constraints have witnessed an intense research activity in the past two decades; see, for in-
stance, [1, 6, 13, 15, 21, 22, 40, 43, 44]. Historically, the issues related to the existence and
uniqueness of contact forces, i.e., of the well-posedness of the unilateral contact problem
stated with complementarity conditions, have been first analyzed rigorously in particular
cases by Etienne Delassus in [9]. Later Jean Jacques Moreau used convex analysis tools
to study the unilateral contact problem in [29, 30], and proved that under a “compatibil-
ity” condition of the constraints (i.e., the constraints are linearly independent) the contact
force multipliers and the generalized acceleration exist and are unique. Later the problem
has been analyzed by Lötstedt in [24] who relaxed some assumptions and proved the local
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well-posedness of the dynamical system with persistent contact, using tools from comple-
mentarity theory (that were not available to Moreau at the time of writing of [29, 30]). See
[6, Sect. 5.1] for some details on this issue and the Delassus’ example. Those works consider
only what happens during phases of persistent contact with the constraints. Issues related to
the existence and uniqueness of solutions to the dynamical system made of the Lagrangian
dynamics plus the complementarity conditions and the impact dynamics have been tack-
led in [3, 10, 11, 25, 28, 37–39, 42]. Most often in these works it is considered a unique
differentiable unilateral constraint, exceptions being [3, 37, 38] (see Remark 2).

A central tool in the study of unilaterally constrained mechanical system is the linear
complementarity problem for the contact forces, whose matrix is the so-called Delassus’
matrix. The Delassus’ matrix, whose accurate definition is recalled later in this paper, rules
most of the properties of such nonsmooth dynamical systems: existence and uniqueness of
solutions, existence and uniqueness of contact forces multipliers, stability issues [22, 23],
and numerical issues [1, 44]. It is a fact that when the Delassus’ matrix is not positive definite
(due for instance to the presence of Coulomb’s friction) the dynamics becomes much more
complex [14, 35]. In this paper, the following issues are tackled that concern the dynamics
of the system when it evolves on the constraints boundaries:

• The case with only unilateral constraints is briefly examined, revisiting, and extending
some results of Moreau [29, 30] and of Lötstedt [24].

• The case when both unilateral and bilateral constraints act on the system is deeply ex-
amined, mainly using the Lagrange multipliers method. Various criteria are proposed to
study the constrained Delassus’ matrix, and the existence and uniqueness of the contact
force multipliers.

• The link with optimization is made, and various quadratic programs for the contact force
multipliers and for the generalized acceleration are derived, thereby extending the results
of Moreau [29, 30].

• In all the first three items, the solvability of the contact force problem is studied, in the
case when the Delassus’ matrix is positive semidefinite only.

• Concerning impacts: the existence and uniqueness of the percussion vector is studied,
quadratic programs for the percussion and the post-impact velocity are constructed, and
the link with Moreau’s impact law is made.

Singularities of bilaterally constrained systems are widely studied; see, e.g., [2, 5, 32–34].
This work may also be seen as a study of the singularities that bilateral constraints may add
in a well-posed unilaterally constrained Lagrangian system.

The paper is organized as follows. In Sect. 2, the dynamics are introduced, and some
results that concern the unilaterally constrained case are recalled or revisited. In Sect. 3,
the notion of kinetic angles is recalled. Section 4 is dedicated to study the problem with
the Lagrange multipliers method. The new linear complementarity problem for the unilat-
eral/bilateral case is constructed, and its well-posedness is studied. The link with optimiza-
tion and the Gauss’ principle of mechanics is made, and various quadratic programs for the
acceleration and the contact force multipliers are derived and studied. In Sect. 5, the issue is
examined in a reduced coordinate framework. The issue of collisions is studied in Sect. 6,
with a generalized kinematic (Newton’s like) impact law. Various optimization problems are
constructed, and the link with Moreau’s impact law is made. Conclusions end the paper in
Sect. 7. In the Appendices, some theorems are recalled, which are used at several places in
the paper.

Notations and definitions For f : R
n → R

p , ∇f (·) is its Euclidean gradient and ∇f (q) ∈
R

n×p for all q ∈ R
n. Its Jacobian is the transpose of its gradient: ∂f

∂q
(q) = ∇f T (q). When
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needed, we shall sometimes denote ∇qf (q). A > 0 means that A is positive definite, A ≥ 0
means that it is positive semidefinite. For two n × n positive definite matrices A and B ,
A > B means that A − B is positive definite. The product of two vectors x and y in the
metric defined by a matrix A = AT > 0 is denoted as 〈x, y〉A = xT Ay. Let x ∈ R

n be a
vector, x ≥ 0 (> 0) means that all entries xi ≥ 0 (> 0). N (A) denotes the kernel of the
matrix A, R(A) denotes its image. I is the identity matrix with proper dimension. Let K ⊂
R

n be a nonempty closed convex cone, NK(x) denotes its normal cone at x, TK(x) is its
tangent cone at x. The projection of a vector x on K in the metric defined by a matrix
A = AT > 0 on K is denoted as projA[K;x]. A square matrix A is copositive if xT Ax ≥ 0
for all x ∈ R

n+. An LCP(M,q) is a problem of the form 0 ≤ λ ⊥ w = Mλ + q ≥ 0, for a
matrix M and a vector q of suitable dimensions. An LCP is said solvable if it has a solution.
M is called a P-matrix if and only if the LCP(M,q) has a unique solution for any vector q .
A positive definite matrix is a P-matrix. A Mixed LCP (MLCP) is a problem of the form
0 ≤ w ⊥ b+Dλ+Bw ≥ 0, a +Aλ+Cw = 0. Let S ⊂ R

n be a nonempty set. Its dual set is
S∗ = {z ∈ R

n|zT y ≥ 0 for all y ∈ S}, and is always a convex cone. A matrix A is sometimes
denoted as [aij ]. The matrix diag(aii) denotes the diagonal matrix with ith entry aii . A† is
the Moore–Penrose generalized inverse of A.

Nomenclature Constraints acceleration terms: H0(q, q̇, t) in (3), H1(q, q̇) in (10),
H2(q, q̇, t) in (12), H3(q, q̇, t) in (15), H4(q, q̇, t) in (21); constraints matrices: A(q) in
Assumption 1, Ac(q) in (16) and (18), M−1

c (q) in (17), G(q) in (18); n: number of degrees
of freedom of the unconstrained system, p: number of bilateral holonomic constraints, m:
number of unilateral constraints.

2 The dynamical system

2.1 Unilaterally constrained system

Let us consider a complementarity frictionless Lagrangian system with a configuration space
C and a generalized coordinate vector q ∈ C ⊂ R

n. Let us for the moment disregard the im-
pacts that may occur in the system. In other words, it is assumed that the velocities are of
class C1(I ;R

n), where I ⊂ R
+ is an interval, possibly open (in which case q̇(·) is sup-

posed to be right continuous). Its dynamics are given by (the time argument is dropped for
convenience):

⎧
⎨

⎩

M(q)q̈ + F(q, q̇, t) = ∇h(q)λu,

0 ≤ λu ⊥ h(q) ≥ 0,

(1)

where h : R
n → R

m is a set of m unilateral constraints, λu ∈ R
m is a vector of Lagrange mul-

tipliers, M(q) ∈ R
n×n is a positive definite inertia matrix, and F(q, q̇, t) contains nonlinear

torques (Coriolis, centrifugal forces), forces that derive from a potential (gravity, elasticity),
and possible external actions (like control inputs, or disturbances). The unilateral constraints
define a finitely represented admissible domain Φ ⊂ C : Φ = {q ∈ C|h(q) ≥ 0}, and we as-
sume that h(·) is of class C1(Rn;R

m) and Φ �= ∅. The vector of generalized coordinates q

is a minimal set of coordinates for the system in the interior of Φ , i.e., when h(q) > 0. Let
us state the following:

Assumption 1 The so-called Delassus’ matrix A(q) = ∇hT (q)M−1(q)∇h(q) ∈ R
m×m is

positive definite for all q ∈ C .
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Obviously, A(q) is symmetric, and Assumption 1 implies that m ≤ n. In many applica-
tions, this is not satisfied, however, our objective here is to study how bilateral constraints
influence the Delassus’ matrix, so assuming that A(q) > 0 is sufficient for us. The pos-
itive definiteness of A(q) holds if and only if the constraints hi(q) are linearly indepen-
dent, equivalently ∇h(q) has rank m. Indeed N (A(q)) = N (M− 1

2 (q)∇h(q)) (see Theorem
2.4.3 iii) [4] in Appendix A.5), which in turn is equal to N (∇h(q)) since M− 1

2 (q) has full
rank n. Thus N (A(q)) = {0} is equivalent to N (∇h(q)) = {0}, that is, ∇h(q) has full rank m

(which implies that m ≤ n).

Proposition 1 The following linear complementarity problem (LCP):

0 ≤ λu ⊥ w = A(q)λu + H0(q, q̇, t) ≥ 0 (2)

with

H0(q, q̇, t)
�= −∇hT (q)M−1(q)F (q, q̇, t) + d

dt

(∇hT (q)
)
q̇, (3)

has a unique solution whatever H0(q, q̇, t), if and only if Assumption 1 holds.

Proof The condition of Assumption 1 is necessary and sufficient for A(q) to be a P-matrix,
since it is symmetric. Since the vector d

dt
(∇hT (q))q̇ may take arbitrary directions, the result

follows from the fundamental result on existence and uniqueness of solutions of LCPs [8,
Theorem 3.3.7]. �

The contact LCP in (2), whose unknown is the multiplier λu, appears in the dynamics
when the trajectories evolve smoothly on the boundary of the admissible domain bd(Φ), so
that the complementarity conditions in (1) imply

0 ≤ λu(t) ⊥ w(t) = d2

dt2

(
h
(
q(t)

)) = ∇hT
(
q(t)

)
q̈(t) + d

dt

(∇hT
(
q(t)

))
q̇(t) ≥ 0. (4)

Using (1) and Assumption 1, it follows that the LCP in (2) is in turn equivalent to

0 ≤ ḧ(q) ⊥ y(t) = A−1(q)ḧ(q) − A−1(q)H0(q, q̇, t) ≥ 0, (5)

where ḧ(q) denotes d2

dt2 (h(q(t))), and we notice that w in (2) is equal to ḧ(q), while y in (5)
is equal to λu. Thus, the LCP in (5) is just the “inverse” of the LCP in (2). Theorem 1 in [7]

applies to (5) and we infer that both ḧ(q) and y(t) exist and are unique. Since λu solution
of (2) is a Lipschitz continuous function of H0(q, q̇, t), it follows that (1) is an ordinary
differential equation and classical existence and uniqueness results may be used to study the
local well-posedness of (1). In case Assumption 1 does not hold, A(q) may be only positive
semidefinite. In such a case, one cannot construct the LCP in (5), and one has to work with
(2), i.e., at the multiplier level. Then the following holds.

Proposition 2 Let m and n be arbitrary. If λu,1 and λu,2 are any two solutions of the LCP
in (2), then (i) ∇hT (q)λu,1 = ∇hT (q)λu,2 and (ii) HT

0 (q, q̇, t)λu,1 = HT
0 (q, q̇, t)λu,2. If the

LCP in (2) has at least one solution at t , and given unique (q(t), q̇(t)), then q̈(t) is unique.

Proof A(q) is positive semidefinite and symmetric, therefore, from Theorem 3.1.7(d) in
[8] (see Sect. A.1) one has A(q)λu,1 = A(q)λu,2 for any two solutions λu,1 and λu,2. Let
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us denote M− 1
2 (q) the symmetric square root of M−1(q), and B(q)

�= M− 1
2 (q)∇h(q). We

have BT (q)B(q)(λu,1 − λu,2) = 0. If λu,1 − λu,2 ∈ N (B(q)), the result (i) follows. If not
then necessarily B(q)(λu,1 − λu,2) ∈ N (BT (q)). Now from Proposition 1, page 199 in [20]
one has N (BT (q)) = (R(B(q)))⊥. Since B(q)(λu,1 − λu,2) ∈ R(B(q)) and N (BT (q)) ∩
R(B(q)) = {0}, the inclusion holds only if B(q)(λu,1 − λu,2) = 0. Noting that M− 1

2 (q) has
full rank n (i) follows. The result (ii) follows from Theorem 3.1.7(a) in [8] noting that A(q)

is symmetric. Uniqueness of the acceleration follows from the dynamics. �

Proposition 2 therefore says that ∇h(q)λu is unique, even if the Delassus’ matrix is not
full rank. Let us now state the following.

Proposition 3 Let m and n be arbitrary. (i) The LCP in (2) is solvable if for any z ∈ R
n in

the set of solutions of the homogeneous LCP 0 ≤ z ⊥ A(q)z ≥ 0, one has zT H0(q, q̇, t) ≥ 0.
(ii) Suppose that d

dt
(∇h(q(t))) = 0. Then the LCP in (2) is solvable.

