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Abstract. We aim at optimally combining air quality computations, fran
the Gaussian model ADMS Urban, and ground observations at urbascale.
An ADMS simulation generated NQ concentration elds across Clermont-
Ferrand (France) down to street level, every three hours fdhe full year 2008.
A monitoring network composed of nine xed stations providé hourly ob-
servations to be assimilated. Every three hours, we computiee so-called BLUE
(best linear unbiased estimator), which is a concentratioreld merging ADMS
outputs and ground observations. Its error variance is supged to be min-
imal under given assumptions regarding the errors on obsatswns and model
simulations. A key step lies in the modeling of error covamees between the
computed NO, concentrations across the city. We introduce a paramete&d
covariance which heavily relies on the road network. The cawance between
two locations depends on the distance of each location to tlhhead network
and on the distance between the locations along the road netik. E cient
parameters for the covariances are primarily chosen accorg to prior as-
sumptions, 2 diagnosis and leave-one-out cross-validations. Accorditw

the cross-validations, the improvements due to the assiration seem mod-
erate far from the observation network, but the root mean sque error roughly
decreases by 30% to 50% in the main city where the station dégss high.
The method is computationally tractable for the generatiorof improved con-

centration elds over a long period, or for day-to-day forea&sts.
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1. Introduction
. Drivers, cyclists and pedestrians are mainly exposed to rogen dioxide and particles,
» especially originating from tra ¢ exhausts. The nitrogen doxide is a strong oxidizer
» Which can lead to harmful e ects on airways. The exceedancé given thresholds can
» raise problems for asthmatics. The particles have short t@r and long term e ects on
» respiratory and cardiovascular systems, especially on kehien, asthmatics and old people.
» In recent years, there has been a growing interest for the nemcal simulation of air
» quality at urban scale, aiming at the estimation of atmosph& pollutant concentrations
« in all urban areas, down to street level. One motivation is tamprove the evaluation of
» exposure of the considerable urban population.
= In order to estimate the concentrations of main urban pollints, one can rely on both
« eld observations and model simulations. Air quality monitaing stations provide accurate
s information at a few locations over a city and for a few pollwnts, while the numerical
» Simulations deliver less accurate concentrations at virally any outdoor place and for a
«» range of pollutants. Data assimilation can be employed to oine these two sources of
» Information in order to better estimate the chemical state bthe atmosphere.
»  Data assimilation has been applied in the air quality commuty, mostly at large scale
» and with Eulerian chemistry-transport models [e.g.Elbern and Schmidi 2001; Segers
« 2002;Chai et al., 2007;Wu et al., 2008]. In this paper, we address the assimilation of
~» Observations of an urban monitoring network in order to coect the concentrations of
= hitrogen dioxide computed by a Gaussian urban air quality nael (ADMS Urban). A key

« Step of the assimilation procedure is to model the error vamce of the NG concentration

DRAFT May 21, 2013, 10:30am DRAFT



45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64
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eld. It means specifying the variance of the error at all coputed locations and specifying
the correlation between errors at di erent locations. The than air quality model is static

so that it is not possible to apply a lter, like a Kalman lter , that would propagate the

error variance. In this paper, the error variance for the carentration elds is therefore

prescribed, through a speci ¢ parameterization that takegto account the road network.

The so-called best linear unbiased estimator (BLUE) is theromputed for every available
date of the model simulation.

The concentration elds for nitrogen dioxide are computed yp ADMS across the city
of Clermont-Ferrand, France, every three hours for the whelyear 2008. The air quality
monitoring network is composed of nine xed stations | two tr a ¢ stations, four urban
stations and three peri-urban stations. Details about the wdel, its computations and the
case study may be found in Section 2. The assimilation methasldescribed in Section 3,
and the Section 3.3 details the parameterization of the emr@ariance for the concentration
elds. The choice of the assimilation parameters is discues in Section 4.1. The results

are analyzed in Sections 4.2 and 4.3.

