N
N

N

HAL

open science

AMAPMmMod v1.8. Introduction and reference manual
Christophe Godin, Yann Guédon

» To cite this version:

Christophe Godin, Yann Guédon. AMAPmod v1.8. Introduction and reference manual. [Research

Report| cirad. 1997. hal-00827487

HAL Id: hal-00827487
https://inria.hal.science/hal-00827487

Submitted on 25 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/hal-00827487
https://hal.archives-ouvertes.fr

AMAPmMod

Christophe Godin

Yann Guédon

With software contribution of:

Samir Bellouti
Pascal Ferraro
Christophe Nouguier
Nicolas Dones

Boris Adam

Edition : Marie-Hélene Lafond

Introduction and

Reference Manual

Version 1.8

And collaboration of :
Yves Caraglio
Evelyne Costes
Hervé Sinoquet

AMAPmod is a program developed at Cirad / Inra licenced under the GNU GENERAL
PUBLIC LICENSE (GPL). The terms of the GPL are recalled hereafter.

AMAPmod : Exploring and Modeling Plant Architecture
Linux version

Copyrightl] 1995-2000 - free software under GPL (see Appendice C)
Christophe Godin, Yann Guedon
CIRAD/INRA - UMR Modelisation des Plantes

with contribution of:

Samir Bellouti, Nicolas Dones,
Pascal Ferraro, Boris Adam,
Christophe Nouguier

Open Software used: gnuplot v3.7, readline v2.2 (GNU).

Forum for AMAPmod users : amapmod@cirad.fr
Send reports on bugs or comments: aml@cirad.fr

Forum archive:http://www.cirad.fr/mail-archives/listes/amapmod
Online doc :http://amap.cirad.fr/amapmod/referman18/couverture.html
Other infos: http://www.cirad.fr/presentation/programmes/amap/logiciels/amap mod

Cover picture credits: 3D Reconstruction image with AMAPmod of apple tree digitized by
E. Costes (UFR d'arboriculture fruitiere, INRA-ENSAM Montpellier) and H. Sinoquet (PIAF,
INRA Clermont Ferrand)

Printed November, 2001

Table of Contents

|[PART I _AMAPMOD -======== oo oo 1-1]
il Introduction 1-1|
R Installation 2-1

D. 1 Minimum System Requirements 2-1
D .2 Getting the software 2-1
1.1 Downloading the sources 2-3
D.3 File access convention 2-3
B AMAPMOD: an Overview 3-1
3.1 Introduction 3-1
B.2 AMAPmod system overview 3-1
B3.2.1 Plant architecture databases 3-2
3.2.2 Coding Individuals 3-5
3.2.3 Exploration: a simple example 3-8
B3.2.4 The AMAPmod querying language: AML 3-13
B.2.5 Types of extracted data 3-15
B3.2.6 Statistical exploration and model building 3-16
B.3 Illustration: exploring an apple tree orchard 3-18
3.3.1 Biological context and data collection 3-18
B3.3.2 3D visualisation of real plants 3-18
3.3.3 Extraction of data samples 3-22
B3.3.4 Extraction and analysis of biological sequences 3-24

7] The AML language 4-1
4.1 Starting an AMAPmod session 4-1
4.2 AML 4-2
4.3 Data structures 4-2
4.3.1 Simple types 4-2
1.3.2 Arrays 4-2
4.3.3 Sets 4-3
4.3.4 List 4-3
t.4 Iterators 4-4
4.5 Functions 4-4
4.6 Comments and indentation 4-5
4.7 Access to shell commands 4-5
4.8 Input and Output 4-6
3] The MTG module 5-1
b.1 AML primitives related to MTGs 5-1
b The STAT module — 6-1
b.1 L'organisation du module STAT 6-1
H.1.1 Application lois et combinaisons de lois 6-3
p.1.2 Application processus de renouvellement 6-3
p.1.3 Application modéles Markoviens 6-3
b.1.4 Application analyse des cimes 6-4
b.2 Les fonctions AML du module STAT 6-5
p.2.1 Les fonctions d'entrées/sorties 6-5
p.2.2 Les fonctions de manipulation des données 6-6
H.2.3 Les fonctions algorithmiques 6-6