Proof since A(q) is positive semidefinite, it is also copositive [8, p. 176]. (i) The solvability
follows directly from Theorem 3.8.6 in [8] (recalled in Sect. A.2). (ii) Let λT A(q)λ = 0,
then ∇h(q)λ = 0 and from the proposition assumption in item (ii) one has λT H0(q, q̇, t) =
−λT ∇hT (q)M−1(q)F (q, q̇, t) = 0. This shows that all the solutions of the homogeneous
LCP 0 ≤ λ ⊥ A(q)λ ≥ 0, which in particular all satisfy the orthogonality condition
λT A(q)λ = 0, also satisfy λT H0(q, q̇, t) ≥ 0. Thus, Theorem 3.8.6 in [8] applies and one
infers that the contact LCP in (2) has a solution. �

It is interesting to note that the fact that ∇h(q(t)) is constant along the solution curve
q(t) implies the solvability of the contact LCP in (2). In such a case, it follows from Propo-
sition 2 that the acceleration q̈(t) at time t is unique, provided (q(t), q̇(t)) is unique. The
homogeneous LCP 0 ≤ λ ⊥ A(q)λ ≥ 0 corresponds to the contact LCP of a fictitious sys-
tem with the same mass matrix as the original system, where the inertial and exogeneous
torques F(q, q̇, t) are orthogonal in the kinetic metric to the unilateral constraints (the ki-
netic metric is defined in Sect. 3), and ∇h(q(t)) is constant along the solution curve q(t). It
is noteworthy that when Assumption 1 is not satisfied so that A(q) is positive semidefinite
only, there is no reason that λu exists or, in case existence holds, that it is unique. The LCP
in (2) has been studied previously in [24]. Proposition 1 is proved in [24] and is recalled
here only for convenience. In [29, 30], the constraints hi(q) ≥ 0 are assumed to be compat-
ible, which we understand as functionally independent, and the uniqueness of λu is proved
from a quadratic program for the acceleration; see Sect. 4.4. Propositions 2 and 3 are, to
the best of our knowledge, original results. The result of Proposition 2 is indirectly stated
in the proof of Theorem 5.4 in [24], which proves the local existence and uniqueness of
an analytic solution (q(·), q̇(·)) when the set of active constraints remains unchanged (see
nevertheless Remark 1 below). The time functions in (4) are assumed to be right continuous,
and are therefore to be understood as their right limits at each t . This allows us to study the
system on an interval I = [t1, t2), and to determine the values of the functions on the right of
t2 from the LCP. This LCP plays a fundamental role in numerical methods as well (see, e.g.,
[1]). Since an LCP can be rewritten as a quadratic problem, the above developments may
be given the interpretation of the extension of Gauss’ principle to systems with unilateral
constraints, as done in [29, 30] (see Sect. 4.4 of this paper).

Example 1 To fix the ideas, let us consider a very simple example. Let a planar block whose
mass center has coordinates qT = (xy) be subject to three unilateral constraints representing
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Fig. 1 The unilaterally
constrained block

the signed distance from three aligned points of its base, to a perfectly flat ground; see Fig. 1.
x is the vertical coordinate and y the horizontal one. The contact is frictionless. We assume
that the block cannot rotate (it has two degrees of freedom in the plane). If the block’s height
is 2l, then this corresponds to three constraints h1(q) = h2(q) = h3(q) = x − l ≥ 0. One has
M(q) = diag(m) ∈ R

2×2, F(q, q̇, t) = (mg 0)T + f (t) for some external action f (t) ∈ R
2,

λu = (λu,1 λu,2 λu,3)
T , and

A(q) = 1

m

⎛

⎝
1 1 1
1 1 1
1 1 1

⎞

⎠ .

Suppose for instance that the block is initialized with the three points at contact and with
f (·) = 0. Then h1(q) = h2(q) = h3(q) = 0 on some time interval. At the equilibrium, one
has that ∇h(q)λu = (mg 0)T + f (t) so that λu,1 + λu,2 + λu,3 = mg on the considered time
interval. At this stage, the problem is a statical problem and there is an infinity of contact
multipliers that solve the static equilibrium: this is a simple example of a hyperstatic system.
Consider now that f (t) becomes nonzero and takes values such that the block may detach
from the ground. Then we have to consider a dynamical problem that is ruled by the LCP
(2): 0 ≤ λu ⊥ Aλu − (g + f1(t)

m
)(1 1 1)T ≥ 0. One has rank(A) = 1, and Propositions 2

and 3 apply. The block has a unique acceleration, despite the contact multipliers cannot be
determined in a unique way. See Remark 7 for more details on hyperstatic systems.

2.2 Unilaterally/bilaterally constrained system

Let us now suppose that in addition to the unilateral constraints, the system is subjected to
a set of p bilateral holonomic constraints g(q) = 0, with g : R

n → R
p , and we assume that
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g(·) is of class C2(Rn;R
p). The dynamics becomes

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

M(q)q̈ + F(q, q̇, t) = ∇h(q)λu + ∇g(q)λb,

0 ≤ λu ⊥ h(q) ≥ 0,

g(q) = 0,

(6)

where λb ∈ R
p is a vector of multipliers associated with the holonomic constraints. The

system is therefore supposed to evolve in the intersection between the manifold

M = {
q ∈ C|g(q) = ∇gT (q)q̇ = 0

}
(7)

and the admissible domain Φ . One sees that (4) is then rewritten as:

0 ≤ λu ⊥ w(t) = ∇hT (q)M−1(q)∇h(q)λu + ∇hT (q)M−1(q)∇g(q)λb + H0(q, q̇, t) ≥ 0.

(8)

3 The kinetic angles

The kinetic angle between two unilateral constraints is a quantity which reflects the cou-
plings that exist between the normal directions to the constraints boundaries and the inertial
properties of the system. Kinetic angles are known to play an important role in frictionless
multiple impacts [1, 3, 6, 16, 18, 36]. In particular, it is known that the value π

2 is a critical
value of the kinetic angle. Roughly speaking, trajectories are continuous with respect to ini-
tial data for kinetic angles ≤ π

2 , and discontinuous for kinetic angles > π
2 , depending on the

restitution coefficients [36]. Kinetic angles are angles calculated in the kinetic metric, that is,
the metric defined from the inertia matrix. The kinetic angle θ12(q) between two manifolds
finitely represented as f1(q) = 0 and f2(q) = 0 is given by

θ12(q) = π − arccos
∇f1(q)T M−1(q)∇f2(q)

√∇f1(q)T M−1(q)∇f1(q)
√∇f2(q)T M−1(q)∇f2(q)

. (9)

When two unilateral constraints are collided at the same time, their kinetic angle can
be computed this way. One may also compute the kinetic angle between two bilateral
constraints, or one unilateral constraints that is hit and a bilateral constraint. One checks
from (9) that if ∇f1(q)T M−1(q)∇f2(q) = 0 then θ12(q) = π

2 (the two constraints are or-
thogonal in the kinetic metric at the point q ∈ C ). When the two constraints are linearly
dependent, i.e., ∇f1(q) = α∇f2(q) for some nonzero α, then θ12(q) = π . The rationale
behind (9) is to start from the definition of the normal to a manifold in a Riemannian
metric. Let f : R

n → R be differentiable. At a point q ∈ C , the normal to a manifold

{q ∈ R
n|f (q) = 0} in the kinetic metric is the vector n(q) = M−1(q)∇f (q)√

∇f T (q)M−1(q)∇f (q)
. The

scalar product between two such normal vectors is 〈n1(q),n2(q)〉M = nT
1 (q)M(q)n2(q) =

∇f T
1 (q)M−1(q)∇f2(q)√

∇f1(q)T M−1(q)∇f1(q)
√

∇f2(q)T M−1(q)∇f2(q)
= 〈∇f1(q),∇f2(q)〉

M−1√
∇f1(q)T M−1(q)∇f1(q)

√
∇f2(q)T M−1(q)∇f2(q)

. The π

in (9) stems from the fact that the normal vectors point outwards the admissible domain Φ .
The Delassus’ matrix A(q) has a clear relation with the kinetic angles between the unilat-

eral constraints. Indeed its entries are equal to ∇hT
i (q)M−1(q)∇hj (q), i, j ∈ {1, . . . ,m}. If

the unilateral constraints are mutually orthogonal then A(q) = diag(∇hT
i (q)M−1(q)∇hi(q)),

i ∈ {1, . . . ,m}. The constraints are then dynamically decoupled at the impact times.
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4 The Lagrange multipliers method

4.1 The unilateral/bilateral LCP

Since the system evolves in M, it follows that d2

dt2 (g(q(t))) = 0 for all t ≥ 0. One has

d

dt

(
g
(
q(t)

)) = ∇gT
(
q(t)

)
q̇(t)

and

d

dt

(∇gT
(
q(t)

)
q̇(t)

) = ∇gT
(
q(t)

)
q̈(t) + d

dt

(∇gT
(
q(t)

))
q̇(t).

For simplicity, we shall denote d2

dt2 (g(q(t))) = ∇gT (q(t))q̈(t) + H1(q(t), q̇(t)), with

H1(q, q̇) = d

dt

(∇gT (q)
)
q̇. (10)

Since d2

dt2 (g(q(t))) = 0 for all t ≥ 0, it follows using (6) that

∇gT (q)M−1(q)∇g(q)λb + ∇gT (q)M−1(q)∇h(q)λu + H2(q, q̇, t) = 0, (11)

where

H2(q, q̇, t) = −∇gT (q)M−1(q)F (q, q̇, t) + H1(q, q̇). (12)

Let us make the following:

Assumption 2 The p × p matrix ∇gT (q)M−1(q)∇g(q) has full rank p for all q ∈ C , that
is, it is positive definite.

Similarly to Assumption 1, Assumption 2 means that the functions gi(·) are mutually
independent, it implies in particular that p ≤ n and that rank(∇g(q)) = p for all q ∈ C .
Thus,

λb = −[∇gT (q)M−1(q)∇g(q)
]−1∇gT (q)M−1(q)∇h(q)λu

− [∇gT (q)M−1(q)∇g(q)
]−1

H2(q, q̇, t). (13)

Inserting (13) into (6), we obtain the constrained dynamics:

M(q)q̈ + F(q, q̇, t) = [∇h(q) − ∇g(q)
[∇gT (q)M−1(q)∇g(q)

]−1∇gT (q)M−1(q)

× ∇h(q)
]
λu + H3(q, q̇, t), (14)

where

H3(q, q̇, t) = −∇g(q)
[∇gT (q)M−1(q)∇g(q)

]−1
H2(q, q̇, t). (15)

The constrained Delassus’ matrix is therefore given by

Ac(q) = ∇hT (q)M−1(q)∇h(q) − ∇hT (q)M−1(q)∇g(q)
[∇gT (q)M−1(q)∇g(q)

]−1

× ∇gT (q)M−1(q)∇h(q). (16)
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Thus, this corresponds to changing M−1(q) to a new “constrained” inverse mass matrix
in the Delassus’ matrix:

M−1
c (q)

�= M−1(q) − M−1(q)∇g(q)
[∇gT (q)M−1(q)∇g(q)

]−1∇gT (q)M−1(q) (17)

so that the new Delassus’ matrix is Ac(q)
�= ∇hT (q)M−1

c (q)∇h(q). The notation M−1
c (q)

does not mean that this is the inverse of some matrix but is chosen just to mimic the uncon-
strained case. Let us denote

G(q) = ∇g(q)
[∇gT (q)M−1(q)∇g(q)

]−1∇gT (q), (18)

so that

Ac(q) = ∇hT (q)M−1(q)
[
I − G(q)M−1(q)

]∇h(q). (19)

This will be used later.

Remark 1 Notice that (8) and (11) form a Mixed LCP [8] that is transformed into an LCP
using Assumption 2. The set of equations in (11) and w(t) = 0 with w(t) in (8), does not
fit in general with Eqs. (5.2a) and (5.2b) in [24], because of the presence of the terms
d
dt

(∇gT (q))q̇ and d
dt

(∇hT (q))q̇ . Thus, Lemma 5.2 in [24] cannot be used in general, ex-
cept if both the gradients of h(q) and g(q) are constant in time along the solution curve q(t)

(as in Proposition 4 below). Moreover, an incorrect use of Theorem 1 in [7] is made in the
proof of [24, Lemma 5.2] to study the LCP in Eq. (5.5) of [24]. The proof should rather
follow the lines of the proofs of Propositions 2 and 3, using Theorem 3.1.7 in [8] for LCP
with positive semidefinite matrices.

During persistently unilaterally constrained phases of motion, the multiplier λu is conse-
quently computed as the solution of the LCP:

0 ≤ λu ⊥ w = Ac(q)λu + H4(q, q̇, t) ≥ 0 (20)

with

H4(q, q̇, t) = ∇hT (q)M−1(q)H3(q, q̇, t) + H0(q, q̇, t). (21)

The discrepancy between Ac(q) and A(q) (and between H0(q, q̇, t) and H4(q, q̇, t)) is
directly related to the inertial coupling matrix ∇hT (q)M−1(q)∇g(q). Using similar calcu-
lations as in Sect. 2 to construct the LCP (8), we may deduce from (14) and (20) an LCP
that is equivalent to (20), in case Ac(q) has full rank m:

0 ≤ y = A−1
c (q)ḧ(q) − A−1

c (q)H4(q, q̇, t) ⊥ ḧ(q) ≥ 0. (22)

Remark 2 Assumptions 1 and 2 are made in [3], Assumption 1 is made in [37, 38]. In most
of the other works dealing with the well-posedness of (1) (without any bilateral constraints),
only the case m = 1 is analyzed, so that Assumption 1 is trivially satisfied. Notice that
bilateral constraints and unilateral constraints are analyzed separately in [3].

