J. Schroeter and M. M. Sondhi, Techniques for estimating vocal-tract shapes from the speech signal, IEEE Transactions on Speech and Audio Processing, vol.2, issue.1, pp.133-150, 1994.
DOI : 10.1109/89.260356

V. Mitra, H. Nam, C. Espy-wilson, E. Saltzman, and L. Goldstein, Retrieving Tract Variables From Acoustics: A Comparison of Different Machine Learning Strategies, IEEE Journal of Selected Topics in Signal Processing, vol.4, issue.6, 2010.
DOI : 10.1109/JSTSP.2010.2076013

K. Richmond, Estimating Articulatory Parameters from the Acoustic Speech Signal The Center for Speech Technology Research, 2002.

A. Toutios and K. Margaritis, Learning articulation from cepstral coefficients, International Speech and Computer Conference (SPECOM'05), 2005.

V. Mitra, Y. Ozbek, H. Nam, X. Zhou, and C. Y. Espy-wilson, From acoustics to Vocal Tract time functions, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, pp.4497-4500, 2009.
DOI : 10.1109/ICASSP.2009.4960629

K. Kirchoff, Robust Speech Recognition Using Articulatory Information, 1999.

T. Toda, A. W. Black, and K. Tokuda, Mapping from articulatory movements to vocal tract spectrum with gaussian mixture model for articulatory speech synthesis, ISCA Speech Synthesis Workshop, 2004.

A. Toutios and K. Margaritis, A support vector approach to the acoustic-to-articulatory mapping, Proc. Interspeech, pp.3221-3224, 2005.

K. Richmond, A multitask learning perspective on acoustic-articulatory inversion, Proc. Interspeech, 2007.

R. Caruana, Multitask Learning, Machine Learning, pp.41-75, 1997.
DOI : 10.1007/978-1-4615-5529-2_5

S. Ben-david and R. Schuller-borbely, A notion of task relatedness yielding provable multiple-task learning guarantees, Machine Learning, pp.273-287, 2008.
DOI : 10.1007/s10994-007-5043-5

A. Argyriou, T. Evgeniou, and M. Pontil, Convex multi-task feature learning, Machine Learning, pp.243-272, 2008.
DOI : 10.1007/s10994-007-5040-8

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

T. Evgeniou, C. A. Micchelli, and M. Pontil, Learning multiple tasks with kernel methods, Journal of Machine Learning Research, vol.6, pp.615-637, 2005.

C. A. Micchelli and M. Pontil, On Learning Vector-Valued Functions, Neural Computation, vol.1, issue.1, pp.177-204, 2005.
DOI : 10.1109/34.735807

C. A. Micchelli and M. Pontil, Kernels for multi-task learning, Advances in Neural Information Processing Systems 17 (NIPS 2005), pp.921-928, 2005.

N. Aronszajn, Theory of reproducing kernels, Transactions of the American Mathematical Society, vol.68, issue.3, pp.337-404, 1950.
DOI : 10.1090/S0002-9947-1950-0051437-7

B. Schölkopf and A. J. Smola, Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond, 2002.

M. H. Quang, S. H. Kang, and T. M. Le, Image and Video Colorization Using Vector-Valued Reproducing Kernel Hilbert Spaces, Journal of Mathematical Imaging and Vision, vol.15, issue.5, pp.49-65, 2010.
DOI : 10.1007/s10851-010-0192-8

A. Caponnetto, C. A. Micchelli, M. Pontil, and Y. Ying, Universal multi-task kernels, Journal of Machine Learning Research, vol.68, pp.1615-1646, 2008.

J. R. Westbury, G. Turner, and J. Dembovski, X-ray microbeam speech production database users' handbook, 1994.
DOI : 10.1121/1.2029064