Good reduction of Puiseux series and applications

Adrien Poteaux 1, 2 Marc Rybowicz 3
1 CALFOR - Calcul Formel
LIFL - Laboratoire d'Informatique Fondamentale de Lille
3 XLIM-DMI - DMI
XLIM - XLIM
Abstract : We have designed a new symbolic-numeric strategy for computing efficiently and accurately floating point Puiseux series defined by a bivariate polynomial over an algebraic number field. In essence, computations modulo a well-chosen prime number p are used to obtain the exact information needed to guide floating point computations. In this paper, we detail the symbolic part of our algorithm. First of all, we study modular reduction of Puiseux series and give a good reduction criterion for ensuring that the information required by the numerical part is preserved. To establish our results, we introduce a simple modification of classical Newton polygons, that we call "generic Newton polygons", which turns out to be very convenient. Finally, we estimate the size of good primes obtained with deterministic and probabilistic strategies. Some of these results were announced without proof at ISSAC'08.
Type de document :
Article dans une revue
Journal of Symbolic Computation, Elsevier, 2012, 47 (1), pp.32 - 63. 〈10.1016/j.jsc.2011.08.008〉
Liste complète des métadonnées

Littérature citée [42 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00825850
Contributeur : Adrien Poteaux <>
Soumis le : vendredi 24 mai 2013 - 17:08:37
Dernière modification le : jeudi 10 septembre 2015 - 18:13:42
Document(s) archivé(s) le : mardi 4 avril 2017 - 11:19:32

Fichier

JSC_ISSAC08.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Adrien Poteaux, Marc Rybowicz. Good reduction of Puiseux series and applications. Journal of Symbolic Computation, Elsevier, 2012, 47 (1), pp.32 - 63. 〈10.1016/j.jsc.2011.08.008〉. 〈hal-00825850〉

Partager

Métriques

Consultations de la notice

295

Téléchargements de fichiers

439