4.2 Analytical study of the unilateral/bilateral LCP

We first focus on the general case, when Ac(q) is positive semidefinite only. Then conditions
that guarantee Ac(q) > 0 are examined.
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4.2.1 Positive semi-definite Ac(q)

Let us first state a result that can be deduced from [24], where neither Assumption 1 nor As-
sumption 2 are supposed to hold. Thus, there are no assumptions on the number of bilateral
or unilateral constraints and on the number of degrees of freedom.

Proposition 4 Let m, p and n be arbitrary. Assume that d
dt

(∇g(q(t))) = 0 and d
dt

(∇h(q(t)))

= 0. (i) If λu,1, λu,2, λb,1, λb,2 are any solutions of the problem in (8) and (11) at
time t , ∇h(q)λu,1 + ∇g(q)λb,1 = ∇h(q)λu,2 + ∇g(q)λb,2. Consequently, the acceler-
ation q̈(t) at time t is unique, given unique (q(t), q̇(t)). (ii) Moreover, if the matrix
( ∇hT (q)

∇gT (q)

)
M−1(q)(∇h(q) ∇g(q)) ∈ R

(m+p)×(m+p) is full rank, then the problem possesses

at most one solution λu and λb .

Proof (i) Under the conditions of the proposition, the MLCP in (8) and (11) exactly fits with
the MLCP in Eqs. (5.2a), (5.2b), (5.2c) in [24]. The first result follows from Lemma 5.2 in
[24], taking into account the proof modification as pointed out in Remark 1. Taking this into
account the fact that the acceleration is unique follows directly from the system’s dynamics
in (6).

(ii) The uniqueness of the solutions (when they exist) of the problem in (8) and (11)
at time t also follows from Lemma 5.2 in [24] (taking once again into account the proof
modification). �

From now on, it is no longer supposed that the functions h(q) and g(q) are constant
along the solution curve q(t). Relaxing this assumption is important because as pointed
out previously this leads to LCP(M,q) with a vector q that may take arbitrary directions.
Then the P property of matrices (that is equivalent in our context to the positive definiteness
because of the symmetry) is required to guarantee the existence and uniqueness of solutions.
As Propositions 1, 2, and 3 show, when the LCP matrix is positive semidefinite only, the
mere existence of solutions (without uniqueness) requires some care.

Proposition 5 Let Assumption 2 hold. Suppose that all the bilateral constraints are or-
thogonal in the kinetic metric to all the unilateral constraints. Then Ac(q) = A(q) and
H4(q, q̇, t) = H0(q, q̇, t), so that the LCP in (2) and the LCP in (20) are identical.

Proof The conditions of the proposition imply that ∇gT (q)M−1(q)∇h(q) = 0; the proof is
complete from (12), (15), (16), and (21). �

It is clear from (16) that if the inertial couplings between unilateral and bilateral con-
straints are small enough, then Ac(q) and A(q) should possess the same definiteness (in
particular A(q) > 0 ⇒ Ac(q) > 0). This will be examined in Proposition 9 and Corollary 4.
Let us now characterize precisely the matrix M−1

c (q) in (17). It is crucial to note that the con-
strained Delassus’ matrix Ac(q) in (16) may be positive definite despite M−1

c (q) is not. This
is due to the fact that M−1

c (q) ∈ R
n×n and Ac(q) ∈ R

m×m do not have the same dimensions in
general, except if m = n. For instance,

( 1 0
0 0

)
is positive semidefinite, but (1 0)

( 1 0
0 0

)( 1
0

) = 1
is positive definite.

Lemma 1 Let Assumption 2 hold. The kernel of the matrix M−1
c (q) in (17) is given by

N
(
M−1

c (q)
) = R

(∇g(q)
)
. (23)
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Its range is given by

R
(
M−1

c

) = N
(∇gT (q)

)
. (24)

Proof From (17), it follows that x ∈ N (M−1
c (q)) if and only if

y ∈ N
(
I − M−1(q)∇g(q)

[∇gT (q)M−1(q)∇g(q)
]−1∇gT (q)

)
and y = M−1(q)x.

Now since I − M−1(q)∇g(q)[∇gT (q)M−1(q)∇g(q)]−1∇gT (q) and M−1(q)∇g(q)

[∇gT (q)M−1(q)∇g(q)]−1∇gT (q) are idempotent matrices (and are projectors since they
are symmetric [4, Def. 3.1.1 xxiii)]; see Appendix A.7), one has from [20, Theorem 1,
p. 194] (see Appendix A.6):

N
(
I − M−1(q)∇g(q)

[∇gT (q)M−1(q)∇g(q)
]−1∇gT (q)

)

= R
(
M−1(q)∇g(q)

[∇gT (q)M−1(q)∇g(q)
]−1∇gT (q)

)
.

Therefore, the kernel of M−1
c (q) is characterized by the range of M−1(q)∇g(q)

[∇gT (q)M−1(q)∇g(q)]−1∇gT (q). Now we have

R
(
M−1(q)∇g(q)

[∇gT (q)M−1(q)∇g(q)
]−1∇gT (q)

)

= {
z ∈ R

n|∃x ∈ R
n such that z = M−1(q)∇g(q)

[∇gT (q)M−1(q)∇g(q)
]−1∇gT (q)x

}
.

(25)

Thus,

N
(
M−1

c (q)
) = {

M(q)y|y ∈ N
(
I − M−1(q)∇g(q)

[∇gT (q)M−1(q)∇g(q)
]−1∇gT (q)

)}

= {
M(q)y|y ∈ R

(
M−1(q)∇g(q)

[∇gT (q)M−1(q)∇g(q)
]−1∇gT (q)

)}

= {
M(q)y|y = M−1(q)∇g(q)

[∇gT (q)M−1(q)∇g(q)
]−1∇gT (q)x, x ∈ R

n
}

= {
z ∈ R

n|z = ∇g(q)
[∇gT (q)M−1(q)∇g(q)

]−1∇gT (q)x, x ∈ R
n
}

= R
(∇g(q)

[∇gT (q)M−1(q)∇g(q)
]−1∇gT (q)

)

= R
(∇g(q)

[∇gT (q)M−1(q)∇g(q)
]− 1

2
)

= R
(∇g(q)

)
, (26)

where the last two equalities are obtained using Theorem 2.4.3 in [4] and [20, Exercise 7,
p. 78]. The proof for the range is similar. One has:

R
(
M−1

c (q)
) = {

z ∈ R
n|∃x ∈ R

n such that z = M−1(q)x − M−1(q)∇g(q)

× [∇gT (q)M−1(q)∇g(q)
]−1∇gT (q)M−1(q)x

}

= {
z ∈ R

n|∃y ∈ R
n such that z = y − M−1(q)∇g(q)

× [∇gT (q)M−1(q)∇g(q)
]−1∇gT (q)y

}
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= R
(
I − M−1(q)∇g(q)

[∇gT (q)M−1(q)∇g(q)
]−1∇gT (q)

)

= N
(
M−1(q)∇g(q)

[∇gT (q)M−1(q)∇g(q)
]−1∇gT (q)

)

= N
(∇g(q)

[∇gT (q)M−1(q)∇g(q)
]−1∇gT (q)

)

= N
([∇gT (q)M−1(q)∇g(q)

]− 1
2 ∇gT (q)

)

= N
(∇gT (q)

)
, (27)

using again Theorem 2.4.3 [4] (see Appendix A.5) and [20, Exercise 7, p. 78]. Above
[∇gT (q)M−1(q)∇g(q)]− 1

2 is the positive definite square root of [∇gT (q)M−1(q)

∇g(q)]−1. �

Lemma 2 Let Assumption 2 hold. The kernel of M−1
c (q) is a linear subspace of R

n

of dimension p. Its range is a linear subspace of dimension n − p, and R(M−1
c (q)) =

N (M−1
c (q))⊥. Thus, M−1

c (q) is symmetric of rank n − p.

Proof The proof follows from Lemma 1 since R(∇g(q)) = N (∇gT (q))⊥. �

Lemma 3 Let Assumption 2 hold. The constrained inverse mass matrix M−1
c (q) is positive

semidefinite.

Proof From (17) and using Proposition 8.1.2(xi) and (xiii) in [4] (see Appendix A.8), it
follows that M−1

c (q) is positive semidefinite if and only if

I − M− 1
2 (q)∇g(q)

[∇gT (q)M−1(q)∇g(q)
]−1∇gT (q)M− 1

2 (q) ≥ 0, (28)

where M− 1
2 (q) is the symmetric positive definite square root of M−1(q). The matrix

M− 1
2 (q)∇g(q)

[∇gT (q)M−1(q)∇g(q)
]−1∇gT (q)M− 1

2 (q)

is idempotent, and it is an orthogonal projector onto R(∇g(q)) [20, Corollary 1, p. 430].
Since R(∇g(q)) is a linear subspace containing {0}, the orthogonal projection onto it is
nonexpansive [19, Proposition 3.1.3] and one has for any x ∈ R

n:

xT M− 1
2 (q)∇g(q)

[∇gT (q)M−1(q)∇g(q)
]−1∇gT (q)M− 1

2 (q)x ≤ xT x. (29)

The result follows. �

The matrix M−1
c (q) is therefore symmetric positive semi definite, of rank n−p. An easy

consequence of Lemma 3 is that Ac(q) is at least positive semidefinite under Assumption 2.
Let us now study extensions of the results of Sect. 2.

Proposition 6 Let Assumption 2 hold. Let λu,1 and λu,2 be two solutions of the LCP in (20).
Then (i) ∇h(q)(λu,1 − λu,2) ∈ N (M−1

c (q)), (ii) (λT
u,1 − λT

u,2)H4(q, q̇, t) = 0.

Proof (i) From Theorem 3.1.7 (d) in [8], it follows that Ac(q)(λu,1 − λu,2) = 0. Since
Ac(q) is symmetric and at least positive semidefinite, it has a square root B(q) [20, p.
181] that is also symmetric positive semidefinite. Redoing a similar reasoning as in the
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proof of Proposition 2, we find that B(q)(λu,1 − λu,2) = 0. Now we can write B(q) as

B(q) = P (q)M− 1
2 (q)∇h(q), with

P (q) = I − M− 1
2 (q)∇g(q)

(∇gT (q)M−1(q)∇g(q)
)−1∇gT (q)M− 1

2 (q),

and P (q)P T (q) = P (q) since this is a projector [4, Fact 3.9.1]. Thus, we get that
P (q)M− 1

2 (q)∇h(q)(λu,1 − λu,2) = 0. From the expression of P (q) and since M(q) is full
rank, it follows that this is equivalent to M−1

c (q)∇h(q)(λu,1 − λu,2) = 0, from which (i)
follows.

(ii) From Theorem 3.1.7(a) in [8], it follows that λT
u,1(H4(q, q̇, t) + Ac(q)λu,2) =

λT
u,2(H4(q, q̇, t) + Ac(q)λu,1). Since Ac(q) is symmetric the result follows. �

If there are no bilateral constraints or if the conditions of Proposition 5 hold, then the
results of Proposition 2 are recovered. A consequence of Proposition 6 is as follows.

Corollary 1 Let R(∇h(q)) ∩ R(∇g(q)) = {0} for all q ∈ C . Let λu,1 and λu,2 be two solu-
tions of the LCP in (20). Then ∇h(q)(λu,1 − λu,2) = 0.

Proof From Lemma 1 one has N (M−1
c (q)) = R(∇g(q)) � {0}. Since ∇h(q)(λu,1 − λu,2) ∈

R(∇h(q)) from Proposition 6(i) the result follows. �

Corollary 1 shows that it is sufficient that the unilateral and the bilateral constraints be
linearly independent, to recover the result of Proposition 2(i). Let us now state a result that
concerns the existence of solutions of the LCP in (20).

Lemma 4 Let Assumption 2 hold. (i) The LCP in (20) is solvable if for any z ∈ R
n in the set

of solutions of the homogeneous LCP 0 ≤ z ⊥ Ac(q)z ≥ 0 one has zT H4(q, q̇, t) ≥ 0; (ii) if
d
dt

(∇g(q(t))) = 0 and d
dt

(∇h(q(t))) = 0 and R(∇h(q)) ∩ R(∇g(q)) = {0} for all q ∈ C ,
the LCP in (20) is solvable.

Proof (i) Ac(q) is positive semidefinite, so it is copositive. From Theorem 3.8.6 in [8] the
solvability follows.

(ii) The solutions of the homogeneous LCP 0 ≤ z ⊥ Ac(q)z ≥ 0 satisfy ∇h(q)z ∈
N (M−1

c (q)). From Lemma 1, one has N (M−1
c (q)) = R(∇g(q)). Since ∇h(q)z ∈ R(∇h(q)),

the conditions of (ii) imply that ∇h(q)z = 0. Now the conditions of (ii) also imply that
H4(q, q̇, t) = ∇hT (q)M−1(q)H3(q, q̇, t) − ∇hT (q)M−1(q)F (q, q̇, t), see (21) and (3).
Therefore, zT H4(q, q̇, t) = 0, so the implication of (i) is satisfied and from Theorem 3.8.6
in [8] the solvability follows. �

Remark 3 Considering constant gradients is a restrictive assumption. Lemma 4(ii) is coher-
ent with Proposition 4. The condition of Lemma 4(ii) can also be stated as H4(q, q̇, t) ∈
Q∗

Ac(q), with QAc(q) = {z ∈ R
m|0 ≤ z ⊥ Ac(q)z ≥ 0} and Q∗

Ac(q) is its dual set. It is easily
seen that QAc(q) is a nonempty (since {0} belongs to it) convex cone, since Ac(q) is sym-
metric.