2. Urban Air Quality Modeling over Clermont-Ferrand
2.1. ADMS Urban

ADMS Urban [D.J. Carruthers and Singles 1998] is an air quality model for the dis-
persion in the atmosphere of continuous releases from thdl ftange of emission sources
including road tra c, industrial, commercial and domestic emissions. This static model
estimates the stationary solution of the dispersion equatn, using a three dimensional

guasi-Gaussian formulation. It requires input meteorolagal data, background concen-
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TILLOY ET AL.: NO , DATA ASSIMILATION AT URBAN SCALE X-5

trations and detailed emission inventories. The output siodation mesh is subdivided in
a coarse regular grid and a high-resolution mesh in the vidiy of main emission sources.

A meteorological pre-processor calculates the requireduralary layer parameters from
a variety of input data. The wind speed and the cloud cover eb& to determine the
surface heat ux through a surface radiation budgetHoltslag and Ulden 1983]. A two-
equation system, composed of a surface layer wind pro le exgjion and a Monin Obukhov
length equation, enables to estimate the friction velocitand the Monin Obukhov length.
These two parameters are used to compute the boundary layeeipht in stable condi-
tions as described byNieuwstadt [1981]. In convective atmosphere, the boundary layer
height evolves according to an unstationary integral moddifennekes 1973; Tennekes
and Driedonks 1981; Driedonks, 1982]. Dierent pro les of the boundary layer (mean
wind, temperature, standard deviation of wind componentsgtc.) are then determined
from surface similarity theory. A topography module managethe dispersion over hills
and over regions with surface roughness changes. In neutalconvective conditions, the
wind and turbulence elds are calculated using linearizedralytical solutions of the mo-
mentum and continuity equations. In very stable conditionsthe atmosphere is divided
into two layers: in the layer just above the surface, the airows around the relief; in the
other layer, the air ows over the relief. For intermediate onditions, ADMS Urban relies
on a weighted average of these two behaviors based on Froudenber.

From the boundary layer pro les and the mean plume height, ADNs Urban determines
the horizontal and vertical concentration distributions,which are always Gaussian except
in convective conditions, where the non-Gaussian verticabncentration distributions de-

pend on the skewed vertical velocity distributions. A stredecanyon model enables to
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determine the concentration eld in the streets whose buiidgs are higher than @ m.
This model is based on the Danish model Operational Street Rdgion Model [Hertel and
Berkowicz, 1989]. For this work, the chemistry is quite simple: the NOconcentration is

determined from the NOx concentration as described iBerwent and Middleton[1996].

2.2. Meteorological Data, Topography and Land Use

The meteorological input data is measured at the Meto-Fance station Aulnat located
in the Clermont-Ferrand airport. Wind speed, wind directionand temperature are re-
quired along with the cloud cover.

The Shuttle Radar Topography Mission (SRTM) data sets prode the topography data
in case of activation of the topography module. The ®resolution data base results from
the collaboration between the NASA and the National Imagery andMapping Agency,
among others.

We consider homogeneous land cover with constant roughnédssgth of G4 m but we
use specic value (®m) for the site of the meteorological station : the model adgts

wind speed measurements to take into account this di erence

2.3. Emissions

Emissions include main industrial sources, road sourcesdaa grid source for poorly-
de ned sources like heating sources and minor roads. Locatiand width of roads and
buildings heights are estimated from \Clermont Communawg” database.

For road sources, the emissions in g are computed Bs= AF, where A is the vehicle
activity in vehicleskm ! and F a unitary emission factor in g km vehiculest. The emis-

sions are computed using COPERT 1V, the COmputer Program to deulate Emission
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from Road Transport (http://www.emisia.com/copert/General.html ), which relies on
a database of unitary emission factors. A unitary emissioradtor is attributed for each
pollutant to each vehicle category. It depends on the carbetor mode, the engine size
and the vehicle registration date. The emission factor alstepends on the vehicle speed,
imposed by road signs, and on the tra c conditions, which depnd on the month and on
the day type (weekday, Saturday and Sunday). Tra c conditims are determined from
past observations of tra ¢ counters over the city. Note that the real time tra c is not
considered. The model COPERT IV takes into account the warmneissions, the cold
emissions and the slope-induced emissions for the heavynsport. A few corrections are

applied for old vehicles and for fuel improvements.