AMAPMod (28/06/02) |

PART 11 REFERENCE MANUAL ========-mommoommooo oo oo 6-1|
il The Kernel module of AML 1-1
1.1 Liste alphabétique des fonctions AML 1-1
1.2 Liste par type des fonctions AML 1-2
1.3 Detailed description 1-5
Lﬁ The MTG module 2-1
1 List of AML functions from module MTG (alphabetic order) 2-1

D.2 List of AML functions from module MTG (by type) 2-2

D .3 Detailed description 2-3

B The STAT module 3-1
3.1 List of AML functions of the STAT module 3-1
3.2 List by categories of the AML functions of the STAT module 3-2
3.3 List by type of the AML functions of the STAT module 3-4
3.4 Detailed description 3-11

7] File Syntax 4-1
4.1 General conventions 5-1
1.2 MTGs - 5-2
?.2.1 Coding files 5-3

4.2.2 Examples of coding strategies in different classical situations 5-11

#.3 Dressing Files (.drf) 5-19
4.3.1 Definition of basic geometric models associated with plant components. -------------- 5-19

4.3.2 Definition of virtual elements. 5-20

14.3.3 Definition of defaults parameters 5-21

4.3.4 Example of a dressing file 5-24

4.4 Curve Files (.crv) 5-25
4.5 Geom Files 5-26
4.5.1 Overview 5-26

4.5.2 File format syntax 5-28

1.5.3 Geoms format reference 5-31

4.6 Glance configuration file (.cgf) 5-43
7 STAT 5-44
4.7.1 type COMPOUND 5-45

4.7.2 type CONVOLUTION 5-46

4.7.3 type DISTRIBUTION, type RENEWAL 5-47

14.7.4 type HIDDEN MARKOV 5-48

4.7.5 type HIDDEN SEMI-MARKOV 5-49

4.7.6 type HISTOGRAM 5-51

1.7.7 type MARKOV 5-52

1.7.8 type MIXTURE 5-54

1.7.9 type SEMI-MARKOV 5-55
4.7.10 type SEQUENCES 5-56
4.7.11 type TIME EVENTS 5-58
4.7.12 type TOPS 5-59
1713 typc TOP PARAMETERS 5-60
d.7.14 type VECTOR DISTANCE 5-61
4.7.15 type VECTORS 5-62
Ippendice A AML File Example -A-1|
Appendice B TS T — B-1]
Appendice C COPYIight ========mmmmmm oo oo C-1j
Index -----==-=n=mmmmmmmeeee- 1

AMAPmMod (28/06/02)

Part | AMAPMOD

1 INTRODUCTION

In order to better control economical outcomes, a new trend in agronomic research consists of
determining how production variables (€.g. wood biomass and quality, fruit quantity and
quality) are distributed within plant architecture. The AMAPmod software defines a set of
methods and tools to address these questions, i.e. to measure, analyse and model plant
architectures. This software has been available to the scientific community for 6 years now
and has been used in the analysis of various types of plant architecture databases, €.9. [1; 6;
17; 28; 29; 48]. Several researchers from several institutes have contributed either to the
development of concepts or to the software itself (the list of contributors is detailed on the
first page of the manual). AMAPmod consists of about 200 000 lines of C++ code and its
modular architecture makes it possible to add specialised modules. It is is free of charges.
Moreover, it is now available on Linux plateforms and is intended to become a truely “open
software”.

The AMAPmod modeling methodology is illustrated in The architecture of the
plant (or the set of plants) is first measured according to a precise application protocol. Plant
topological structures are encoded in textual forms. These code files may contain various
additional types of information about plant entities (e.g. geometrical, spatial, botanical or
micro-climatic information). These files describing formally plant architecture may then be
read by the AMAPmod software which creates an internal representation of the measured
plants (called Multiscale Tree Graphs, or "MTG"). The user can then explore the resulting
MTG using the AML language, looking for regularities in the collected data. This research,
driven by the final goals of the application, leads the user to identify or to confirm hypotheses
about the plant development. Based on these hypotheses, a family of models can be identified
as a good candidate for modeling the extracted data (as for now, the AMAPmod software
contains mostly probabilistic models). For all these models, training procedures are available

AMAPMod (28/06/02) 1-1

Part | O Introduction

to automatize the identification of the model, in the selected family, which best synthesizes
the extracted data.

