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Abstract

We present a novel approach for the analysis and design of self-
supporting simplicial masonry structures. A nite-dimensional for-
mulation of their compressive stress eld is derived, offering a new
interpretation of thrust networks through numerical homogenization
theory. We further leverage geometric properties of the resulting
force diagram to identify a set of reduced coordinates characteriz-rigure 1: Simplicial Masonry.A self-supporting simplicial masonry struc-
ing the equilibrium of simplicial masonry. We nally derive com-  ture is a triangle mesh, de ned as a height eld over the plane (left). We
putational form- nding tools that improve over previous work in  show through numerical homogenization of the stress tensor that they support
ef ciency, accuracy, and scalability. their own weights if there exists an orthogonal dual diagram (middle), repre-
Keywords: architectural geometry, discrete differential geometry, senting a nite-dimensional approximation of the purely compressive forces

eometrv processing. orthogonal reciorocal diagram at play. We provide discrete counterparts to a number of continuous elds
9 yp 9 9 P 9 ’ (such as the convex Airy stress function, right) and differential equations

Links: @©DL PDF @ WEeB traditionally used in describing the equilibrium of these masonry buildings;
in particular, we offer a set of reduced coordinates of the space of statically
1 Introduction admissible shapes, linking our approach to regular triangulations.
The most subtle and exquisite part of architecture [...] is the formation
of [...] vaults; cutting their stones, and adjusting them with such arti ce, of form nding for masonry structures: while previous nite element
that the same gravity and weight that should have precipitated them to methods are known to restrict the topology of masonry structures to

the ground, maintain them constantly in the air, supporting one another
in virtue of the mutual complication which binds them [...].
Vicente ToscaCompendio Matematico (vol. 5-15), 1727

the case of simply connected domains, thrust network approaches
may lead to overconstrained balance equations depending on the
choice of boundary conditions. To overcome these issues, we intro-
Masonry structures are arrangements of material blocks, such asjuce in this paper a discrete theorysrhplicial masonry structures.
bricks or stones, that support their own weight. Constructing curved We show that the self-supporting properties of discrete simplicial
vaults or domes with compression-only structures of blocks, further structures can be derived from a numerical homogenization of the
prevented from slipping through friction and/or mortar, has been underlying continuous differential equations. By leveraging previous
practiced since antiquity. It is therefore no surprise that form nding methods, we offer a uni ed computational framework that enforces
and stability analysis of masonry structures have been an active aregahe compressive nature and the equilibrium of masonry structures
of research for years. exactly, for surfaces of arbitrary topology. In the process, we intro-
duce reduced coordinates to generate all possible reciprocal force
diagrams from simplicial meshes, and reveal geometric connections
to well-known continuous notions such as the Airy stress function.
Finally, we turn our theoretical contributions into an effective com-
putational technique for the design of simplicial masonry structures
that offers improved performance over previous work.

Equilibrium of a masonry structure is ensured if there exists an inner
thrustsurface which forms a compressive membrane resisting the
external loads [Heyman 1966]. Balance conditions relating the stress
eld on the thrust surface to the loads are well understood in the
continuous setting [Giaquinta and Giusti 1985; Fosdick and Schuler
2003; Angelillo et al2012]. Discretizing these equations have been
done thr_ough conf(_)rming and _non-conforming nite elements, _with 2 Discrete Self-Supporting Surfaces

formulations involving stress, displacements, or both [Fraternali et al

2002; Fraternali 2010; Fraternali 2011]. The discrete block-based The analysis of masonry structures follows two common assump-
nature of masonry has also led to the analysis of the network of tions [Heyman 1966; Giaquinta and Giusti 1985]: no tensile strength
compressive forces keeping masonry blocks together while resistingor material failure is at play; and there exists a thrust surface, con-
external loads [Block 2009]. The rich geometry of this force diagram tained within the masonry structure, in static equilibrium with the
has received attention from the geometry processing community load applied to the structure (including its own weight). A masonry
as well, with recent work on the structural soundness of masonry structure based on these conditions is namselfasupporting sur-
buildings [Whiting et al 2009; Whiting et al2012] and on the face, and we will further concentrate on pure vertical loading. We
design of self-supporting polygonal meshes [Vouga et al. 2012].  review next the continuum formulation of self-supporting surfaces,
before describing how one can upscale (or homogenize) these equa-
tions and turn them into a nite-dimensional problem—which will
provide rigorous foundations and extensions to the common use of
reciprocal force networks [Block 2009; Vouga et al. 2012].

In spite of the variety of computational techniques currently avail-
able, existing tools still impose stringent limitations on the process

2.1 Setup and de nitions
Before explaining our approach, we rst x a few notations.

Continuum Setup. A self-supporting surfac® is henceforth rep-
resented as a height functiarover a two-dimensional domalu
with a Cartesian coordinate system= [u;V ]:

uv boS(uiv) = uviz(uv) 1)

where we use brackets to concisely denote vectors. The Jacobian
matrixr S = I;rz' of this map lifts (i.e., pushforwards) vectors



fromU R? to tangent vectors o8 expressed iR?, and thence Finite/Discrete Elements. Discretized balance equations can be
de nes an induced metric tensbt onS asM =(r S)'r S. Conse- derived through nite element analysis for a nite-dimensional ap-
guently, quantities on the surfae(that we will denote for clarity proximation of the surface—typically, a triangle or quad mesh. How-
by an overline ) can be expressed in the plane as a function of  ever, traditional displacement-based conforming and low-order -