2.4. Case Study

A simulation at urban scale has been carried out over the cityf Clermont-Ferrand for
the whole year 2008. The output concentrations are computet 30;971 ADMS Urban
receptors, all located at I5m from the ground. The concentrations of nitrogen dioxide
have been computed at these receptors every three hours. Apideed in Figure 1, the air
guality monitoring network is composed of nine xed statios, with two tra c stations
(Gare and Roussillon), four urban stations (Lecoq, DelilleJaude and Montferrand) and
three peri-urban stations (Gerzat, Gravanches and Royat)The stations at Roussillon,
Gerzat, Gravanches and Royat are rather far from the group atations located in the
center of the city.

The altitude of the stations varies while the computed conagrations are all located
at 1:5m height, so as to avoid modeling the error correlations alg the vertical between

simulated concentrations (see Section 3.3). However, in erdo better evaluate the model
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performance without assimilation, we add one ADMS receptorep station, located at the
real stations altitudes. Note that these nine additional regptors are not used in the
assimilation procedure.

The performance evaluation relies on the scores shown in T@ald and on criteria intro-
duced by Chang and Hanna[2004]: a normalized bias between0:3 and Q3 is recom-
manded and a normalized mean square error (NMSE) should be &whan 15. We
prefer to de ne the limit NMSE as 05 and we target a correlation higher than ®. The
actual values for our full-year simulation are given in Tald 2. For all the stations, the
normalized bias is between 0:3 and Q25. The correlation and the NMSE are out of
these criteria only for the station Royat, with a correlatin of 059 and a NMSE of 103.
At this station, the dispersion model overestimates the caentrations. Royat is located
on the Clermont-Ferrand heights and the relief is rugged amad this station, so the wind
eld is hard to simulate and ADMS Urban does not succeed in it. Té scores at the other
stations are signi cantly better, except for the station Jaule whose NMSE is almost equal

to the limit value.

3. Assimilation Method

3.1. Problem Statement

The model produces the state vectoe® (b stands for background). The concentration
eld is observed at given locations, which gives an observah vector o. A data assimi-
lation algorithm will produce a new state vectorc® (a stands for analysis) based on the
model statec® and the observationo.

Each observation location matches on the horizontal with aADMS Urban receptor. We

consider that the concentration simulated by ADMS at these @eptors is our estimation

DRAFT May 21, 2013, 10:30am DRAFT



151

152

153

154

155

156

157

158

159

160

161

162

164

165

166

167

168

169
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of the true concentration at the station location, even thogh there may be a di erence
of altitude between the station and the ADMS receptor. We intoduce the so-called
observation operatorH which maps from the state space to the observation space, $at
HcP is the simulated counterpart ofo. The operatorH is therefore a matrix in which each
row i is full of zeros except at the the column that corresponds to the receptor located
at observation stationi. The elementsH;; are equal to one if and only if thg -th receptor
corresponds to thei-th observation station. The discrepancy between the obsations
and the simulated concentrationsp HcP, is called the innovation.

Let ¢ be the real atmospheric concentrations that at the ADMS recégrs. We assume
that the computed concentrationsc® have an unbiased erroc® ¢ with variance B. We
assume that the observation vectoo has an unbiased erroo Hc' with variance R. Note
that the observational error depends orH. If the true concentrations at the observed
locations ared!, the observational erroro Hc! can be decomposed in an instrumental
error o o' and a representativeness erroot  Hc'. In our case, the latter is due to

altitude di erence between the observation station and théADMS receptor.

3.2. Best Linear Unbiased Estimator (BLUE)

Based onc®, B, o and R, the analysis state vector is computed as the so-called \Bes
Linear Unbiased Estimator" which is linearly dependent or® and o, has unbiased error
@ d and has a variance with minimum trace [see, e.gBouttier and Courtier, 1999].