4.2.2 Positive definite Ac(q)

The previous results concern positive semi definite Ac(q). It is of interest to study the con-
ditions under which this matrix is positive definite, i.e., the addition of bilateral constraints
does not destroy the positive definiteness of the LCP matrix.
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Proposition 7 Let p = m = 1, then Ac(q) is symmetric positive definite, except if the kinetic
angle θu1b1 between the two constraints is θu1b1 = 0.

Proof In this case, [∇gT (q)M−1(q)∇g(q)]−1 and ∇hT (q)M−1∇h(q) are nonzero scalars,
so we can rewrite (16) as

Ac(q) = ∇hT (q)M−1∇h(q)

(

1 − 〈∇g(q),∇h(q)〉2
M−1

∇hT (q)M−1∇h(q)∇gT (q)M−1(q)∇g(q)

)

= ∇hT (q)M−1∇h(q)
(
1 − cos2(θu1b1)

)
. (30)

Using (9) and noting that cos(π − θ) = − cos(θ) for any θ the equality in (30) follows. The
proof is complete by noting that the cosine belongs to [−1,1]. �

Obviously, under the conditions of Proposition 7, the matrix Ac(q) is a positive scalar.
The following is a first generalization of Proposition 7.

Proposition 8 Let m ≥ 1, p ≥ 1 and let Assumption 2 hold. A necessary condition for Ac(q)

to be positive definite is that there does not exist i ∈ {1, . . . ,m} and j ∈ {1, . . . , p} such that
the vector ∇hi(q) is colinear to ∇gj (q), for all q ∈ C .

Proof From lemma, if ∇hi(q) = α∇gj (q) for some i and some j , then Ac(q) ∈ R
m×m has

its ith row and column which are both zero. Thus, it is of rank strictly less than m. �

The above results (as well as Corollary 1) suggest that when the bilateral and the uni-
lateral constraints are linearly independent, then the addition of bilateral constraints does
not modify the properties of the contact force LCP. We can now state generalizations of
the above results. The first result characterizes Ac(q) from the kinetic angles between the
constraints, and extends Propositions 5, 7, and 8.

Theorem 1 Let Assumptions 1 and 2 hold. Suppose that the unilateral constraints hi(·),
i ∈ {1, . . . ,m} are mutually orthogonal in the kinetic metric, and that the bilateral con-
straints gi(·), i ∈ {1, . . . , p} are also mutually orthogonal in the kinetic metric. Then Ac(q)

is positive definite if and only if

I >

[
p∑

i=1

cos
(
θji(q)

)
cos

(
θki(q)

)
]

, j, k ∈ {1, . . . ,m},

where θij (q) is the kinetic angle between the constraint hi(·) and the constraint gj (·) at
q ∈ C and I is the m × m identity matrix.

Proof It follows from (16) and from [4, Proposition 8.1.2(xii), (xiv)] that Ac(q) > 0 if and
only if

I >
(∇hT (q)M−1(q)∇h(q)

)− 1
2 ∇hT (q)M−1(q)∇g(q)

(∇gT (q)M−1(q)∇g(q)
)− 1

2

× (∇gT (q)M−1(q)∇g(q)
)− 1

2 ∇gT (q)M−1(q)∇h(q)
(∇hT (q)M−1(q)∇h(q)

)− 1
2 .

(31)
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This is obtained from (16) that is equivalent (by definition) to

∇hT (q)M−1(q)∇h(q) > ∇hT (q)M−1(q)∇g(q)
[∇gT (q)M−1(q)∇g(q)

]−1

× ∇gT (q)M−1(q)∇h(q) (32)

and multiplying on the right and on the left both sides of (32) by the symmetric posi-
tive definite square root (∇hT (q)M−1(q)∇h(q))− 1

2 . From the theorem conditions, one has
(∇hT (q)M−1(q)∇h(q))− 1

2 = diag( 1√
∇hT

i
(q)M−1(q)∇hi (q)

), and (∇gT (q)M−1(q)∇g(q))− 1
2 =

diag( 1√
∇gT

i
(q)M−1(q)∇gi (q)

). The first three matrices in the right-hand side of (31) define an

m × p matrix C(q) with entries

∇fi(q)T M−1(q)∇gj (q)
√∇fi(q)T M−1(q)∇fi(q)

√∇gj (q)T M−1(q)∇gj (q)
. (33)

The term in (33) is equal to cos(π − θij (q)) = − cos(θij (q)), see (9). The right-hand
side in (31) is equal to C(q)CT (q) and its entries (row j , column k) are the terms
∑p

i=1 cos(θji(q)) cos(θki(q)), j, k ∈ {1, . . . ,m}. The proof is complete. �

Clearly if the conditions of Proposition 5 are satisfied then this criterion yields I > 0. If
m = p = 1, one sees that if ∇h(q) = α∇g(q) for some nonzero real α, then from (31) one
gets I > I which is impossible, hence recovering the result of Proposition 8. In such a case,
the orthogonality conditions of the theorem are trivially satisfied. If all the unilateral and the
bilateral constraints are linearly dependent, then all the kinetic angles satisfy θij = π and
the theorem condition states that I > [p], where [p] is the matrix whose all entries are equal
to p. Then for all p ≥ 2 one has the first entry of I − [p] that is equal to 1 − p < 0 and this
matrix cannot be positive definite. It is noteworthy that the theorem’s conditions imply that
p ≤ n and m ≤ n.

Corollary 2 Consider the conditions of Theorem 1. Then Ac(q) is positive definite only if
for each j ∈ {1, . . . ,m} one has

p∑

i=1

cos2
(
θji(q)

)
< 1. (34)

Proof The j th diagonal element of the m×m matrix [∑p

i=1 cos(θji(q)) cos(θki(q))] is given
by

∑p

i=1 cos2(θji(q)). The necessary condition thus follows from Theorem 1, since a posi-
tive definite matrix necessarily has all its diagonal elements positive. �

It easily follows from Corollary 2 (see also Sect. 3) that if there exists one hi(·) that is
colinear to one gj (·), then Ac(q) is positive semidefinite only, and we recover the result
of Proposition 8. From (34), it follows that if p increases, then the kinetic angles between
the unilateral and the bilateral constraints should approach π

2 in order to keep the positive
definiteness of Ac(q).
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Corollary 3 Consider the conditions of Theorem 1. Then Ac(q) is positive definite if (34) is
satisfied and for each j ∈ {1, . . . ,m} one has

m∑

i=1,i �=j

∣
∣
∣
∣
∣

p∑

k=1

cos(θjk) cos(θik)

∣
∣
∣
∣
∣
< 1 −

p∑

i=1

cos2(θji). (35)

Proof The conditions in (35) state the diagonal dominance of the matrix

I −
[

p∑

i=1

cos
(
θji(q)

)
cos

(
θki(q)

)
]

, j, k ∈ {1, . . . ,m}

[4, Fact 4.10.15], where we notice that the right-hand side in (35) is positive due to (34).
The condition (34) assures that this matrix has all its diagonal elements positive. Hence, this
matrix is positive definite [20, p. 373] and so is Ac(q) from Theorem 1. �

Notice that since we already know that Ac(q) is positive semidefinite, only the strict in-
equalities in (31), (34), and (35) are of interest. Proposition 5 on one hand, and Theorem 1
and its two Corollaries 2 and 3 on the other hand, are complementary: the first one uses
the orthogonality (in the kinetic metric) between the unilateral and the bilateral constraints,
whereas the second ones uses the orthogonality between the unilateral constraints them-
selves and the orthogonality between the bilateral constraints themselves. Let us now relax
the orthogonality conditions. To this aim, let us first make an assumption.

Assumption 3 Let Assumptions 1 and 2 hold. Then

(∇hT (q)M−1(q)∇h(q)
)− 1

2 = D
− 1

2
h (q) + εh(q)Mh(q)

and
(∇gT (q)M−1(q)∇g(q)

)−1 = D−1
g (q) + εg(q)Mg(q),

where Dh = diag(∇hT
i (q)M−1(q)∇hi(q)), Dg = diag(∇gT

i (q)M−1(q)∇gi(q)), Mh(q),
and Mg(q) have diagonal entries equal to zero and are symmetric matrices, εh(q) ≥ 0 and
εg(q) ≥ 0 are real numbers.

In Assumption 3, the matrices εh(q)Mh(q) ∈ R
m×m and εg(q)Mg(q) ∈ R

p×p stem from
the inertial couplings between the constraints, which are the off-diagonal entries of the ma-
trices ∇hT (q)M−1(q)∇h(q) and ∇gT (q)M−1(q)∇g(q). In Appendix A.3, it is shown on a
simple example that Assumption 3 is plausible.

Proposition 9 Let Assumption 3 hold. Then Ac(q) > 0 for small enough εh(q) and εg(q) if

I > D
− 1

2
h (q)

[∇hT (q)M−1(q)∇g(q)
]
D−1

g (q)
[∇gT (q)M−1(q)∇h(q)

]
D

− 1
2

h (q). (36)

Proof The inequality in (31) is equivalent to Ac(q) > 0. Let us denote Ehg(q)
�=

∇hT (q)M−1(q)∇g(q). After calculations, one finds
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(∇hT (q)M−1(q)∇h(q)
)− 1

2 Ehg(q)
(∇gT (q)M−1(q)∇g(q)

)−1

× E T
hg(q)

(∇hT (q)M−1(q)∇h(q)
)− 1

2

= D
− 1

2
h (q)Ehg(q)D−1

g (q)E T
hg(q)D

− 1
2

h (q) + O(εh, εg), (37)

where

O(εh, εg) = D
− 1

2
h (q)Ehg(q)εg(q)Mg(q)E T

hg(q)D
− 1

2
h (q)

+ D
− 1

2
h (q)Ehg(q)

(
D−1

g (q) + εg(q)Mg(q)
)

E T
hg(q)εh(q)Mh(q)

+ εh(q)Mh(q)Ehg(q)
(
D−1

g (q) + εg(q)Mg(q)
)

E T
hg(q)D

− 1
2

h (q)

+ εh(q)Mh(q)Ehg(q)
(
D−1

g (q) + εg(q)Mg(q)
)

E T
hg(q)εh(q)Mh(q). (38)

We notice that O(εh, εg) ∈ R
m×m is symmetric. Hence, from [20, Exercise 8, p. 218]

(see Appendix A.9), it follows that for small enough εh(q) and εg(q) the matrix I −
D

− 1
2

h (q)Ehg(q)D−1
g (q)E T

hg(q)D
− 1

2
h (q)+O(εh, εg) is positive definite provided I −D

− 1
2

h (q)×
Ehg(q)D−1

g (q)E T
hg(q)D

− 1
2

h (q) is positive definite. The result follows. �

This proposition says that if the inertial couplings between the unilateral constraints
hi(q), i ∈ {1, . . . ,m}, and the inertial couplings between the bilateral constraints gi(q),
i ∈ {1, . . . , p}, are small enough, then the test for the positive definiteness of Ac(q) is the
same as for Theorem 1 and Corollaries 2 and 3. The next result completes Proposition 5 and
comes after Theorem 1. It concerns the couplings between the unilateral and the bilateral
constraints.

Corollary 4 Let Assumption 3 hold. Suppose that Ehg(q) = εhg(q)I for some εhg(q) ≥ 0.
Then for small enough εhg(q) one has Ac(q) > 0.

Proof We rewrite (31) as

I > ε2
hg(q)

(∇hT (q)M−1(q)∇h(q)
)− 1

2
(∇gT (q)M−1(q)∇g(q)

)−1

× (∇hT (q)M−1(q)∇h(q)
)− 1

2 .

Using again [20, Exercise 8, p. 218] (see Appendix A.9), the result follows. �

The next result provides necessary and sufficient conditions for positive definiteness,
from a different point of view than Theorem 1.

Proposition 10 Let Assumption 2 hold and let M
− 1

2
c (q) be the unique symmetric positive

semidefinite square root of M−1
c (q). The matrix Ac(q) is positive definite if and only if the

vectors M
− 1

2
c (q)∇hi(q), i ∈ {1, . . . ,m}, are independent vectors of R

n.
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Proof From Lemma 3, M−1
c (q) ≥ 0. We have Ac(q) = DT (q)D(q) where D(q) =

M
− 1

2
c (q)∇h(q) ∈ R

n×m. Thus, Ac(q) > 0 ⇔ rank(D(q)) = m [20, p. 180], i.e., the m vec-

tors M
− 1

2
c (q)∇hi(q) of R

n are independent. �

Proposition 10 is general but it is not very constructive because the square root of M−1
c (q)

has to be known, and it does not explicitly relate the bilateral and the unilateral constraints.
Still another necessary and sufficient characterization of the positive definiteness of Ac(q)

from (31) is that the maximum eigenvalue of the matrix in the right-hand side of (31) be
< 1 [4, Lemma 8.4.1]. This, however, requires the calculation of the maximum eigenvalue
of this matrix, and does not provide us with a convenient way to check that Ac(q) > 0 when
designing a mechanism.

Corollary 5 Let Assumption 2 hold. Then Ac(q) > 0 only if m + p ≤ n.

Proof Let D(q) be as in Proposition 10. We have that rank(D(q)) ≤ min[rank(M
− 1

2
c (q)),

rank(∇h(q))] (see [20, p. 97]). Since rank(M
− 1

2
c (q)) = n−p (see Lemma 2 and Theorem 1,

p. 181 [20]), if n − p < m then necessarily rank(D(q)) < m which contradicts Proposi-
tion 10. So necessarily n − p ≥ m. �

Remark 4 In practice, one often has m > n, so the conditions of Corollary 5 are not met. This
result is coherent with Proposition 5 in the sense that the conditions of both Proposition 5
and of Corollary 5 imply that n − p ≥ m.

