Estimating hidden semi-Markov chains from discrete sequences.

Abstract : This article addresses the estimation of hidden semi-Markov chains from nonstationary discrete sequences. Hidden semi-Markov chains are particularly useful to model the succession of homogeneous zones or segments along sequences. A discrete hidden semi-Markov chain is composed of a nonobservable state process, which is a semi-Markov chain, and a discrete output process. Hidden semi-Markov chains generalize hidden Markov chains and enable the modeling of various durational structures. From an algorithmic point of view, a new forward-backward algorithm is proposed whose complexity is similar to that of the Viterbi algorithm in terms of sequence length (quadratic in the worst case in time and linear in space). This opens the way to the maximum likelihood estimation of hidden semi-Markov chains from long sequences. This statistical modeling approach is illustrated by the analysis of branching and flowering patterns in plants.
Type de document :
Article dans une revue
Journal of Computational and Graphical Statistics, Taylor & Francis, 2003, 12 (3), pp.604-639
Liste complète des métadonnées

Littérature citée [27 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00826992
Contributeur : Christophe Godin <>
Soumis le : mardi 28 mai 2013 - 16:47:17
Dernière modification le : vendredi 19 octobre 2018 - 15:26:10
Document(s) archivé(s) le : mardi 3 septembre 2013 - 09:55:09

Fichier

JCGSguedon2003.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00826992, version 1

Citation

Yann Guédon. Estimating hidden semi-Markov chains from discrete sequences.. Journal of Computational and Graphical Statistics, Taylor & Francis, 2003, 12 (3), pp.604-639. 〈hal-00826992〉

Partager

Métriques

Consultations de la notice

183

Téléchargements de fichiers

493