andv. For instance, the mass densitat a surface poing(u;v) nite element methods applied to this problem can lead to indeter-
de nes a density function in the plang as: minacy or divergence under re nement of the solution [Giaquinta
‘v = . Jor M- and Giusti 1985]. Stress-based discrete element methods were in-
Uv)= (S (V) det; @) troduced to remediate these issues, but they often required mesh
where detM accounts for the area change betw&and U. elements to be aligned with the principal directions of stress (see,
Similarly, a second-ogder tensorthat acts on tangent vectors of the  fo instance, [0'Dwyer 1999]). This unsavory constraint was further
surface expressed R” de nes a tensor in the plane through: removed through the use of non-conforming nite elements, where
Uv) = rsuv)' (Su;v)) rSu;v): (3) stress is expressed via a discretized Airy stress function [Fraternali
This setup will allow us to reexpress the 3D equilibrium conditions et al 2002; Fraternali 2010; Fraternali 2011; Angelillo et2012].
of masonry surface in 2D. We also refer to [Angelillo et2012] for Since the existence of a stress eld deriving from a Hessian matrix of

a rigorous derivation of this setup obtained by considering 3D equa-an Airy function is only guaranteed for simply-connected domains,
tions in the asymptotic limit of singular statically admissible stress this tight and ef cient discrete formulation restricts the topology of
eld concentrated on a surface lying inside the masonry structure. the surface.

Discrete Setup. For computational purposes, we will use a planar Force Diagrams. Another well-studied approach is to approximate

triangulationT discretizing the domait). We callV, E, and the continuum medium with an equivalent truss structure: the edges
F the set of vertices, edges, and triangles of the simplicial mesh, of a mesh are seen as the support of a force diagram acting on
respectively. The positions of vertices are denotediasgu i; vi], the nodes, thereby approximating the stress eld through uniaxial
and their associated heights are z(ui; vi), whilejij j indicates  singular stresses. Suchraust network analysi€TNA) [Block and

the length of edgé andjijk j indicates the area of triangigk in Ochsendorf 2007; Block 2009] only requires a negative value

2D. Triangles are oriented counterclockwise, and edges are givenper edgeg; , interpreted as a force density, to effectively encode the
an arbitrary (but xed thereafter) orientation. We callli) the set  stress tensor. The equilibrium equations for each interior vertex

of vertices that share an edge witrand we use; to denote the with heightz are then reduced to:

piecewise linear basis funcfion overfor vertexi with i (uj)= i . 8 p

Thus, the height eldz(u)=  ;,, zi i(u) represents a simplicial, 2 pin () i (uj u)=0

piecewise-linear masonry structure. Finally, we denotd pyhe e i (v vi)=0 6)
transpose of the incidence matrix of vertices and ediggjsrows, > pian G VAT _

jV j columns), where each row contains a singleand 1 for the jon oy 0 (@ z)=mig

endpoints of a given edge (the sign being determined from the chosen

eig oneniaton). and zerocihenise:anche vanspose of - 2117915 1S 067 (LT0C) revitons om0 reDe,
the incidence matrix of edges and facgsj(rows, E j columns), pite g P 9 9 plicity,

with +1 or 1 entries according to the orientation of edges as one %.h,\i&e.;.shg?egggtrwosrfgﬁl\%f gréttggoicz(]:ur%c%sgg tgohrgergriﬂie of
moves counterclockwise around a face. : 9 prop P

tects design self-supporting structures by applying the TNA model

2.2 Continuum mechanics description of equilibrium on polygonal meshes; they solved for edge valugsy iteratively
minimizing the residual of the TNA equations in the least-squares

ense while best matching a user-given height eld. Unfortunately,
his least-squares based methodology is not without shortcomings:
for mixed boundary conditions on the height, the resulting system of
equations is in general overconstrained, and it may thus fail to nd a
self-supporting solution without resorting to user interaction.

A self-supporting surfac§ is in equilibrium if the compressive
forces at play compensate for the dead load created by the surfac
mass density in a gravitational eldg =[0;0; g ]. This amounts

to a surface stress tensode ned by a symmetric, negative semi-
de nite matrix that satis es:

r =[0:09] 4
One can conveniently rewrite this equilibrium condition as two Towards a Hybrid Approach. It is worth noting that the modeling
separate equations using the 2D scalar elahd tensor de ned of a continuous membrane through a discrete force network [Block
via Egs. (2) and (3): 2009] closely matches the non-conforming approximation of the
r —0 and r (r2)= g ®) equilibriu_m problem [Fraternali 2011]. In_par_ticular, they both point
: out the singular nature of the stress (which is “lumped” along mesh

The rst equation indicates that the stress tensoion U is edges only) and the importance ofeiprocaldiagram to the planar
divergence-fredi.e., the divergence of each of the columns aé orthographic projection of the surface mesh. There are, however,

zero); the second relation equates an elliptic operator on the height toa few signi cant differences. For instance, Block [2009] favors
the local dead load in order to enforce balance. This last equation canprimal and dual graphs with corresponding edges intersecting at
be furtherreducedto z = g,where isthe Laplacianoperator a xed angle, but Fraternali [2011] uses a barycentric dual graph
in the metric induced by the stress Moreover, two-dimensional instead. This difference stems from the physical interpretation of
stress tensors oveimply connectedomains can be encoded simply  the dual graph: while the latter only needs well-formed dual cells
as the Hessian of a real-valued functiomegated and rotated on  over which the stress can beeragedn order to weakly enforce

both sides by=2 [Green and Zerna 2002]. Called tA@y stress equilibrium, the former associates a reciprocal diagram to the exis-
function, this function must be convex to enforce the compressible tence of edge-aligned forces that cancel out the gravitational loading
nature of stress tensor (Fig. 1). on each vertex. Our approach, described next and based on numeri-

cal homogenization, can be seen as reconciling these two methods
for simplicial masonry structures, as we will inherit the conceptual
The aforementioned differential description of equilibrium can natu- simplicity of TNA while still leveraging nite elements literature for
rally be leveraged to develop numerical schemes for the generationrigorous convergence analysis and bounds on accuracy. In particular,
of self-supporting masonry structures. Next we summarize previous we will introduce a discrete formulation for which both conditions
approaches before introducing our rationale for simplicial masonry. in Eq. (5) will be precisely enforced.