This estimator is uniquely de ned as

=+ K( Hc;
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K=BHT(HBHT+R) !:

For data assimilation at larger scale, the state error coveances can be reasonably pa-
rameterized as a function of the geographical distance, g.gith a decreasing exponential.
At urban scale, our state error variances do not only dependdhe distance, but also on

the road network.

3.3. Modeling of the Covariance Matrices

The observational error covariance matrix is taken diagomhahence assuming no corre-
lation between the observational errors at two di erent stéions. The observational errors
covariance matrix is therefore

R = vl ;

wherev, is the observational error variance.

For nitrogen dioxide, we assume that an important part of thestate errors originates
from the tra c emissions. As a consequence, we assume higharcorrelations between
receptors on the same road or on connected roads. Also, a recepn a road should show
a lower error correlation with a receptor in the backgroundhan with another (equally
distant) receptor on the road.

We introduce the distanced; along the road between two receptors indexed hyand
| . The distance along the road is de ned as the smallest distea it takes to travel on the
road network between the two receptors. If the two receptoisand j are not located on
a road, they are rst orthogonally projected on the road netwrk, and d; is taken as the
distance along the road between the projections. We also liatluce the distanceP; of the

receptori to the road network, that is the geographic distance to the okest road.
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We de ne Bjj, the covariance between the state errors at receptorsand j , as

Bj = vcexp Lid exp JLIP(—IJJ)J :

with

Lo(i;5j)= Lo+ min(Pi; P}) ;
whereL4 and L, are characteristic distances, strictly positive, respeieely along the road
network and transverse to the road network, a scaling coe cient without dimension and
V. a variance. The covariance is assumed to decrease exporadigtiagainst the distance
along the road and in the direction transverse to the road. Tdcorrection min(P;; P;) is
added so that the decorrelation length is increased with thadistance to the network: while
the error correlation with a road receptor is assumed to dezase fast in the vicinity of the
road, the errors correlation between two background receps should remain signi cant
across a larger distance. The Figure 2 illustrates the staterer covariances modeling:
the rst gure shows the error correlations (Bj =\;) with a receptor located on the road
network, whereas the second gure shows the error correlatis with a receptor located
out of the road network.

The error covariances are constant in time. In particular,itey do not depend on tra c
conditions. This is surely an approximation which should baddressed by uncertainty
guanti cation studies on urban models. Such study would preagate in the model the
uncertainties originating from tra ¢ emissions. It would require prior uncertainty quan-
ti cation on tra ¢ assignment (and corresponding emissiors), which would in turn require
the availability of tra c observations for the evaluation of the tra ¢ model. In this paper,
the proposed covariance model is parameterized so that itrcée applied in the absence

of a reliable uncertainty quanti cation study.
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3.3.1. Specic examples

Between two receptors on the road networkR; = P; = 0), the state error covariance
is equal to %vc when the distance between the receptors oy = 0:7L4. Between two
receptors on the same normal to the road networkd{ = 0) and on the same side,
the state error covariance is equal tc%vC when the distance between the receptors is
0:7(L,+ min(P;;P;)). By de nition, this distance increases for background reeptors.
Between two receptors so thaP; = P;, not necessarily on the road network, the covariance
highly depends on the distance along the road network. Thearrors correlation is equal
to 1 if dj = 0: we assume that these two receptors are subject to the sameors.

Note that state error covariance matrixB is a covariance matrix, hence symmetric
and positive semi-de nite. The matrix is not positive de nite because we can found two
distinct receptors with the same distance to the road netwkrand the same projection on
the road network; hence several columns (or rows) Bf are identical.

3.3.2. Implementation

Computing B requires the evaluation of the distance along the road betes all receptors
projections on the road network. In order to carry out theseamputations, we represent
the road network as a non-oriented graph: each road portionitlwout any crossroad is an
edge and each crossroad is a node. In the graph, we also addeag nodes the projections
of the receptors on the road network. We then add the correspding edges, which
represent the road portions between all nodes (i.e., the peations and the crossroads).
The weight of an edge is the length of the road portion.