4.3 Example

Let us consider a planar homogeneous slender rod of length 2l > 0, mass m > 0, with three
degrees of freedom qT = (x y θ), x and y being the center of mass coordinates and θ the
orientation angle. The moment of inertia at the gravity center is I = ml2

3 . The unilateral con-
straint is given by h(q) = x − l cos(θ) ≥ 0 and corresponds to the signed distance between
a vertical wall and the slender’s tip, where we assume that the x-axis points outwards the
wall. The bilateral constraint is given by g(q) = y − l sin(θ) − H = 0 for some H > 0 and
corresponds to constraining the other tip to a horizontal motion. The system is depicted in
Fig. 2. After some calculations, one obtains

M−1
c (q) =

⎛

⎜
⎝

1
m

0 0

0 3 cos2(θ)

m(1+3 cos2(θ))

3 cos(θ)

ml(1+3 cos2(θ))

0 3 cos(θ)

ml(1+3 cos2(θ))

3
ml2(1+3 cos2(θ))

⎞

⎟
⎠ . (39)

The second and third columns are colinear vectors of R
3, and rank(M−1

c (q)) = 2. One

also finds Ac(q) = 1
m

+ 3 sin2(θ)

m(1+3 cos2(θ))
> 0. Given the above unilateral constraint, the class of

bilateral constraints which are orthogonal to it have the gradient ∇gT (q) = (− 3 sin(θ)

l
γ β γ ),

β , γ ∈ R. Such bilateral constraints are of the form g(q) = βy + δ = 0 for some δ ∈ R. This
means that the center of gravity is constrained to move horizontally. In this simple case, the
Euclidean and the kinetic orthogonality are the same.
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Fig. 2 The constrained rod

4.4 Geometrical and optimization interpretations

In this section, we review several equivalent formulations of the LCPs in (2) and (20),
strongly inspired by the results of Moreau [29, 30] and Lötstedt [24]. In particular, it is
shown that the bilateral constraints yield a new quadratic program for the acceleration, that
is, the direct extension of the quadratic program derived in [29, 30]. Gauss’ principle of
Mechanics is therefore extended to systems with mixed unilateral/bilateral constraints. We
first review the results for the purely unilaterally constraint case.

4.4.1 The unilaterally constrained case

From a classical result of convex analysis, the LCP in (2) is equivalent to the following
inclusion:

A(q)λu + H0(q, q̇, t) ∈ −NK(λu) (40)

with K = (R+)m. When A(q) > 0 this is in turn equivalent to [12, p. 85] (recall that A(q) =
AT (q)):

λu = projA(q)

[
K;−A−1(q)H0(q, q̇, t)

]
. (41)

It is also a classical fact [8] that the LCP (2) is equivalent to the quadratic program:

min
λu≥0

1

2
λT

u A(q)λu + H0(q, q̇, t)T λu (42)

and it is noteworthy that this equivalence holds also when A(q) is symmetric positive
semidefinite only (in the positive definite case the solution is unique so the optimum is
global [1, Theorem 12.36(a)]). Equivalence means that if λ∗

u is a solution of (42) then it is a
solution of (2), and vice versa.

Proposition 11 Let m and n be arbitrary. Consider the quadratic program in (42). (i) If
H0(q, q̇, t) ∈ R(A(q)), or (ii) if d

dt
(∇h(q(t))) = 0, then it has a solution.

Proof (i) From Exercise 2.10.25(b) in [8], it follows that the quadratic function of (42) is
bounded below on the set {λu ∈ R

m|λu ≥ 0}. Using Theorem 2.8.1 in [8] the result follows.
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(ii) One has R(A(q)) = R(∇hT (q)M−1(q)∇h(q)) = R(∇hT (q)) (using Exercise 6,
p. 180 and Exercise 7, p. 78 in [20]). So the proposition’s condition guarantees that
H0(q, q̇, t) ∈ R(A(q)) and (i) applies. �

Proposition 11 is similar to Proposition 3, starting from a quadratic program rather than
from an LCP. From the LCP in (5), it follows that

ḧ(q) = projA−1(q)

[
K;H0(q, q̇, t)

]
(43)

that is equivalent to

min
ḧ(q)≥0

1

2
ḧT (q)A−1(q)ḧ(q) − ḧT (q)A−1(q)H0(q, q̇, t) (44)

and to

ḧ(q) = argmin
z≥0

1

2

(
z − H0(q, q̇, t)

)T
A−1(q)

(
z − H0(q, q̇, t)

)
. (45)

One may in turn formulate quadratic programs for the acceleration as follows. Starting
from (44) and using the expression of ḧ(q) in (4), one finds that q̈ is the solution of

⎧
⎨

⎩

min 1
2 q̈T ∇h(q)A−1(q)∇hT (q)q̈ + q̈T ∇h(q)A−1(q)∇hT (q)M−1(q)F (q, q̇, t)

subject to: ∇hT (q)q̈ + d
dt

(∇hT (q))q̇ ≥ 0.

(46)

And starting from (42), one obtains that q̈ is the solution of
⎧
⎨

⎩

min 1
2 q̈T M(q)q̈ + q̇T d

dt
(∇h(q))A−1(q)∇hT (q)q̈

subject to: A−1(q)(∇hT (q)q̈ + d
dt

(∇hT (q))q̇) ≥ 0.

(47)

As shown in [29, 30] and later in [24], the acceleration is also the solution of
⎧
⎨

⎩

min 1
2 (q̈ + M−1(q)F (q, q̇, t))T M(q)(q̈ + M−1(q)F (q, q̇, t))

subject to: ∇hT (q)q̈ + d
dt

(∇hT (q))q̇ ≥ 0
(48)

which may be obtained from Dorn’s dual problem of (42) that is given by (see Ap-
pendix A.4):

⎧
⎨

⎩

min 1
2λT

u A(q)λu

subject to: A(q)λu + H0(q, q̇, t) ≥ 0
(49)

and using (1) to replace ∇h(q)λu. Dorn’s duality theorem says that if λ∗∗
u solves (49) then

there exists λ∗
u that solves (42) with A(q)(λ∗

u − λ∗∗
u ) = 0. In case A(q) > 0, then λ∗

u = λ∗∗
u .

Conversely, if λ∗
u solves (42), then it solves (49) and the two extrema are equal. It follows

that q̈ is the unique solution of (48) even if A(q) is not full rank. We recover here the results
of Propositions 1 and 2. Similarly, starting from (44) and using Dorn’s duality, one finds that
the acceleration is the solution of

⎧
⎨

⎩

min 1
2 [q̈T ∇h(q) + q̇T d

dt
(∇h(q))]A−1(q)[∇hT (q)q̈ + d

dt
(∇hT (q))q̇]

subject to: A−1(q)∇hT (q)(q̈ + M−1(q)F (q, q̇, t)) ≥ 0.

(50)
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From a numerical point of view, solving the programs in (46), (47), and (50) requires
to invert two matrices: M(q) and A(q), whereas the one in (48) involves only the inverse
of M(q). Moreover, (48) holds even if A(q) is semidefinite, whereas (46), (47), and (50)
require A(q) invertible. The results of this section are summarized as follows:

Solvability condition:
H0(q, q̇, t) ∈ R(A(q))

⇓

{
LCP (2)

λ∗
u solution

⇐⇒
{

QP (42)

λ∗
u solution

=⇒
if A(q) > 0⇐=

⎧
⎨

⎩

QP (49)

λ∗∗
u solution

A(q)(λ∗
u − λ∗∗

u ) = 0

⇑ � (if A(q) > 0) �
Solvability condition:
H0(q, q̇, t) ∈ Q∗

A(q)

(43) ⇔ (44) ⇔ (46) ⇔ (47)

⇔ (40) ⇔ (41)
QP (48) unique solution q̈

(51)

where Q∗
A(q) is defined in Remark 3. In [29, 30], Moreau derived the quadratic programs

(48) and (49) using convex analysis tools and under Assumption 1, whereas Lötstedt [24,
Sect. 6] used Dorn’s duality to derive (49) from (42), and then (48), with no rank assumption
on A(q). The issue of the solvability for the existence of a multiplier λu was not tackled
previously.

4.4.2 Mixed case: unilateral/bilateral constraints

Similarly the unilateral/bilateral case yields in case Ac(q) > 0:

λu = projAc(q)

[
K;−A−1

c (q)H4(q, q̇, t)
]
. (52)

The addition of bilateral constraints therefore modifies the metric and the vector that is
projected, but does not change the cone on which the projection is made. In the general case
where Ac(q) ≥ 0, the LCP (20) is equivalent to the quadratic program:

min
λu≥0

1

2
λT

u Ac(q)λu + HT
4 (q, q̇, t)λu. (53)

The extension of Proposition 11 is as follows.

Proposition 12 Let m, p, and n be given. (i) If H4(q, q̇, t) ∈ R(Ac(q)), or (ii) if
d
dt

(∇h(q(t))) = 0 and all the unilateral constraints are orthogonal in the kinetic met-
ric to all the bilateral constraints, or (iii) if d

dt
(∇h(q(t))) = 0, d

dt
(∇g(q(t))) = 0 and

F(q, q̇, t) ∈ R(∇h(q)), then the quadratic program in (53) has a solution.

Proof (i) The proof is the same as for Proposition 11(i).
(ii) Follows from Proposition 11(ii) and using Proposition 5.
(iii) If the gradients are constant, then H4(q, q̇, t) = ∇hT (q)M−1(q)[H3(q, q̇, t) −

F(q, q̇, t)]. It follows from (12) and (15) that

H3(q, q̇, t) − F(q, q̇, t) = −[
I − G(q)M−1(q)

]
F(q, q̇, t).

Therefore, under the proposition’s condition and using (19) one has H4(q, q̇, t) = Ac(q)x

for some vector x. �
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Under the conditions of Proposition 12(iii), the LCP in (20) becomes 0 ≤ λu ⊥ w =
Ac(q)λu + Ac(q)x ≥ 0 for some x ∈ R

m. However, Theorem 1 in [7] does not apply in
the general case where Ac(q) ≥ 0 since M−1

c (q) is positive semidefinite. The conditions
of Proposition 12(iii) mean that the nonlinear and external forces have to be normal (in the
Euclidean metric) to the unilateral constraints boundaries. This is much more restrictive than
the conditions of Lemma 4, and of low practical interest for the design of mechanisms. The
dual program of (53) is by Dorn’s duality:

⎧
⎨

⎩

min 1
2λT

u Ac(q)λu

subject to: Ac(q)λu + H4(q, q̇, t) ≥ 0.

(54)

In case Ac(q) > 0, the two programs are equivalent. From Proposition 5, if all the bilat-
eral constraints are orthogonal in the kinetic metric to all the unilateral ones, then both
quadratic programs in (49) and in (54) are the same. From (14), one has ∇hT (q)q̈ +
∇hT (q)M−1(q)F (q, q̇, t) = Ac(q)λu + ∇hT (q)M−1(q)H3(q, q̇, t). Let Ac(q) be positive
definite. Inserting this into (54), one has that the acceleration is the solution of:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min 1
2 {∇hT (q)q̈ + ∇hT (q)[M−1(q)F − H3]}T A−1

c (q){∇hT (q)q̈

+ ∇hT (q)[M−1(q)F − H3]}

subject to: ∇hT (q)q̈ + ∇hT (q)M−1(q)F (q, q̇, t) − ∇hT (q)H3(q, q̇, t) ≥ 0.

(55)

When all the bilateral constraints are orthogonal to all the unilateral constraints, (55)
reduces to (46). The next result is interesting because it presents the direct extension of (48)
to the case with bilateral constraints, and holds for Ac(q) ≥ 0.

Proposition 13 Consider the dynamics (6) and let Assumption 2 hold. Suppose that the LCP
(20) is solvable. Then the acceleration is the solution of the quadratic program:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

minq̈
1
2 [q̈ + M−1(q)[F(q, q̇, t) − H3(q, q̇, t)]T M(q)[q̈ + M−1(q)[F(q, q̇, t)

− H3(q, q̇, t)]

subject to: ∇hT (q)M−1
c (q)M(q)[q̈ + M−1(q)(F (q, q̇, t) − H3(q, q̇, t))]

+ H4(q, q̇, t) ≥ 0.

(56)

Proof From (14), (16), (17), and (18), one has

M(q)q̈ + F(q, q̇, t) = (
I − G(q)M−1(q)

)∇h(q)λu + H3(q, q̇, t). (57)

The matrix G(q)M−1(q) is a projector (see (18) for the definition of G(q)), and N (I −
G(q)M−1(q)) = R(G(q)M−1(q)) = R(∇g(q)) (using similar arguments as in the proofs
of Lemma 1 and Lemma 3). Thus, (I − G(q)M−1(q)) ∈ R

n×n is not full rank, but from
the solvability assumption the existence of ∇h(q)λu implies that M(q)q̈ + F(q, q̇, t) −
H3(q, q̇, t) ∈ R(I − G(q)M−1(q)). Thus, (57) can be inverted and one has

∇h(q)λu = (
I − G(q)M−1(q)

)†(
M(q)q̈ + F(q, q̇, t) − H3(q, q̇, t)

)
, (58)
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where (I − G(q)M−1(q))† is the Moore-Penrose inverse of I − G(q)M−1(q), and one has
(I −G(q)M−1(q))† = I −G(q)M−1(q) [4, Fact 6.3.13]. Inserting (58) into (54) one obtains
the program (the arguments of H3(q, q̇, t) and F(q, q̇, t) are dropped):

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min 1
2 (M(q)q̈ + F − H3)

T (I − G(q)M−1(q))T M−1(q)(I − G(q)M−1(q))(M(q)q̈

+ F − H3)

subject to: ∇hT (q)M−1
c (q)(I − G(q)M−1(q))(M(q)q̈ + F − H3) + H4(q, q̇, t) ≥ 0.