2.3 Existing discrete approximations of equilibrium



2.4 Upscaling of Self-Supporting Surfaces

We now introduce our nite-dimensional characterization of equilib-

rium for masonry structures. Derived from an edge-based discretiza-

tion of symmetric tensors and leveraging a geometric interpretation
of the diagram of forces at play, it will serve as the foundation of our
computational approach to simplicial self-supporting form nding.

Masonry equilibrium as upscaled elliptic problem. In x2.2 we
formulated the condition of equilibrium of masonry structures as an

elliptic problem in the space of divergence-free, symmetric, nega-

tive, and semi-de nite tensors (Eq. (5)). This exact case (up to sign)

appeared in the very different context of electric impedance tomog-

raphy with rough conductivity coef cients in [Desbrun et 2013],

where?y = f?igiov is the conventional discrete Hodge star for
zero-forms oril [Desbrun et al2007]. Note the presence tfo
different Hodge stars: while we discussed the emergence of a stress-
induced Hodge ste; for discrete one-forms that provides a geo-
metric realization of the force diagram, the second Hodge?sta

for zero-forms and represents an integration over each (barycentric,
circumcentric, or otherwise) partition of the mesh. This latter Hodge
star corresponds to the common practice of “mass lumping” in com-
putational mechanics. With Eg&) and(9), we have a discrete
formulation mirroring the continuous conditions of Eq. (5).

2.5 Stress-induced orthogonal dual diagram
The properties of the scalar valueg we listed above also have

where a numerical homogenization (or upscaling) of the equations @ simple geometric implication due to the Maxwell-Cremona the-
were proposed via a harmonic change of coordinates. In particular, it orem [Wardetzky et aR007]: it implies that anylivergence-free

was pointed out that a symmetric tensan 2D can be conveniently,
but rigorously discretized on a simplicial meEhby a scalar value

j for every (unoriented) edgg using the piecewise linear basis
functions ; and ; as:

i = r it r dedVZ
U
Properties of the continuous tensowere shown to carry over as
simple properties on the coef cientg . For instance, the negative

discrete stress tensor is associated tmehogonal(reciprocal)
Poincaé dual diagram to the simplicial planar mesh for which the
supporting lines of primal and dual edges are perpendicular. Conse-
quently, a simplicial surface is self-supporting if and only if exists
astress-induced orthogonal dual mesh, corresponding to the TNA
force diagram in [Block and Ochsendorf 2007; Vouga efall 2].
Conversely, the requirement of a divergence-free stress tensor re-
moves the need to consider non-orthogonal dual diagrams.

Reduced coordinates of orthogonal dual diagram. An orthog-

semi-de niteness of the continuous tensor corresponds to negativeonal dual diagram to a given planar primal mesh can be de ned

values of j . Moreover, due to the tensorbeing divergence-free,
the authors proved that for every veriex

X
u)=0; and vi)=0: (7)

i (Vi
2N (i)

i (U]

J2N (i)
Finally, the efliptic operator in Eq5) was then expressed in weak
formonT as i (zi z). Consequently, a direct application of

their nite elements methodology to our masonry case recovers the

TNA formulation of Eq. (6).

Connection to DEC. The use of edge values to encode the stress
tensor ts well the formalism of discrete exterior calculus (DEC,
see [Desbrun et a007; Grady and Polimeni 2010]), which will

allow us to use a more compact notation expressing both the continu-hold on every triangle of a given sim-
ous and discrete equations at play. Indeed, discretizing a symmetricplicial mesh, was explicitly written

tensor with a value parmnorientededge complements the discrete
version of a differential form (i.e., an antisymmetric tensor), which
uses a value parientededge instead. In fact,; can be interpreted,

by a set of dual vertex locations with added constraints to sat-
isfy the orthogonality condition between primal and dual edges:
this characterization was rst used in the context of conformal
parameterization [Mercat 2001] before being adopted for self-
supporting surface design through thrust network analysis [Block
and Ochsendorf 2007; Vouga et 2D12]. We instead introduce

a set of reduced coordinates that encallgossibleorthogonal
dual diagrams for a primal mesh of arbitrary topology. Recall that
orthogonal dual structure in a single uy,

triangle exists if and only if three per-
pendicular bisectors crossing the tri-
angle edges have a common intersect-
ing point. This condition, which mustd;;.

w;

2 2
die + di

d dj Y

=0, (10

in [Glickenstein 2005] as:
di o o+ d

ij
2
dki

up to the sign, as a discrete Hodge star deriving from the continuousWhereday is the signed distance between the vertiexand the

metric . Notice that if is minus the identity (i.e., the negated Eu-
clidean metric orJ), one nds the well-known cotangent-based di-

intersection of the lines supporting edgieand its perpendicular
bisector (note thad,, + dya = jabj; see inset). We can rewrite this

agonal Hodge star widely used in geometry processing. (See [Zayercondition in the language of algebraic topology (using DEC) so as
etal 2005] for a related expression in the context of quasi-conformal {0 Uncover a parametrization of the whole space of orthogonal dual
maps with piecewise-constant tensors.) More generally, the diago-diagrams for a given triangulation. Indeed, de ne a primal discrete
nal matrix?; = f?; i gi 2 is the discrete Hodge star for ~one-form! with value! j = dj  dj per oriented edgg . Then
one-forms associated to the metric corresponding to the planar stres§4- (10) states that an orthogonal dual mesh is fully de ned by a
tensor . Note that the compressive nature of the stress imposesclosedprimal one-formt , i.e.,d:! =0: once such a closed form
that the discrete Hodge star values must all be positive. Moreover,' i iS known,d; can be deduced from the given primal lengih$