The celebrated Dijkstra's algorithm may be applied to nd the shortest path between

two nodes in the graph. IfV is the number of vertices ancE is the number of edges, the
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complexity of an e cient implementation of the algorithm is O(E + V logV). This should
be applied to each pair of nodes, hence resulting in a comgtgxof O(EV?2+ V3logV).
This is intractable in our case wheré&e = 44,242 andV = 35;413.

We thus apply Johnson's algorithm which is designed to e cietly compute the shortest
paths between all pairs of nodes. This algorithm uses Dijksts algorithm, but its overall
time complexity is O(V Elog(V)) in the Boost implementation. The shortest path al-
gorithm is fully described on the pagéttp://www.boost.org/doc/libs/1_40_0/libs/

graph/doc/johnson_all_pairs_shortest.html

4. Application
4.1. Determination of Assimilation Parameters

4.1.1. Observations and their Error Variances

We do not have access to detailed information on observati@rrors over Clermont-
Ferrand, but we have access to the mean observation variarmer the monitoring network
of Paris metropolitan area. Based oirparif [2007], the air quality association for Paris
area, Airparif, evaluates the uncertainty of the observatios of its monitoring network.
The uncertainty is computed as a sum of variances which cospond to di erent error
sources (instrument calibration, temperature and pressearconditions, data processing,
etc.). We analyzed the uncertainties evaluated by Airparifdr the full year 2009. On
average, the uncertainty decreases with the concentrationFor nitrogen dioxide, the
mean concentration measured over Paris is Z0 gm 2 whereas it is only 2% gm 3
over Clermont-Ferrand. Consequently, the mean uncertaiptvalue obtained over Paris

cannot be directly applied to Clermont-Ferrand. A way aroud the problem is to remove
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the highest concentrations from the database in order to rede the mean concentration
down to 254 gm 3. The corresponding error variance is then:96 g>m ©.

The concentrations are simulated at 5m from the ground, but they are measured
at higher altitude. This di erence is taken into account in the representativeness error,
which is part of the observational error. We approximate theepresentativeness error
based on model simulations which are available both at theaton height and at 15m.
The mean empirical variance of the di erences between thensillated concentrations at
the two altitudes is 175 g?m 8. The observational error variance is roughly estimated
by the sum of the measure error variance and the representaness error variance; we
nally setitto 8 g?>m 6.

4.1.2. State Error Variance: 2 Diagnosis
The state error variance is determined using a? diagnosis. The diagnosis enables to

check the consistency between the available innovations

on H.C

and their variances

Sh=Rn+ HanHrT ;

wheren represents the time step. The scalar

ﬁz(on ang)TSnl(On ang)

is expected to be equal to the numbefF, of observations. And therefore, we should have

X 2
T
Fn

n=1
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Hereafter, we consider the value

whereT is the total number of steps. This value oA should be 1.

The 2 diagnosis is carried out for several values of{Lq4;L,; ). The Table 3 reports
a few tests, and supports the choicev§; Lg;Lp; ) = (220 g?m ¢;3000m 200; 1), which
we de ne as the reference con guration. The impact on the vaé of A of the decorrelation
length transverse to the road network and of is lower than the impact of the state error

variance and of the decorrelation length along the road nebsk.

4.2. Results

The assimilation is carried out every three hours, when nevinsulated concentrations
are available.

The analyzed concentration at a station location is almostgeial to the observation (see
Figure 3), which is partly expected because the ratio betwedie state error variance and
the observation error variance is very low.

Before assimilation, the model often computes too low comteations at urban stations.
The assimilation of the observations e ciently corrects ths problem, as depicted in Fig-
ure 3. After assimilation, the road network remains clearlyigible and the concentrations
are higher in the immediate vicinity of the road. At peri-urkan stations, the model may
simulate too high concentrations, which is also correctedylata assimilation. The an-
alyzed values lead to a reduced background pollution in a g perimeter around the
peri-urban stations while the pollution over the roads in tis area is almost not impacted.