(59)
Now we have the following: G(q)M−1(q) is a projector so (G(q)M−1(q))† =

G(q)M−1(q) and N (G(q)M−1(q)) = N (M−1(q)GT (q)) = N (G(q)) = N (∇gT (q)) =
R(∇g(q))⊥. Further, M(q)q̈+F −H3 ∈ R(I −G(q)M−1(q)) ⊂ N (∇gT (q)) = R(∇g(q))⊥.
Therefore, M(q)q̈+F −H3 ∈ N (G(q)M−1(q)). We infer that (I −G(q)M−1(q))(M(q)q̈+
F − H3) = M(q)q̈ + F − H3, and (59) simplifies to (56). �

When all the bilateral constraints are orthogonal to all the unilateral ones, one has
∇hT (q)M−1

c (q)M(q) = ∇hT (q), ∇hT (q)M−1
c (q)H3(q, q̇, t) = 0 (see (15) and (17)), and

H4(q, q̇, t) = H0(q, q̇, t) (see (21), and Proposition 1 for the definition of H0(q, q̇, t)). It
can be checked that in this case the quadratic programs in (56) and in (48) are identical. Let
us now examine the feasible set of the quadratic program (56).

Proposition 14 Let us denote

F = {
z ∈ R

n|∇hT (q)M−1
c (q)M(q)z + ∇hT (q)M−1

c (q)
(
F(q, q̇, t) − H3(q, q̇, t)

)

+ H4(q, q̇, t) ≥ 0
}

(60)

the feasible set of the quadratic program in (56). (i) Then F �= ∅ for any d
dt

(∇hT (q))q̇ and
any d

dt
(∇gT (q))q̇, only if there is no i ∈ {1, . . . ,m} such that ∇hi(q) ∈ R(∇g(q)). (ii) If F

is not empty, then the quadratic program in (56) has a unique solution.

Proof It is verified that M−1
c (q)M(q) is a projector, so that using [20, Theorem 1,

p. 194] R(M−1
c (q)M(q)) = N (M−1(q)∇g(q)[∇gT (q)M−1(q)∇g(q)]−1∇gT (q)), and

from Lemma 1, R(M−1
c (q)M(q)) = N (∇gT (q)). Similarly, N (M−1

c (q)M(q)) = R(∇g(q)).
So M−1

c (q)M(q) is a projector onto N (∇gT (q)) = R(∇g(q))⊥ parallel to R(∇g(q)). Con-
sequently, ∇hT (q)M−1

c (q)M(q)z = ∇hT (q)x with x ∈ R(∇g(q))⊥. Suppose that there
exists an index i such that ∇hi(q) ∈ R(∇g(q)). Then the ith entry of the m-vector
∇hT (q)M−1

c (q)M(q)z is zero. The ith line of the inequality in (56) thus boils down to
H4,i (q, q̇, t) ≥ 0. In view of (21), (15), (12), and the definition of H0(q, q̇, t) in Proposi-
tion 1, one can choose a vector d

dt
(∇hT (q))q̇ such that H4,i (q, q̇, t) < 0. So (i) is proved.

(ii) Follows from the fact that M(q) = MT (q) > 0 for any q ∈ C , which means that the
quadratic program in (56) is strictly convex. �

This result is coherent with Propositions 7 and 8.

Remark 5 The program in (55) has simpler constraints than the one in (56), but a more
complex quadratic term which implies the inverse of a matrix. Moreover, it holds only in
case Ac(q) is full rank, which is not the case of (56) that holds independently of Ac(q)

being or not full rank. This should not come as a surprise since we know that the multiplier
may not be unique while the acceleration is; see Proposition 2 and Corollary 1.
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Let us now relate the feasibility of the program (56) with the solvability conditions of
Lemma 4, where we use the notation of Remark 3.

Lemma 5 Suppose that the conditions of Lemma 4(i) hold, i.e., H4(q, q̇, t) ∈ Q∗
Ac(q). Then

the quadratic program (56) is feasible, i.e., the set F in (60) is non empty and the accelera-
tion is unique.

Proof Consider a z as in Lemma 4(i). Following the proof of Lemma 4, one sees
that ∇h(q)z ∈ N (M−1

c (q)) = R(∇g(q)). Let S = {z ∈ R
m|∇h(q)z ∈ R(∇g(q))}. S is

nonempty, since {0} ∈ R(∇h(q))∩ R(∇g(q)). Thus, z ∈ QAc(q) is equivalent to z ∈ S ∩R
m+.

We deduce that H4(q, q̇, t) ∈ Q∗
Ac(q) = (S ∩R

m+)∗ = S ∗ +R
m+ because S is an affine and con-

vex cone, and [41, Corollary 16.4.2] is used. Thus, we can write H4(q, q̇, t) = x + y with
x ∈ S ∗ and y ∈ R

m+. The set S ∗ is given by S ∗ = {y ∈ R
m|y = ∇hT (q)x, x ∈ R(∇g(q))∗}.

Thus H4(q, q̇, t) = x + y with x = ∇hT (q)α, α ∈ R(∇g(q))∗, and y ∈ R
m+. Now notice that

∇hT (q)M−1
c (q)M(q)z + ∇hT (q)M−1

c (q)(F (q, q̇, t) − H3(q, q̇, t)) ∈ R(∇hT (q)). There-
fore, the inequality in the definition of F in (60) is equivalent to ∇hT (q)(x + α) + y ≥ 0
with x ∈ R

n, α ∈ R(∇g(q))∗ and y ≥ 0. Whatever the value of α, one can always pick an x

such that the inequality is satisfied. The proof is complete using Proposition 14. �

Obviously Lemma 5 can also be proved indirectly by a sequence of equivalences and
implications of the above LCPs and quadratic programs. The direct proof is interest-
ing per se, however. It is worth reminding that Assumption 2 is supposed to hold for
Lemma 5, because the quadratic program in (56) is constructed from (59) which needs that
∇gT (q)M−1(q)∇g(q) be full rank p. Let us now briefly come back on the case without
bilateral constraints.

Corollary 6 Suppose that the conditions of Proposition 3 hold, i.e., H0(q, q̇, t) ∈ Q∗
A(q).

Then the quadratic program in (48) is feasible, i.e., the set {z ∈ R
n|∇hT (q)z+ d

dt
(∇hT (q))q̇

≥ 0} is nonempty. Then the acceleration is unique.

Proof The proof follows from Lemma 5 noting that the program in (56) reduces to the
program (48) when there are no bilateral constraints (one may take g(q) = 0 so that the
orthogonality conditions of Proposition 5 are trivially satisfied). The uniqueness of q̈ follows
since M(q) > 0. �

The results of this section are summarized as follows:

projection (52) QP (56) unique solution q̈

� (if Ac(q) > 0) �

{
LCP (20)

λ∗
u solution

⇐⇒
{

QP (53)

λ∗
u solution

=⇒
if Ac(q) > 0⇐=

⎧
⎨

⎩

QP (54)

λ∗∗
u solution

Ac(q)(λ∗
u − λ∗∗

u ) = 0

⇑ � (if Ac(q) > 0)

Solvability condition:
H4(q, q̇, t) ∈ Q∗

Ac(q)

QP (55) unique solution q̈

(61)
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5 The reduced coordinates method

An alternative method to analyze a system with bilateral holonomic constraints is to reduce
its generalized coordinate vector q , exploiting the fact that the system lives on the mani-
fold M in (7). Hereafter, we shall use the McClamroch–Wang framework for coordination
reduction [27]. Let us start from the Lagrangian dynamics in (6).

Assumption 4 There is an open set Θ ⊂ R
n−p and a function Ω : Θ → R

p such that
g(Ω(q2), q2) = 0 for all q2 ∈ Θ .

This holds if in the neighborhood of any q̄ such that g(q̄) = 0 the constraints are linearly
independent1 (possibly after some suitable coordinates reordering is performed).

Assumption 5 Assumption 4 holds with Θ = R
n−p .

Let us now describe the coordinate transformation. Let us partition q = ( q1
q2

)
, with q1 ∈

R
p and q2 ∈ R

n−p . The idea is that on the manifold M one has q1 = Ω(q2), so that the new
bilateral constraints are expressed as

f (q) = q1 − Ω(q2) = 0. (62)

Define the nonlinear transformation X : R
n → R

n by x = X(q) = ( q1−Ω(q2)

q2

)
, that is dif-

ferentiable with a differentiable inverse transformation Q : R
n → R

n, given by: q = Q(x) =
( x1+Ω(x2)

x2

)
. The vector partition x = ( x1

x2

)
, with x1 ∈ R

p and x2 ∈ R
n−p is used. The Jacobian

matrix of Q(·) at x is given by

T (x) = ∂Q

∂x
=

(
Ip

∂Ω
∂x2

(x2)

0 In−p

)

,

and it is full rank. It is easily verified that

∂X

∂q
(q) =

(
Ip − ∂Ω

∂q2

0 In−p

)

=
(∇f T (q)

0In−p

)

= T −1(x).

The n × n identity matrix is partitioned as In = [ET
1 ET

2 ], E1 ∈ R
p×n, E2 ∈ R

(n−p)×n. Then
the dynamics in (6) is rewritten in the new coordinates as:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

E1M̄(x2)E
T
2 ẍ2 + E1F̄ (x2, ẋ2, t) = E1T

T (x2)∇qh(x2)λu + E1T
T (x2)∇qg(x2)λb,

E2M̄(x2)E
T
2 ẍ2 + E2F̄ (x2, ẋ2, t) = E2T

T (x2)∇qh(x2)λu,

x1 = 0,

0 ≤ λu ⊥ h̄(x2) ≥ 0.

(63)

1One also says functionally independent.
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Example 2 To illustrate the method let us recall the example given in [27, Sect. 7] of a
planar Cartesian manipulator with an elliptic bilateral constraint, and we suppose in addition
that a unilateral constraint acts on the manipulator. One has qT = (q1 q2), g(q) = 4(q1)

2 +
(q2)

2 − 1 and ∇g(q)λb = (8q1λb 2q2λb)
T . Furthermore, x = X(q) = (

q1−0.5[1−(q2)2] 1
2

q2

)
, and

T (x) = (
1 −0.5[1−(q2)2] 1

2

0 1

)
, E1 = (1 0), E2 = (0 1). The transformed dynamics is given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−0.5x2(1 − x2
2 )

− 1
2 ẍ2 − 0.5(1 − x2

2 )
− 3

2 ẋ2
2 = Λu,1 + Λb,1,

[1 + 0.25(1 − x2
2 )

−1x2
2 ]ẍ2 + 0.25(1 − x2

2 )
−2x2ẋ

2
2 = Λu,2,

x1 = 0,

0 ≤ λu ⊥ h̄(x2) ≥ 0,

(64)

where Λu = (Λu,1 Λu,2)
T and Λb = (Λb,1 0)T are the generalized forces associated to the

unilateral and the bilateral constraints, respectively, so that Λu,1 = E1T
T (x2)∇qh(x2)λu,

Λu,2 = E2T
T (x2)∇qh(x2)λu, Λb,1 = E1T

T (x2)∇qg(x2)λb .

The second equation in (63) represents the dynamics of the system in the manifold
M (see (7)), where λb does not appear since all the constraints are perfect (no tan-
gential forces since there is no friction). The first equation is an algebraic relation be-
tween the acceleration and the two multipliers. One has M̄(x) = T T (x)M(Q(x))T (x),
F̄ (x, ẋ, t) = T T (x){F(Q(x), T (x)ẋ) + M(Q(x))Ṫ (x)ẋ}. The notation f (x2) is for f (x)

evaluated at x1 = 0. Notice that using the above assumptions it follows that the reduced
(n − p) × (n − p) mass matrix E2M̄(x2)E

T
2 is positive definite. It is noteworthy that (63) is

equivalent to (6), using that x1(t) = 0 for all t ≥ 0.
Notice that h̄(x2) in (63) stands for the function h̄(x) = h ◦ Q ◦ E2(x), and its gradient

is given by ∇h̄(x) = E2T
T (x)∇qh(q), where ∇qh(q) denotes the transpose of the Jacobian

∂h
∂q

at q with q = Q(x). According to our previous notation, we denote it as ∇qh(x2) in (63).