Egs. (7) resulting from the divergence-freeness of the stress tensokEd: (12)). Furthermore, Hodge decomposition (see, e.g., [Desbrun
can be concisely rewritten as et al 2007]) can be invoked to rewrite this closed one-form as a

function of a primal zero-fornw and a (non-integrable) primal

di ?; dou=0: harmonic one-form, i.e.,
I = dow+ ;

with normal and tangential boundary conditions for the two terms
respectively. (Intuitively, the one-formcorresponds to a harmonic
vector eld which cannot be written as the gradient of a scalar func-
tion, hence the term non-integrable.) Finally, recall that harmonic
one-forms admit a small set of basis one-forms for an arbitrary
bounded planar triangulation, where is the rst Betti number
indicating the number of holes in the domain (see a simple computa-
tional procedure to compute this basis in, for instance, [Tong et al

®)

One can readily check this corresponds to a statemelimedr
precisionfor the -induced discrete Laplacian = d} ?; do onU,
since this discretization of the elliptic operator( r ) applied to
theu andv coordinates of the mesh returns zero.

Equilibrium equations.  Finally, the equilibrium equations that the
heightz must satisfy can be given in a weak form, by integrating the
differential equation over each planar dual celllaf

di?, doz= 2 g;

9)



2006]). We can thus compactly encode the one-forat an edgéj Stress on boundaries.  First recall that since only compressive
as a linear combination of these basis one-forms, i.e., forces should be at play, thg edge values must all be negative; the
X q boundary j values are no exception, and they de ne boundary dual
i = Cq jj s (11) edges on the stress-induced dual diagram. Moreover, since boundary
q=1: 1 vertices may be xed (via a buttress or other construction artifacts),
where 9 is a basis element for harmonic one-forms (with unit enforcing a divergence-free stress tensor at the boundary is necessary
circulation around its associated hole) agds a real-valued hole-  only for non- xed vertices. In our setup, the divergence-free con-
indexed coef cient. An orthogonal dual mesh can thus be arbitrary dition at the boundary is enforced in weak form by integrating the
constructed by assigning a valug per vertex (zero-form) and a  strong form over the planar regidf formed by the circumcentric
set of 1 valuesfc qgq=1: , de ning a harmonic one-form. Note dual ceﬂl associateg toclamped at the bounda@r Qt thus reads:
that the use oflo makes the zero-form de ned only up to a constant. X
The dimensionality of the full space of orthogonal dual meshes fora 0= r = n=
given meshT discretizing a domaitJ is thereforejVj 1)+ 1, Vi ev
i.e., the number of vertices @ (minus one to remove the additive  The rst term of this equation matches the de nition of divergence-
constant of the zero-form) plus the number of hole®f the domain freeness for interior points (E(B)), yet with an important difference:
U. An example of how the dual diagram is changed by hole-indexed boundary edges have Va|de,§ made out of on|y a partia| dual edge
coef cients is in Fig. 2; notice the concentration of stress near the (one of the two terms in Eq14) is zero since there is only one
hole, linked to the Saint-Venant principle of structural engineering. triangle adjacent tij ). We thus complete these dual edges by adding
Even though we will only consider planar meshes in this work, this houndary dual lengthis; = th i1j i 20T : With these additional
result is also valid for manifold triangulations of arbitrary genus. boundary variables, the resulting stress- u;,

?ij (Ui
j2N (i)

uj)+ n:
vi\@T

Closed-form expressions of edge stress values. Another con-
sequence of the Maxwell-Cremona theorem is that the valyes
(or, equivalently, the discrete Hodge star for one-fofimsare di-

rectly linked to the geometry of the primal-dual structure: each
edge value j is (minus) the ratio of dual length to primal length

of edgeij — tting the de nition of the diagonal Hodge star on

circumcentric duals [Desbrun et &007] and on weighted trian-

gulations [Glickenstein 2005; Mullen et.#011]. We can then
provide closed-form expression of ug
the edge values corresponding to a
divergence-free tensor. Denote by
Ciik the position of the stress-induced
dual node to trianglgk , and byc;
the position of the intersection of the
supporting lines of the primal ed 8
ij and of its stress-induced dual (s€&’"
inset). Additionally, de neh;q as
the signed distance betweegx and
cij , with a positive sign if the trian-
gle (ciik ;uj;u;j) has the same ori-
entation as the triangl@ i ; uj ; ux), "
and negative otherwise. One nds, for triangjle , the following
expressions:

P iRy
Y25 di = 2jijj (12)

- jij jeot i + cot i .

2 2jijj

+ cot ik [ (13)

hic i
a 2jij |

Then, from these functions &f; , the stress-induced Hodge star

value?; is expressed as the ratio of the dual length (denbieyito
the primal length of the stress-induced diagram dfigee.,
?ij = %, with hj = hj + hyj : (14)

Notice from this last formula that the-induced Hodge star has only
positive coef cient (corresponding to pure compression) if and onl

if every dual edge has a positive length, i.e., if the primal mesh
aregular triangulation[Preparata and Shamos 1985].

