Basis Function Construction in Reinforcement Learning using Cascade-Correlation Learning Architecture

Sertan Girgin 1 Philippe Preux 1, 2, 3
1 SEQUEL - Sequential Learning
LIFL - Laboratoire d'Informatique Fondamentale de Lille, LAGIS - Laboratoire d'Automatique, Génie Informatique et Signal, Inria Lille - Nord Europe
Abstract : In reinforcement learning, it is a common practice to map the state(-action) space to a different one using ba- sis functions. This transformation aims to represent the input data in a more informative form that facilitates and improves subsequent steps. As a "good" set of basis func- tions result in better solutions and defining such functions becomes a challenge with increasing problem complexity, it is beneficial to be able to generate them automatically. In this paper, we propose a new approach based on Bellman residual for constructing basis functions using cascade- correlation learning architecture. We show how this ap- proach can be applied to Least Squares Policy Iteration al- gorithm in order to obtain a better approximation of the value function, and consequently improve the performance of the resulting policies. We also present the effectiveness of the method empirically on some benchmark problems.
Type de document :
Communication dans un congrès
International Conference on Machine Learning and Applications, Dec 2008, San Diego, United States. IEEE Press, pp.75-82, 2008, Proceedings of the International Conference on Machine Learning and Applications (ICML-A)
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00826054
Contributeur : Preux Philippe <>
Soumis le : lundi 27 mai 2013 - 15:39:03
Dernière modification le : jeudi 11 janvier 2018 - 06:22:13
Document(s) archivé(s) le : mardi 3 septembre 2013 - 09:41:48

Fichier

icmla08.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00826054, version 1

Collections

Citation

Sertan Girgin, Philippe Preux. Basis Function Construction in Reinforcement Learning using Cascade-Correlation Learning Architecture. International Conference on Machine Learning and Applications, Dec 2008, San Diego, United States. IEEE Press, pp.75-82, 2008, Proceedings of the International Conference on Machine Learning and Applications (ICML-A). 〈hal-00826054〉

Partager

Métriques

Consultations de la notice

375

Téléchargements de fichiers

339