Notice that

E2T
T (x)∇qg(q) = [∇Ω(x2)In−p

]∇g(q) = ∇Ω(x2)∇q1g(q) + ∇q2g(q) = 0 (65)

from Assumption 4. Also, E1T
T (x2)∇qg(x2) = ∇q1g(q), and ∇q1g(q) is a p × p square

matrix which is full rank if the constraints are linearly independent (possibly after reordering
of the coordinates). Let us denote the multiplier associated with the constraints f (q) = 0 as
λf,b . Then one has

T T (x)∇qf (q)λf,b = T T (x)

(
Ip

−∇Ω(q2)

)

λf,b =
(

Ip

0

)

λf,b =
(

E1T
T (x)∇qg(q)

E2T
T (x)∇qg(q)

)

λb

= T T (x)∇qg(q)λb (66)

from which we deduce that

λf,b = ∇q1g(q)λb, (67)

where λb is associated with g(q) = 0 as in (6). It follows that in order to obtain the La-
grangian dynamics (63) one can also start from (62), and then apply the coordinate change
q = Q(x).
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Proceeding as above, we can construct the LCP:

0 ≤ λu ⊥ w = Ar(x2)λu + H5(x2, ẋ2, t) ≥ 0 (68)

with

Ar(x2) = ∇hT (q)T (x)ET
2

(
E2M̄(x2)E

T
2

)−1
E2T

T (x)∇h(q) ≥ 0, (69)

and

H5(x2, ẋ2, t) = d

dt

(∇hT (q)T (x)ET
2

)
ẋ2 − ∇hT (q)T (x)ET

2

(
E2M̄(x2)E

T
2

)−1
E2F̄ (x2, ẋ2, t).

Since it is assumed that M̄(x2) is full rank, the rank properties of the reduced order Delassus’
matrix Ar(x2) depend only on the rank of the (n − p) × m matrix E2T

T (x)∇h(q). Then
exactly the same developments as in Sects. 2 and 4 can be redone to analyze the LCP in (68).
One sees that a necessary condition for Ar(x2) to be full rank is that m ≤ n−p ⇒ m+p ≤ n.

Using the first equation in (63), one can calculate λb:

λb = (∇q1g(x2)
)−1[

E1M̄(x2)E
T
2

(
E2M̄(x2)E

T
2

)−1
E2T

T (x2)∇qh(x2) − ∇q1h(x2)
]
λu

+ (∇q1g(x2)
)−1[

E1F̄ (x2, x̄2, t) − E1M̄(x2)E
T
2

(
E2M̄(x2)E

T
2

)−1
E2F̄ (x2, x̄2, t)

]
,

(70)

where we used that E1T
T (x2)∇qh(q) = ∇q1h(x2). Equation (70) corresponds to (13),

and (68) corresponds to (8). Let ∇hp(q) ∈ R
p×m denote the first p lines of ∇h(q),

and ∇hn−p(q) ∈ R
(n−p)×m its last n − p lines (i.e., ∇hp(q) = ∇q1h(q) and ∇hn−p(q) =

∇q2h(q)).

Proposition 15 Ar(x2) is positive definite if and only if ∇hn−p(x2) + ∇Ω(x2)∇hp(x2) has
full rank n − p.

Proof One has

E2T
T (x)∇h(q) = [0 In−p]

(
Ip 0

∇Ω(x2) In−p

)

∇h(q) = ∇Ω(x2)∇qhp(q) + ∇qhn−p(q).

One has Ar(q) = (∇Ω(x2)∇qhp(x2)+∇qhn−p(x2))
T (E2M̄(x2)E

T
2 )−1(∇Ω(x2)∇qhp(x2)+

∇qhn−p(x2)). One infers that due to the positive definiteness of (E2M̄(x2)E
T
2 )−1, Ar(q) has

rank n − p if and only if N (∇hn−p(x2) + ∇Ω(x2)∇hp(x2)) = {0}. �

Corollary 7 Ar(x2) is positive definite only if there exist no i ∈ {1, . . . ,m} such that
∇hi(q) = α∇gj (q) for some j ∈ {1, . . . , p} and some α �= 0.

Proof If the conditions of the corollary are not fulfilled, then from (65) there exists one
index i ∈ {1, . . . ,m} such that Ar(q) has its ith diagonal element equal to zero. �

Corollary 7 is coherent with Propositions 7, 8, and 14. The reduced coordinate method
is a particular generalized coordinate transformation which allows one to write the gradient
of the bilateral constraint in a specific form. It does not bring additional information on the
constraints orthogonality, however. But the condition of Proposition 15 is easy to check.
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6 Analysis at the impact times

6.1 The impact dynamics

All the above developments concern the dynamics outside the velocity discontinuities. At
an impact time t , the Lagrangian dynamics becomes [6]:

M
(
q(t)

)(
q̇
(
t+

) − q̇
(
t−

)) = ∇h
(
q(t)

)
pu(t) + ∇g

(
q(t)

)
pb(t), (71)

where pu(t) and pb(t) are the densities of the measures λu and λb , respectively, with respect
to the Dirac measure with atom at t . Velocities are assumed to be of bounded variation so
they have right and left limits at every t ≥ 0, and positions are continuous, hence q(t) is
a constant at the impact. We denote q̇(t+) = q̇+ = limτ→t,τ>t q̇(τ ), and the same for the
left limit. In particular, one has pu(t) ≥ 0, as we require that the contact force, considered
as a measure, be positive. Since the bilateral constraints are satisfied at all times, one has
∇gT (q(t))q̇(t+) = ∇gT (q(t))q̇(t−) = 0 for all t ≥ 0. Premultiplying Eq. (71) by ∇gT (q)

and using Assumption 2, this allows one to compute that (the time argument is dropped):

pb = −[∇gT (q)M−1(q)∇g(q)
]−1∇gT (q)M−1(q)∇h(q)pu. (72)

Therefore, using (71) and (18),

M(q)
(
q̇+ − q̇−) = [∇h(q) − ∇g(q)

[∇gT (q)M−1(q)∇g(q)
]−1∇gT (q)M−1(q)∇h(q)

]
pu

= [
I − G(q)M−1(q)

]∇h(q)pu. (73)

6.2 Calculation of the percussion vector pu

We have the following proposition.

Proposition 16 If all the bilateral constraints are orthogonal in the kinetic metric to all the
unilateral constraints, then at an impact time t one has pb(t) = 0.

Proof In this case, one has ∇gT (q)M−1(q)∇h(q) = 0, and from (73) the result follows. �

Example 3 In the example of Sect. 4.3, the constraints g(q) = βy + δ, β , δ ∈ R, undergo no
percussion when the rod’s tip hits the vertical wall; see Fig. 3. Let us provide some insight
on this. The impact dynamics (71) for this rod is at an impact time t given by

⎧
⎨

⎩

m(ẋ(t+) − ẋ(t−)) = pu(t),

m(ẏ(t+) − ẏ(t−)) = βpb(t),

I (θ̇(t+) − θ̇ (t−)) = l sin(θ(t))pu(t).

(74)

Since g(q) = 0, at all times it follows that y ≡ − δ
β

at all times and, therefore, from the
second line in (74), one obtains that pb(t) = 0 as expected. Suppose now that the bilateral
constraint is g(q) = αx +βy + γ for some constants α, β , γ (see the dashed prismatic joint
on Fig. 3). One has ∇gT (q)M−1(q)∇h(q) = α

m
, and the impact dynamics is given by

⎧
⎨

⎩

m(ẋ(t+) − ẋ(t−)) = pu(t) + αpb(t),

m(ẏ(t+) − ẏ(t−)) = βpb(t),

I (θ̇(t+) − θ̇ (t−)) = l sin(θ(t))pu(t).

(75)
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Fig. 3 Orthogonal bilateral and
unilateral constraints (at an
impact time)

Using (72), one has pb(t) = α

α2+β2 pu(t).

Remark 6 Notice from (72) that even if the system does not collide with all the unilat-
eral constraints but only some of them, inertial couplings may induce a vector pb with no
zero components. Proposition 16 shows that one may reduce the impacts effects inside the
bilateral constraints, by designing mechanisms such that the bilateral constraints and the
unilateral constraints have kinetic angles close to π

2 .

Let us denote q̇N
�= ∇hT (q)q̇ , i.e. q̇N is the m-vector with entries ∇hT

i (q)q̇ . We may
now adopt a collision rule as follows:

q̇+
N = −E q̇−

N with: q̇−
N ≤ 0, q̇+

N ≥ 0, h(q) = 0, (76)

where E is the m × m restitution matrix (see, e.g., [6, pp. 299–304]). This is a generalized
kinematic (Newton’s like) impact rule, and its relationship with Moreau’s impact law [31]
is clarified later. Here, we assume that all the surfaces hi(q) = 0 are collided at the same
time t , i.e., the m constraints are active at t . Inserting (76) into (73), one obtains

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ac(q)pu = −(I + E )q̇−
N ,

pu ≥ 0,

E (I + E )−1Ac(q)pu ≥ 0.

(77)

The constrained Delassus’ matrix is the matrix that rules the calculation of pu, in addi-
tion to λu in (20). We may use some results of Sect. 4.2 to analyze (77). The last inequality
comes from the kinematic constraints q̇+

N ≥ 0. The second one is a kinetic constraint stating
the nonnegativity of the percussion vector. One has to add energetic constraints on the impact
law to solve the impact problem, which is to be solved under three sets of constraints: en-
ergetic, kinetic, and kinematic [6, p. 302], [17, Eq. (5.9)]. Suppose that E = diag(e), e ≥ 0,
then the equality in (77) becomes Ac(q)pu = −(1 + e)q̇−

N ≥ 0, the second inequality is
e

1+e
Ac(q)pu = −eq̇−

N ≥ 0 and is satisfied. If m = 1, the first inequality is satisfied as well
since Ac(q) is a positive scalar (in this case the two inequalities are identical).

Proposition 17 The equation in (77) has a solution p∗
u:
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(i) if I + E is full rank, and (I + E )−1Ac(q) and E (I + E )−1Ac(q) are monotone matrices;
(ii) only if (I + E )q̇−

N ∈ Q∗
Ac(q);

(iii) only if (I + E )q̇−
N ∈ R(∇hT (q)).

Proof (i) Let Ac(q) be full rank. Then pu = −Ac(q)−1(I + E )q̇−
N . Since −q̇−

N ≥ 0 and since
a monotone matrix is such that its inverse is nonnegative (it has only nonnegative entries)
[20, p. 531], the first inequality in (77) is satisfied, and for the same reason the second
inequality is satisfied, also.

(ii) (77) possesses a solution only if the LCP 0 ≤ pu ⊥ Ac(q)pu + (I + E )q̇−
N ≥ 0 is

feasible (i.e., there exists p∗
u such that p∗

u ≥ 0 and Ac(q)p∗
u + (I + E )q̇−

N ≥ 0). Since Ac(q)

is positive semidefinite, hence copositive plus, this LCP is feasible if and only if (I + E )q̇−
N ∈

Q∗
Ac(q) [8, Corollary 3.8.10].
(iii) Solving (77) boils down to solving a linear equation of the form Ax = b, with ad-

ditional inequality constraints. It is clear that a necessary condition for the existence of a

solution of (77) is that (I + E )q̇−
N ∈ R(Ac(q)) = R(∇hT (q)M

− 1
2

c (q)) ⊂ R(∇hT (q)) (see
[20, p. 78, p. 180]). �

Recall that Q∗
Ac(q) = S ∗ + R

m+, with S ∗ = {y ∈ R
m|y = ∇hT (q)x, x ∈ R(∇g(q))∗};

see the proof of Lemma 5. Since R(∇g(q))∗ = N (∇gT (q)), the necessary condition in
Proposition 17(ii) can be checked. In any case when existence holds, the solutions of (77)
are given by pu = −A†

c(q)(I + E )q̇−
N + (I − A†

c(q)Ac(q))x, where A†
c(q) is the Moore–

Penrose inverse of Ac(q) and x ∈ R
m, and (I − A†

c(q)Ac(q)) is the orthogonal projector
onto N (Ac(q)) [4, Prop. 6.1.6(xii)]. If m = 1, this gives a pu that satisfies the two inequali-
ties. Let us investigate further the condition (ii) of Proposition 17.

Lemma 6 Let the bilateral constraints be orthogonal in the kinetic metric to the unilateral
constraints. Let R((I + E )∇hT (q)) ⊆ R(∇T (q)). Then (I + E )q̇−

N ∈ Q∗
Ac(q).

Proof In this case, one has Ac(q) = A(q) = ∇hT (q)M−1(q)∇h(q). Then QAc(q) = QA(q) =
{z ∈ R

m|0 ≤ z ⊥ A(q)z ≥ 0}. Thus, QA(q) = N (A(q)) ∩ R
m+ = N (∇h(q)) ∩ R

m+. Thus,
Q∗

A(q) = R(∇hT (q)) + R
m+. Under the lemma’s condition, the result follows. �

One notices that the lemma’s second condition holds when E = diag(e). Also, we noticed
that in this case the second inequality in (77) trivially holds, and (I + E )q̇+

N < 0 whenever
q̇+

N < 0 which holds if an impact exists (the degenerate case q̇−
N,i = 0 for some component

i can be ignored since it yields q̇+
N,i = 0 for the diagonal restitution matrix case). The LCP

0 ≤ pu ⊥ Ac(q)pu + (I + E )q̇−
N ≥ 0 is equal to 0 ≤ pu ⊥ q̇+

N + E q̇−
N ≥ 0. We infer that

when q̇+
N < 0 and E = diag(e), e ≥ 0, these two LCPs are equivalent to (77) and the solution

satisfies p∗
u > 0. Under these conditions, we recover Moreau’s impact rule, according to the

formulation of this impact rule in [17, Proposition 5.6]. It is worth recalling that the fact that
the restitution matrix is equal to diag(e) = eI is crucial in these developments, for otherwise
the analysis of (77) complicates. The conclusion of this discussion is that the impact law in
(76) generalizes Moreau’s law, at the price of being less tractable.