2.6 Boundary conditions

Proper handling of the boundaries is crucial to both the numerical
treatment (i.e., to avoid overconstrained equations) and the quality

induced Hodge star valu@s (that must
be positive to enforce compression) are
well de ned even at the boundary as
dual/primal edge length ratios. Notic

up

tangential boundary forces (just lik
the internal dual edges represents
rotated edge-aligned forces at play i
the domain). The compressinermal
forces on the boundary are instead re-
ected in the second term of the equa-
tion above: if we de ne the (negated)
normal stress at the boundary edpe
as j 0, the resulting normal force dp is thus equal to j nj;
with nj being the length-weighted outward normalijof The inte-
gration of the normal forces along \ @ with adjacent boundary
verticesj andk (see inset) becomés

1 1

2 2
These tangential and normal boundary terms offer a discrete analog
to the continuous, general stress boundary condition mfGi-
aquinta and Giusti 1985], and brings a more exible and general
boundary handling in the design of self-supporting surfaces.

Ug

Y

ij Mij ki Nki -

Boundary equilibrium.  Consider now the balance equations,
which this time involve heightg at the boundary. There are only
two types of boundary condition for a boundary vertex:

if a boundary vertex ianchored, its height is xed (generally
to zero if the height is supposed to be on the ground), and no
balance equation is needed for this vertex;

if a boundary vertex is not anchored (i.&ge), the balance
equation is then activated.

The physical and geometric justi cations of these two cases are
straightforward. Indeed, the equilibrium equation for the height at a

y l%oundary veitex is written in weak form as befcge:

. X
z= nrz= ? (zi
Vi ev i2N (i)
Besides the; (zi  z) terms which are also present for interior
points, an additional integral of the boundary stress appears relating

zj) + n'rz

viieT

INote that the twd =2 coef cients come from our speci ¢ choice of;

of the results (i.e., to guarantee self-support). Our discrete setupas circumcentric dual cells, which split every primal edge into two equal

leads to simple and exible boundary conditions.

parts; other cell decompositions would lead to different coef cients.



to the boundary values and . As in the divergence-freeness the convergence and accuracy analysis tools available in the nite
case, the values are incorporated in the dual lengths, while the elements literature [Desbrun et 2D13]. Moreover, we managed
normal component along the boundary segment  adjacent to to completely characterize the space of valid discrete equilibrium
the triangle  is discretized following [Fisher et al. 2007] as: solutions, which will allow us to solve for self-supporting structures

using the reduced set of variablesand that fully describe the
- set of valid discrete divergence-free symmetric tensordlany
remarks are in order, as our results relate to previous work not only

Engineering considerations.  Note that engineering design of in masonry design, but also in computational geometry.
masonry-like edi ces needs a full control of the stresses at play ] ) )
in the structure. So while we proposed to Slmply Sk|p the d|vergence_ W8|ghted VS. regular tr|angu|at.|0.ns. We parameterlzed the set Of
freeness and equilibrium equations for anchored boundary verticesall orthogonal dual of a simplicial mesh with a primal zero-form and
one may also adopt a more thorough description of the stress eld by @ harmonic one-form. Note that if the mestis simply connected,
adding these equations back, and including the respective boundaryhere exists no harmonic one-forms, so only vertex values are needed
compressions as variables for each vertex. Then one can controf0 span the space of orthogonal dual diagrams for a simply connected
these values to either make sure they do not exceed a critical threshtesh. This special topology case was in fact explicitly stated by
old that the anchor could not bear, or simply to make sure that these Glickenstein [2005], with the zero-form being referred to as
forces are also suf ciently compressive as a margin of safety. Simi- vertex weights. (The reader can easily check that the expressions
larly, hole-indexed coef cients and free boundary stressesan given in his paper match ours for the restrictive case )
be either xed based on engineering constraints such as prestressing! he resulting “weighted triangulations” were also shown useful for
or simply optimized along with the other variables. While we do not 9eometry processing [Mullen et 2011]. However, the case of an

explore all these speci ¢ engineering requirements, our formulation arbitrary domain topology was left unattended, probably due the
accommodates them naturally. fact that meshes in computational geometry are often studied as

. : projections of higher-dimensional convex polytopes—which forbids
Special cases. Finally, we point out that our approach reproduces  the presence of holes. It should be noticed that, as a consequence,
as special cases the boundary treatments presented in previous worlyeighted Delaunay triangulations and regular triangulations are
Employing Dirichlet or Neumann boundary conditions on the Airy  often assumed to be equivalent, but this statement ignores the

function as in [Fraternali 2010; Angelillo et.&012] (enforcing  additional dimensions available for the latter due to topology (Fig. 2).
both is known to be overconstrained) corresponds to enforcing the