As the data assimilation strongly corrects the concentratits in the vicinity of the

stations and may not correct the concentrations further, t concentration maps can
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show some spatial inconsistencies, even if every point centation of these maps is likely

to be closer to its true value. The main scenarios, when incgigtencies can occur, are of
two kinds. In the rst scenario, the model overestimates theoncentrations in urban area.

The assimilation of the observations at tra c stations deceases the concentrations on the
road network, while the background concentrations may renra essentially unchanged,

and possibly with higher values. In this case, the concentrans in one road may be lower

than the concentrations in the background. In the second stario, the observations at

a peri-urban stations are strongly higher than the simulat concentrations. Then again,

the corrected concentrations in the background can becomigiher than the concentrations

along the roads. However these scenarios seldom occur.

Note that the reference values\;Lg;Lp; ) = (220 g®m 5,3000m200m 1) were
selected not only on the basis of the ? diagnosis (which can be satis ed with other
values), but also on the basis of the output maps. The physici@consistencies previously
mentioned especially occur when the value chosen 1oy is too low compared toL 4 and

when is lower than 1.

4.3. Performance Evaluation with Leave-One-Out Cross-Validation

The leave-one-out cross-validation consists in removingéd observations of a given sta-
tion from the data assimilation process. Only the observains from the other stations are
used to correct the concentrations. This procedure is caed out for all stations, one by
one: only one station is removed at a time. At the removed stan, the model performance
at 1:5m height is compared to the performance after assimilatioof the observations of

the other stations. This enables to check whether the assiation properly distributes
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in space the corrections that originate from the observeddations. The cross-validation
evaluates the e ects of the data assimilation method at lo¢®ns without any observation.
4.3.1. Scores

The cross-validation was carried out for the reference vas {/;Lq;Ly; ) =
(220 ¢g?m ©;3000m200m 1) from Section 4.1.2. The performance before assimilation
is given in Table 4. The results after assimilation are givem Table 5. The largest
improvements occur in urban area (at the station Jaude, the iprovement is of 46 %),
compared to peri-urban area (at the stations Gravanches ariRoyat, the improvements
are respectively of 17% and 5%). It is likely that the distare between the peri-urban
stations makes it di cult to obtain enough information to compute strong and reliable
corrections from one station to the other. Another possiblexplanation may be an un-
satisfactory modeling of the error covariances between perban receptors or between
urban and peri-urban receptors. In some cases, the absoliiias increases but remains
inside the interval recommanded inChang and Hanna[2004] (see the rst two columns
of Table 5).

Figure 4 shows the RMSE for the months of the year, at all statis and at Jaude.
Note that the largest improvements are found at Jaude (see Figais), which is close to
the road network and in the vicinity of three other stations. The distance to the other
stations plays an important role, as shown in Figure 5. The lgest improvements are
found at stations close to the rest of the network.

We nally consider all discrepancies between observatioasd simulated concentrations.

Figure 6 shows the relative frequency distribution of the disepancies, before and after
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assimilation. After assimilation, the discrepancy distrilaition is signi cantly narrowed
around 0. The largest discrepancies have a much lower fregag after assimilation.
4.3.2. Sensibility to the Parameters of the State Error Covariance Ma trix

First, several values of the scalar are tested, whereas the characteristic decorrelation
lengths Ly and L, remain constant and equal respectively to 3000m and 200m. &h
Table 6 shows that the global RMSE decreases whenincreases, but the sensitivity is
very low. This parameter essentially plays a role in the vigity of peri-urban stations, but
there is no pair of close peri-urban stations that could helfp evaluate the real impact of

. Itis set to 1 in the rest of the study.

