Existence, uniqueness of solutions and stability of nonsmooth multivalued Lur'e dynamical systems

Bernard Brogliato 1, * Daniel Goeleven 2
* Auteur correspondant
1 BIPOP - Modelling, Simulation, Control and Optimization of Non-Smooth Dynamical Systems
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
Abstract : This paper deals with the well-posedness of a class of multivalued Lur'e systems, which consist of a nonlinear dynamical system in negative feedback interconnection with a static multivalued nonlinearity. The objective is to provide a detailed analysis of the conditions which guarantee that a certain operator, constructed from the static nonlinearity, is maximal monotone. This in turn assures the existence and the uniqueness of the solutions. Examples (nonlinear complementarity systems, nonlinear relay systems) illustrate the developments. A stability result is also given.
Type de document :
Article dans une revue
Journal of Convex Analysis, Heldermann, 2013, 20 (3), pp.881-900
Liste complète des métadonnées

Littérature citée [37 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00825601
Contributeur : Bernard Brogliato <>
Soumis le : vendredi 3 novembre 2017 - 04:02:14
Dernière modification le : dimanche 5 novembre 2017 - 15:58:07

Fichier

BBDG.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00825601, version 1

Citation

Bernard Brogliato, Daniel Goeleven. Existence, uniqueness of solutions and stability of nonsmooth multivalued Lur'e dynamical systems. Journal of Convex Analysis, Heldermann, 2013, 20 (3), pp.881-900. 〈hal-00825601〉

Partager

Métriques

Consultations de
la notice

372

Téléchargements du document

3