same conditions on the zero-form valuesat the boundary. Instead,  Airy function. ~ Although our formulation drastically differs from
free boundary dual edges intersecting in a single point as in [Block Fraternali's work, a formal connection to the Airy stress function
2009; Vouga et al012] corresponds to setting normal stressés is easily made, once again for the special case of simply connected
zero (Figs. 3 and 9). Note that the latter boundary condition pushesdomains. The Airy function comes from the integrability of the
the extra boundary term in the equilibrium equation to zero as well. stress tensor seen as the (rotated and negated) Hessian of a scalar
While these choices are valid, they only correspond to a subset of all function [Green and Zerna 2002]. In the discrete setting, this func-
possible boundary conditions. tion corresponds to the integrable part of the orthogonal dual mesh
associated to the discrete stress valuesand thus it is de ned
through the zero-form via - .
Our discretization provides a formal backdrop to the equations used Geometrically, the Airy function can be seen as the lifting of the 2D
in thrust network analysis [Block and Ochsendorf 2007], and inherits mesh to a paraboloid of height as used in [Desbrun et.al
2013]; see Fig. 1. This geometric picture was previously used to
construct power diagrams [Aurenhammer etl@98] and is related
to the convex potential function found in optimal transporgjfigot
2011]. Hence, we have formally established that the discrete Airy
values in Fraternali's work are related to weights of the resulting
weighted Delaunay triangulation through: - - .Be-
sides extending his approach to arbitrary topology (i.e., non-zexo
our analysis offers a valuable discrete notion of divergence-freeness
that his work did not exploit, and links the convex hull procedure he
advocated to the construction of a weighted Delaunay triangulation.

2.7 Discussion

Generalized Airy function.  In the broader context of elastostatics,
Fosdick and Schuler [2003] introduce@@ntinuousyeneralization

of the Airy stress function to domains with holes by incorporating
the symmetric part of the derivative of smooth vector elds. Remark-
ably, our reduced set of coordinates for orthogonal dual diagrams
provides a principled and compleadéscretizationof such general-

ized representation of stress in the case of divergence-free tensors
on simplicial meshes of arbitrary topology.

Lumped mass matrix. ~ Finally, we point out that the speci c choice

of lumped mass matrix (in our case,) varies across the literature.

While Fraternali [2011] uses the integral of the density over each
Figure 2: Effect of harmonic one-formsIf a harmonic one-form is added barycentric dual cell of , Vouga et al. [2012] integrates over cir-
to a planar triangulation with non-trivial genus (top left), the stress-induced cumcentric dual cells. We also adopt circumcentric dual cells for
dual diagram (top right) is displaced (bottom right) by a non-integrable  simplicity, but alternatives are easy to incorporate. One may even
vector eld (bottom left), adding a valuable degree of freedom to nd self- consider using the space of all possible partitions of the domain as
supporting shapes_. Notice_that the di;placement is larger around the hole,yet another set of degrees of freedom. Besides the changes in local
and decreases rapidly due its harmonic nature. dead load that other choices of dual cells generate, the only other



amounts to extremizing subject to the linear inequality constraints
?; 0 that enforce pure compression throughout the structure,
plus the divergence-free condition at the free boundary vertices.

4 Computational Form Finding Algorithms

With a clear understanding of the geometry of the problem and of the
variables at play, we can now provide an approach to the generation
of self-supporting simplicial structures. We assume that an initial
pointset(u;; zi) is given, as well as a connectivity that de nes the
planar mesf with a non-overlapping orthographic projection, and
with tags on boundary vertices indicating whether an anchored or
free boundary condition is desired. In case the surface can not stand
by itself with the given inputs, we need to (minimally) alter its shape
to make it self-supporting. We give pseudocode of our overall form
nding procedure in Fig. 4, and go through the numerical details of
each step. We then discuss possible variants and design tools derived
from this basic computational approach.

Figure 3: Boundary conditions.The normal stress imposed around holes
can signi cantly affect the shape of a masonry structure; here, a shape
from [Vouga et al 2012] with several holes, where the boundary normal

stresses are either set to zero (left; notice that the boundary (orange) dual Input: initial meshT + associated heights + boundary conditions
edges meet at a point) or not (right; the normal forces are in dark blue). repeat

// Find best force diagram
difference that one needs to address is the treatment of boundary PERFORMSTRESSOPTIMIZATION (x4.1)

PERFORMHOLE-INDUCED STRESSOPTIMIZATION (Xx4.2)
/I Alter heights (and optionally, move vertices too)
PERFORMSHAPE OPTIMIZATION (x4.3)

until (equilibrium criterion met)

conditions: using two sub-variableg and i per boundary edge

ij representing the integration of the normal stresse¥idnij and

V; [ ji respectively allows for a more general setup with minimal
code modi cation.

Figure 4. Pseudocode of our form- nding solver.
3 Variational Formulation L
4.1 Stress optimization
We designed ix3 a variational principle whose gradient with respect
to weights measures how self-supporting a structure is: if we are at
a critical point (gradient equals zero), the structure is at equilibrium.
Unfortunately, this energy is not necessarily convex depending on
the input mesh; furthermore, there may not even be weights that
enforce equilibrium for a given arbitrary shape while satisfying
the inequality constraints. However, we previously noted that this

Variational formulations for equilibrium equations have a long his-
tory in mechanics, and the speci c case of masonry structures is no
exception [Giaquinta and Giusti 1985; Fraternali eR802; Fosdick

and Schuler 2003; Fraternali 2011]. Our setup involving a primal
simplicial mesh and a stress-induced orthogonal dual diagram turns
out to also offer a convenient variational formulation, but now at the
discrete level, which can then be used for computational purposes.