The assimilation performance signi cantly increases witlthe characteristic decorrela-
tion length along the road network,L 4. Table 7 reports the performance for several values
of Ly, with L, set to 200m. The best performance is achieved fog = 5000 m and slight
performance variations occur for lengths greater than 408@ As the valuesv, that sat-
isfy the 2 diagnosis increase with_g4, the value of the characteristic length is limited
by the range of variances/, which are consistent with the model performance. Finally,
we selected the intermediate valué 4 = 3000 m, for which the correlation between errors
drops down to 0.5 at a distance of 2100 m along the road networkt gives good re-
sults for a moderate decorrelation length and variance. Theis a clear need for research
on uncertainty estimation at urban scale in order to decide ch values may be more
adapted.

The impact of the decorrelation length transverse to the ra@anetwork, L, is much more
limited. The optimal value of L is not clearly determined by the Figure 7. WithL4 =

3000 m, the RMSE is almost identical fot., equal to 200 m or 300 m. The RMSE at peri-
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urban stations is better with L, = 300 m than with L, = 200m. On contrary, at tra c
and urban stations, the RMSE is lower withL, = 200m than with L, = 300m. Finally,

we recommend a moderate length, = 200 m which leads to same global performance.

5. Conclusions

The paper demonstrates the e ciency of data assimilation atirban scale for the im-
provement of NO, concentration elds using xed monitoring stations. Compting the
best linear unbiased estimator (BLUE) has proved to be e cietfor the correction of prior
concentrations computed by the urban Gaussian model ADMS. Bgite the low number
of stations available in the simulation domain, strong impsvements (30% to 50%) were
found at urban monitoring stations excluded from the assir@tion procedure, in a leave-
one-out cross-validation. This shows that, in the part of tB domain where the station
density is high, large improvements are likely to occur at meobserved locations.

However, in the background, far from the monitoring networkthe improvements are
low. It is not clear whether these low improvements at ruraldcations is due to lack
of information from the observation network or to shortconmgs in the error covariance
modeling. In the algorithm, a key variable is indeed the erracovariance matrix B that
determines the spatial distribution of the corrections. Tk proposed covariance matrix is
motivated by the prominent role of tra c emissions in urban NO, concentrations, but it
surely misses signi cant error correlations.

The parameters of the error covariance matrix are constam time and in space, whereas
the characteristic lengths can depend on tra ¢ and the variace surely depends on the
concentration levels. A future work on tra ¢ model evaluation, using observations from

tra c counters, is essential to improve the parameterizaton. Involving the concentration
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eld in the variance v, or more generaly in the covariance formula is also the nextegt.
One option is to follow Riish jgaard [1998] to model the term transverse to the road
network.

Future work on uncertainty estimation at urban scale shoulde a key step for better
uncertainty estimation, and therefore a better modeling afhe error covariance matrixB .
There is a need for the generation of ensembles of urban siatidns that would properly
sample the concentrations uncertainties. Classical ap@ches based on Monte Carlo sim-
ulations or multimodel ensembles should be investigated atban scale, although they
require so tremendous computational resources that mod&duction may be needed.

Uncertainty estimation for the concentrations after assintation should also be investi-
gated. The error covariance matrix for the analysis, i.e.| ( KH )B for BLUE, should
show much lower eigenvalues thaB. For instance, one objective would be to provide
some con dence interval on the population exposure.

Another direction is inverse modeling. One may want to corré¢he input emissions
which are known to be an important source of uncertainty. Stacapproach often has high
computational costs. It is however di cult to anticipate whether the resulting air con-
centrations would be closer to the real concentrations thamose of our current approach.

At the time this paper is written, the assimilation as previasly detailed has been
applied operationally for a year on the prototype \Votre Air" (operated by Airparif; see
http://votreair.airparif.fr/ ). The prototype computes in near real-time the air
guality over a part of Paris, and it assimilates the observadns from eight xed stations
[Pradelle et al, 2011]. This justi es that the approach, proved to be computionally

tractable even for real-time computations, is currently itegrated in the platform Urban
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Air System [Pradelle et al, 2010]. With the deployment of such systems, new questions
will arise, such as the assimilation of observations from roite sensors (e.g., embedded in

public buses).
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