From (77), it is obvious that Ac(q)pu is unique, that is if pu,1 and pu,2 are two solutions
of (77) then Ac(q)(pu,1 − pu,2) = 0. We can state the following.

Proposition 18 Let pu,1 and pu,2 be two solutions of (77), equivalently of (80). Then
∇h(q)(pu,1 − pu,2) ∈ N (M−1

c (q)). If R(∇h(q)) ∩ R(∇g(q)) = {0}, then pu,1 − pu,2 ∈
N (∇h(q)).
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Proof In the case that pu,1 and pu,2 are solutions of (77), they satisfy pu,i = −A†
c(q)(I +

E )q̇−
N + (I − A†

c(q)Ac(q))x, x ∈ R
m, and (I − A†

c(q)Ac(q)) is the orthogonal projector
onto N (Ac(q)). Therefore, Ac(q)pu,1 = Ac(q)pu,2. The result follows from the proofs of
Proposition 6 and Corollary 1. �

Proposition 18 is the counterpart of Propositions 2(i), Proposition 6 and Corollary 1, for
the percussion vector. It is clear that the results of Sect. 4.2.2 may be used to guarantee that
Ac(q) > 0 so that pu is unique.

Remark 7 (Hyperstatic systems) The case of hyperstatic systems has been alluded to in
Example 1. As its name indicates, this refers to statics, i.e., systems at an equilibrium
(q, q̇) = (q∗,0) for some constant q∗. One characterizes a static equilibrium as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∇h(q∗)λ∗
u = F(q∗,0, t),

h(q∗) = 0,

λ∗
u ≥ 0,

(78)

where it is assumed that the system is fixed by the means of stops that can only push and
not pull, hence the nonnegativity condition on the multiplier. The hyperstaticity exists if
the problem (78) does not possess a unique solution λ∗

u, but several solutions (possibly an
infinity), while ∇h(q∗)λu is unique. Provided that F(q∗,0, t) ∈ R(∇h(q∗)) the solutions
of (78) are given by λ∗

u = (∇h(q∗))†F(q∗,0, t) + [I − (∇h(q∗))†∇h(q∗)]x, for some x ∈
R

dim(N (∇h(q)), and with λ∗
u ≥ 0. One sees that the impact problem in (77) with pu ≥ 0 is a

statics problem, similar to (78), though involving different terms. Hyperstaticity implies that
m ≥ n (there must be at least as many constraints as degrees of freedom to guarantee that the
equilibrium exists and persists). The complementarity problem that is studied in this paper is
on the contrary a dynamical problem, whose solvability conditions differ from those of (78),
as Propositions 2 and 3 show. However, if q̇(t+) = 0 then the contact LCP in (2) becomes
equal to

0 ≤ λu

(
t+

) ⊥ ∇hT
(
q(t)

)
M−1

(
q(t)

)[∇h
(
q(t)

)
λu

(
t+

) − F
(
q(t),0, t+

)] ≥ 0. (79)

Then the solutions of (78) solve also the contact LCP (79) at time t . Depending on
F(q(t),0, t+) the LCP (79) may nevertheless possess other solutions for which the first
equality in (78) is not satisfied. Finally, from Proposition 2, we know that the uniqueness
of ∇h(q(t))λu holds so that the dynamical system can be further integrated safely despite
the contact force may not be uniquely determined. From the dynamics point of view, hyper-
staticity is therefore not an issue.

Remark 8 (Impact geometry distortion) If all the unilateral constraints are orthogonal to all
the bilateral ones, then the right-hand-side of (73) belongs to the normal cone −NΦ(q). In
the general case of G(q) �= 0 with G(q) in (18), it belongs to −[I − G(q)M−1(q)]Nφ(q) =
{z ∈ R

n|z = M(q)x − G(q)x, x ∈ −N̄φ(q)}, where N̄Φ(q) is the normal cone to Φ at q in
the kinetic metric. The bilateral constraints therefore introduce a distortion in the geometry
of the problem, that may be measured by M(q) − G(q) since the right-hand side belongs to
the set [G(q) − M(q)]N̄φ(q). Using the same arguments as in the proof of Lemma 3, it fol-
lows that M(q) − G(q) ≥ 0, but it is not positive definite. The extension of the geometrical
analysis of multiple impacts done in [16–18] is not tackled in this paper.
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6.3 Optimization framework

Let us assume that the impact law is well-posed, so that (77) has a solution p∗
u. Mimicking

what has been done in Sect. 4.4, we may formulate the impact problem as follows. The
percussion vector p∗

u is also a solution of the quadratic program:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min 1
2 [Ac(q)pu + (I + E )q̇−

N )]T [Ac(q)pu + (I + E )q̇−
N )]

subject to: pu ≥ 0,

E (I + E )−1Ac(q)pu ≥ 0.

(80)

Since Ac(q), and hence A2
c(q) are positive semidefinite, the quadratic program in (80) is

equivalent to the LCP [8, p. 4]:

0 ≤
(

pu

y

)

⊥
(

A2
c(q) −Ac(q)(I + E )−T E T

E (I + E )−1Ac(q) 0

)(
pu

y

)

+
(

Ac(q)(I + E )q̇−
N

0

)

≥ 0 (81)

in the sense that if there exists a vector y and p∗
u that solve the LCP (81) then p∗

u solves (80),
and vice versa. One sees that M is positive semi definite. One sees that the program in (80)
differs from the one in (53) because there are additional inequality constraints. It is therefore
not possible to deduce a program for q̇+ just by replacing q̈ by q̇+ − q̇− and letting terms
like Hi(q, q̇, t) vanish, in (56), without additional assumptions (see Proposition 19 below).
From Dorn’s duality and (80), one obtains:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min 1
2 pT

u A2
c(q)pu

subject to: (I + Ac(I + E )−T E T )w = Ac(q)(Ac(q)pu + (I + E )q̇−
N ),

w ≥ 0

(82)

and using the dynamics q̇+
N − q̇−

N = Ac(q)pu:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min 1
2 (q̇+

N − q̇−
N )T (q̇+

N − q̇−
N )

subject to: (I + Ac(I + E )−T E T )w = Ac(q)(q̇+
N + E q̇−

N ),

w ≥ 0.

(83)

We recover here that despite the program (82) may not be strictly convex because
Ac(q) ≥ 0, the program (83) is strictly convex. It is also feasible since w = 0 and
q̇+

N + E q̇−
N = 0 satisfies the inequality constraints. The next result makes the link with

Moreau’s impact law.

Proposition 19 Suppose that Ac(q) is positive definite, and let E = 0 (plastic impact). As-
sume that all the surfaces hi(q) = 0, 1 ≤ i ≤ m, are collided at the same time with q̇−

N < 0,
and that all the bilateral constraints are orthogonal in the kinetic metric to all the unilateral
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constraints. Then the post-impact velocity is the unique solution of:

(a)

⎧
⎨

⎩

min 1
2 (q̇+ − q̇−)T M(q)(q̇+ − q̇−)

subject to: ∇hT (q)q̇+ = q̇+
N ≥ 0

⇔ (b)

⎧
⎨

⎩

M(q)(q̇+ − q̇−) = ∇h(q)pu

0 ≤ pu ⊥ q̇+
N ≥ 0

(84)
which is Moreau’s impact rule.

Proof Due to the hypotheses, one has Ac(q) = A(q) (see Proposition 5). Since we are deal-
ing with an impact with pu > 0 and q̇−

N < 0, and in view of the hypotheses, the program in
(80) is equivalent to the program:

⎧
⎨

⎩

min 1
2 pT

u A(q)pu + pT
u q̇−

N

subject to: pu ≥ 0
(85)

since they are both equivalent to their Karush–Kuhn–Tucker problem, which both possess
the same unique solution. Its dual is given from Dorn’s theorem by

⎧
⎨

⎩

min 1
2pT

u A(q)pu

subject to: A(q)pu + q̇−
N ≥ 0.

(86)

Using the dynamics (73), which reduces to M(q)(q̇+ − q̇−) = ∇h(q)pu, one obtains
(84)(a). Notice that q̇+

N ≥ 0 is equivalent to q̇+ ∈ TΦ(q), i.e., the right velocity is admissible
and points inward the admissible domain Φ . Therefore, the quadratic program in (84)(a) is
exactly Moreau’s impact rule; see [6, Eq. (5.66)] or [17, Eq. (5.20)]. The equivalence with
(84)(b) follows from the Karush–Kuhn–Tucker’s conditions applied to (84)(a) which are
necessary and sufficient due to the problem’s convexity. �

An impact as in Proposition 19 is called an m-impact. It is clear that the result is not al-
tered if less surfaces are attained simultaneously, where one simply has to adapt the matrices
dimensions. The quadratic program in (84) may be seen as the impact counterpart of (48).

7 Conclusions

The problem considered in this paper is: given a Lagrangian system subject to a set of uni-
lateral constraints (i.e., a complementarity Lagrangian system), how does the addition of a
set of bilateral constraints alter the calculation of the Lagrange multipliers associated to the
unilateral constraints? In other words, we study the properties of the extended Delassus’ ma-
trix when bilateral constraints also act on the system. Various criteria are proposed, and the
kinetic angles between the constraints are extensively used. The link with Gauss’ principle
of Mechanics is made. An extended quadratic program for the acceleration is proposed. This
work therefore extends the previous results by Moreau [29, 30] and Lötstedt [24]. The case
of impacts is also examined carefully. The major conclusion to be drawn from this study
is that mixing unilateral and bilateral constraints does not destroy the problem’s convexity,
in the sense that the Delassus’ matrix always remains at least positive semidefinite. This is
therefore quite different from Coulomb’s friction constraints that do destroy the convexity
and yield other types of (much) more complex dynamics; see, e.g., [14, 35].
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Appendix: Useful mathematical results

A.1 Theorem 3.1.7 in [8] (excerpts)

Theorem 2 Let M ∈ R
n×n be positive semidefinite, and let q ∈ R

n be arbitrary. The follow-
ing hold:

(a) If z1 and z2 are two solutions of the LCP(M,q) then (z1)T (q +Mz2) = (z2)T (q +Mz1).
(d) If M is symmetric (as well as positive semidefinite) then Mz1 = Mz2 for any two solu-

tions z1 and z2.

A.2 Theorem 3.8.6 in [8]

Theorem 3 Let M ∈ R
n×n be copositive and let q ∈ R

n be given. If the implication
[0 ≤ v ⊥ Mv ≥ 0] ⇒ [vT q ≥ 0] is valid, then the LCP(M,q) is solvable.

Notice that the implication can also be written as q ∈ Q∗
M , with the notation of Remark 3.

A.3 Square root calculation

Consider the matrix A = ( 1 ε

ε 1

)
whose off-diagonal terms mimic the inertial couplings be-

tween the constraints. Since we can rewrite A = ( 1 0
0 1

) + ( 0 ε

ε 0

)
, calculating the square root

of A boils down to calculating the square root of the sum of two matrices: a diagonal ma-
trix that mimics the matrices Dh and Dg (which do no depend on the inertial coupling
parameter ε), and a matrix with the off-diagonal terms and zero diagonal. Then lengthy but
straightforward calculations yield

A−1 = 1

1 − ε2

(
1 −ε

−ε 1

)

=
(

1 −ε

−ε 1

)

+ O
(
ε2

)
(87)

and:

A− 1
2 = I +

(
0 − ε

2− ε
2 0

)

+
(

3ε2

8 0

0 3ε2

8

)

+ O
(
ε3

)
, (88)

where O(εn) denotes terms of degree higher or equal to n, and the approximations are valid
if |ε| < 1. This simple example demonstrates that the approximations in Assumption 3 are
not unrealistic.

A.4 Dorn’s duality and converse duality theorems

Theorem 4 [26, Theorems 8.2.4, 8.2.6] Let Q be a positive semidefinite and symmetric
matrix. Consider the two quadratic programs:

⎧
⎨

⎩

min 1
2zT Qz + bT z

subject to: Az ≥ c

(89)
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and
⎧
⎨

⎩

min 1
2zT Qz − cT w

subject to: AT w − Qz = b, w ≥ 0.

(90)

Then:

• If z̄ solves the program (89), then there exists w̄ such that (z̄, w̄) solves the program (90).
Moreover, the two extrema are equal.

• If (z̄, w̄) solves the program (90), then there exists ẑ with ẑ− z̄ ∈ N (Q) such that ẑ solves
the program (89).

A.5 Theorem 2.4.3 in [4]

Theorem 5 Let A ∈ R
n×m. Then R(A)⊥ = N (AT ), R(A) = R(AAT ), and N (A) =

N (AT A).

A.6 Theorem 1 in [20] p. 194

Theorem 6 If A is idempotent then I − A is idempotent, R(I − A) = N (A), and N (I −
A) = R(A).

A.7 Definition 3.1.1 in [4]

Definition 1 Let A ∈ R
n×n. Then A is a projector if A is symmetric and idempotent.

A.8 Proposition 8.1.2 in [4]

Proposition 20 Let A and B be symmetric n × n matrices, and let S ∈ R
m×n. If A ≤ B ,

then SAST ≤ SBST . If SAST ≤ SBST and rank(S) = n, then A ≤ B .

A.9 Exercise 8 in [20] p. 218

This exercise is reformulated here as a lemma for convenience.

Lemma 7 Let A be symmetric. Then the matrix I + εA is positive definite for sufficiently
small real numbers ε.
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