Equilibrium functional. ~ We introduce an enerdy that is a func- energy is quadratic in the weights. So from our variational principle,
tion of both the zero-form (“weights”yv = fwigovy and the we can nd vertex weights and boundary values that best enforce
harmonic-form coef cients = fc qg¢=1:: , as follows: equilibrium of non-anchored vertices in the sense by solving for:

2 3

X 1 X X argmin,, , . kr wEIG st.?; 0, =0) ey (16)
E(W; C): Zi4f dij hij 5 Wi (?i i g) . (15)

N ) ) Note that the divergence-free constraint is necessary only for free
] ) I

boundary vertices due to the extra boundary terms describi6n

) ] ) ) This quadratic energy with linear constraints will reach zero iff
Based on Eqq12)and(13), we note that this functional is quadratic  there exists a set of weights and boundary values de ning a valid
in both variablesv andc. We also point out that the term in brackets  stress-induced orthogonal dual for which the heightsatis es the

is an analytical expression of the area of the stress-induced dual cellequilibrium equations. In the likely case there are no such weights
for vertexi, while the second term depends on the vertex Bad g. (as the user may start from a very bad con guration), we nd the

To account for the boundary equilibrium conditions discussed in \eights which make the structure as close to equilibrium.
X2.6, we also incorporate to our energyan extra term for every
free boundary edgi¢ : Our approach is similar in spirit to [Vouga et &012], but we

now compute the best stress con guration using a smaller set of
hiy  (dj zi + dii 7)) equations. In fact, working in reduced coordinates enforces the
+ % i (Wi +w) cot j (zi z)+cot w (Z  z) divergence-free equations (E@&)) exactly_fc_)r all intt_e_rio_r vertices—_
thus we only have to solve for the remaining equilibrium equations
(Eq(9)), corresponding to two third less equations. As the size
. . : . of the system is considerably reduced, solving this optimization
andh;q provided in the appendix, one nds that the gradienEof convgrgence is much mor)(/e ef cient: even cg)]n relati\eely small
with respect to the We')?m’i of an interior vertex is: meshes, we get a 5x speed up. Our method also resembles the work
r o E= % @ z) (@ i9): of [Block and Lachauer _2011]; however, while th_e I_atte_r computes a
Wi A A b space of reduced coordinates through Gauss elimination of the TNA
equations (Eq(6)), which has cubic complexity in the mesh size, our
We immediately deduce that a critical point for weight&afnforces approach provides the reduced coordinates in closed form (E2js.
exactly the balance equations on all interior vertices, and similarly and(13)). More importantly, our boundary treatmentq®.6 is more
for free boundary vertices if we include the additional boundary general and turns previous approaches such as [Block and Lachauer
terms. Therefore, nding a self-supporting structure for a xed 2011; Vouga et aR012] from a potentially overconstrained problem
set of heights, boundary anchors, and harmonic-form coef cients to a systematically underconstrained problem.

Extremization conditions.  Using the derivatives of the ternalg

i2N (i)



Figure 5: Height optimization. An input shape from [Vouga et.&012] is optimized, improving the residual of the equilibirum equations along the way
(colormapped insets). Our form nding procedure removes the aphysical, concave center part of the shape. Compared to Vouga et al's result (red), we nd a
self-supporting con guration with a normalized Hausdorff and a distance to the initial shape of 0.04975 and 0.00758 respectively, while theirs are 0.04996

and 0.00831: their result suffers “sagging” of the initial shape near the anchored boundary, with less steep walls (see cut for comparisons).

4.2 Hole-induced stress optimization of the surface is mostly unaffected. Other weighting strategies can

Once the vertex weights and boundary values have been optimized,Of course be designed based on user preference.

we can then further improve balance (if it is not already enforced) pq part of the shape optimization procedure, we also introduce
by optimizing for the harmonic-form coef cients This, of course, 5 optional step of mesh smoothing: based on the current vertex
is only performed if the domain has at least one hole (' ), and positions  in the plane, we compute an update of the Optimal
we proceed as in the previous case by performing a solve for: Delaunay Triangulation optimization introduced in [Alliez et al

2005]: we move the coordinates of the mesisuch that the mesh
an elementson the surfaceare more equilateral. Note that this may
actually reduce the quality of the shape of triangles in the plane,
but the simplicial masonry structure will be better geometrically
discretized. This optional step serves several purposes: rst, it
guarantees that our algorithm does not create degenerate elements;
it also helps getting smoother resulting shape since the sampling
e31ua|ity is improved; nally, it favors the creation of concavities on
Stree boundaries.

s.t. boundary
Because the above energy is also quadratic in the coef cients
this optimization is particularly simple: we have a quadratic form
of only  coef cients to minimize under constraints. This allows
us to further adjust the stress-induced dual diagram in order to
improve balance, a step ignored by all previous approaches. See
few results of stress and hole-induced stress optimization on variou
input meshes in Figs. 3, 8 and 9.

4.3 Shape optimization 44 Variants
Finally, assuming that optimizing weights, boundary values, and Many possible variants of our algorithm can be implemented. In
harmonic components have not yielded equilibrium, we must mod- particular, margin of errors are important in engineering to allow
ify the assigned height values to nd a self-supporting surface. for small construction errors. Ong can qulfy the solvers to en-
This shape optimization step can take on various forms. Vougaforce a number of physical properties. For instance, the constraint
et al. [2012] advocated a change of heights in concert with a  that each  be zero or negative can be changed to be bounded
change of positions  toreacha minimum of the equilibrium away from_ zero (tc_J enforce non-negllg|ble_, but matenal-ade_quate
conditions. A change in node positions was bene cial in their case compression), which we accommodate with ease by changing the
because it helped enforce the divergence-free condition which, un-constraints in our optimization. Similarly, the boundary forces can
like in our approach, wasot satis ed by default. This particular ~ P€ assigned or optimized based on engineering needs. One could
approach has the inconvenience of not separating shape control angnforce constraints on the force diagram as well, by either bounding
mesh quality, which can change the initial shape quite signi cantly the maximum dual edge Iengths or penalizing wild variations in dual
in the process, as demonstrated in Fig. 5. Methods enforcing theleng_ths. We could a_llso prescribe the normal str_ess for free boundary
divergence-freeness through the Airy stress function (for simply Vertices, to deal with the case where a hole is attached to, say, a
connected domains) also proposed shape optimization of variousPl€, in order to suspend the whole masonry structure. By setting
forms. For instance, Fraternali [2011] was removing equilibrium- the normal stress terms to zero, we can further enfor_ce the boundary
violating vertices altogether until an equilibrium was reached, but dual edges to intersect in a single point, as done in [Block 2009;
this form nding approach may destroy the mesh quality. Instead, Youga et al2012] (Figs. 3 and 9). A user-de ned varying mass
Angelillo et al. [2012] proposed to freeze the parts of the surface density can also be de ned if the masonry structure is supposed
already satisfying equilibrium and solve for the optimal remaining 0 Withstand an extra load (Fig. 6). Finally, we point out that we
heights. However, this binary update reduces the smoothness of the2Ssumed a given connectivity in our approach. However, we may
results, and ends up taking time to converge.

Here again, we leverage our variational approach to provide a simple
and robust numerical approach for smoothly modifying the shape
to become self-supported while staying as faithful as possible to
the original input shape. To achieve this effect, we use a minimiza-
tion with soft constraints: we minimize with respect to eacthe
norm of the residual of the balance equations, where each vertex
is weighted inversely proportional to its local balance residual.
In other words, we optimize the heights by giving more leeway to
vertices that are signi cantly violating the equilibrium condition,
while vertices already near equilibrium will keep their heights al-
most unchanged. This weighted-residual minimization has the
advantage of only affecting the shape in parts that are signi cantly Figure 6: Load bearing.By changing the load in a small region at the top
not self-supporting: Fig. 5 shows that while concave parts of the of an initial half—sphere_ shape, various dome shapes can be generated. In
original shape are necessarily altered to reach self-support, the resprder: constant mass, lighter top (0.1), and heavy top (5).



also alter the connectivity either based on user-guidance, or duringequivalents. We also exploited these properties to formulate a set of
the form nding procedure to optimize for, e.g., maximum stress. reduced coordinates in order to encode equilibrium and boundary
Adaptive meshing may also be an interesting avenue to explore toconditions. Finally, we leveraged this tight formulation to produce a
re ne the shape where stresses are high. In all cases, our knowledgecomputational form nding procedure to alter a reference shape into

of the reduced coordinates for which a structure is self-supporting a free standing simplicial masonry structure.

leads to more compact equations and faster solves.

4.5 Timing and accuracy

We used CGAL [2012] as our mesh library, and IPOPTaphter and
Biegler 2006] as our numerical optimization library. Equilibrium
of all our examples was enforced by ensuring that.thenorm of

the gradient of the residual of non-anchored vertices is below 1e-6,

which took between 5 and 20 iterations of our form- nding iterative
solver depending on the input model size. Typical timings for the
various form nding tests we made were at most two minutes. We
also compared in Fig. 7 our stress optimization timing to Vouga et
al. [2012] and found a systematic improvement varying from a factor
2 to 7 for meshes of various sizes.

Model V,E;F Vouga et al.'s Ours
Cheese-model (Fig. 3) 2348,6218;3832 13.078 9.8
Lilium (Fig. 5) 1201;3504;2304 4.136 0.887
Variable load (Fig. 6) 1156;3368;2213 3.65 0.77
Shifted barrel vault (Fig. 8) 310,836,527 0.24 0.15
Moebius igloo (Fig. 8) 702;2006;1304 1.3 0.4
Dome with hole (Fig. 8) 1656;4842;3186 7.7 15
Groin vault (Fig. 8) 2943,8569;5627 23.6 4.1
Free vault (Fig. 9) 360;1000;640 0.387 0.18
Dome with doors (Fig. 9) 577;1600;1024 0.877 0.368
Video-surface (Fig. 9) 1131;3194;2064 3.55 0.98
Cas-model (Fig. 9) 5951;17472;11520, 90.1 18.0
Oval dome (no gure) 12250;36500;24251 443.467 61.277

Figure 7: Timing. Comparisons between dual optimization timings (in
seconds) from Vouga et al. [2012] and our approach. All results were
clocked on an Intel Core i7 2.2 GHz laptop with 4GB RAM.

5 Conclusions

Our work on simplicial masonry provides a discrete theory of equi-
librium for purely compressive structures that can support their
own weight. We showed that the well-known continuous equations
from the rich mechanical engineering literature nd simple, discrete

Figure 8: Gallery. Free-standing shapes can be obtained with our approach.
While the Moebius igloo was our design (top right), the dome with a circular
oculus (top left, similar to Rome's Pantheon; notice how the opening dilates
during optimization to enforce equilibrium), the groin vault (bottom left), the
shifted barrel vault (bottom right), and the spiral staircase (center) are all
classic masonry structures (insets show the initial meshes we used).

As future work, our discretization could be used to predict or simu-
late the development of cracks over time based on the stress eld's
principle directions as postulated in [Fraternali 2011]. It may also
be interesting to apply our setup to the “opposite” case of wrinkled
membranes, for which the forces at play are tensile instead of com-
pressive [Wong and Pellegrino 2006]. Many of the properties we
mention should remain valid as is, with an opposite sign. General-
ization to arbitrary structures, including reinforced concrete, may
also bring a complementary set of computational techniques to the
traditional nite elements tools currently used in engineering rms.
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Figure 9: Stress-induced Dual.Self-supporting simplicial surfaces and
their stress-induced dual diagrams computed via stress and hole-induced
stress optimizatiorx@.1 and 4.2) for a series of meshes of arbitrary topology
from [Vouga et al2012], with boundary normal stresses set to zera=(0 ).