The AML language enables the user to access the AMAPmod primitives. It is divided in
several modules: the kernel module, the MTG module, the STAT module. The Kernel module
contains functions that deal with standard types like integers, reals, strings, arrays, etc. The
MTG module contains functions to build formal representation of plants (MTGs) and to
extract information from them. The STAT module contains functions that enable the user to
analyse various type of data samples, to build probabilistic models associated with these
samples.

The statistical inference approach developed in AMAPmod uses models that can account for
the structural information contained in the MTG. The analysis of the information contained in
an MTG requires the use of different techniques applied at different scales, dates, parts of
plants. In view of the structural nature of the MTG, most of these techniques incorporate
structural components (e.g. the graph of possible transitions for the hidden semi-Markov

chain in (Figure 3-13).

The need for a common language to describe the architecture of a wide range of plant species
and the will to share experience and tools in the exploration of plant architecture databases
have been major motivations in the development of AMAPmod. Our long-term objective is to
provide the agronomic community with a database management system that could be used as
a standard tool. This standardisation process concerns various stages of AMAPmod
methodology: plant architecture representation, its coding language, field observation
protocols for given agronomic applications, macro-functions for database exploration
(3D visualisation, sample extraction, ...), tools for analysing structured data, etc. Such
standardisation would facilitate the constitution and diffusion of plant databases and would
enable modellers to compare their models on the basis of publicly available databases.

T2 AMAPMod (28/06/02)

AMAPmMod (28/06/02)

1-1

Part | O Installation

2 INSTALLATION

This chapter describes how to install AMAPmod on UNIX machines. AMAPmod version 1.4
and greater can be run on a Linux system.

21 Minimum System Requirements

The AMAPmod software is available on PCs under operating system Linux.
- Linux kernel greater than 2.0.
- 30 MB free hard disk space

- 64 MB of RAM. (128 MB is recommended for large databases).

2.2 Getting the software

mo obtain the latest version of AMAPmod (currrently 1.8 in november 2001), download one
on the anonymous ftp site :

ftp://ftp.cirad.fr/dist/amap/AMAPmod

You must enter a valid email address as a password.

AMAPmod is now distributed in rpm format. rpm is a powerful package manager, which
can be used to build, install, query, verify, update, and uninstall individual software packages.
A package consists of an archive of files, and package information, including name, version,
and description, some compilation options, dependencies, etc. It allows to detect at install
time, missing or perturbing elements. So, installing rpm is easy and secure.

The rpm tool offer a wide variety of option, we will comment the more usefull :
Installation of a package :

rpm-i package.rpm

Update of a package :

rpm-U package. rpm

Remove a package

rpm-e package

Searching the package containing a given file :

rpm-qgf /dir/file

General information of an installed package

rpm-i package

AMAPmMod (28/06/02) 2-1

http://www.cirad.fr/presentation/programmes/amap/logiciels/amap_mod.shtml
mailto:aml@cirad.fr
http://www.roguewave.com/

Part | O Installation

General information of a package to install

rpm-qi package.rpm

Some graphic managers exist, like kpackage, gnorpm, rpmdrake the let install package

intuitively. The designation of rpm file follow some precise rules :

projectname-version-release.processor.rpm

The release may contains informations on the distribution on which the package has been

made.

For example :

released on a red hat 6.2, compiled on a pentium.

AMAPmod-1.8-rh62.i1386.rpm contains AMAPmod project version 1.8

An other example : AMAPmod-1.8-1.1586.rpm contains AMAPmod project version 1.8, first
release compiled on a pentium II or more.

To reference the different distribution, those different prefix are used on release designation :

rh for Red Hat, mdk for Mandrake and suse for Suse.

Dependencies of dynamic AMAPmod RPM :

RPM to install to use AMAPmod :

We recommend to have a comfortable use of Linux to install :

qt 2.*

qt-GL 2.* (Not existant for every linux distribution)
Mesa (OpenGL)

libtermcap

readline

gnuplot

XFree&86

Netscape

KDE

gftp

xemacs and all its packages

Gnumeric

2-2

AMAPmMod (28/06/02)

Part | O Installation

e Xview

Downloading the sour cesThe AMAPmod software is now distributed as open software. The
source code is available at

ftp://ftp.cirad.fr/dist/amap/AMAPmod/AMAPmod-1.8-1.tg7|

This is a compressed tar file which can expanded on Linux with the command :

tar xvzf AVAPnod-1.8-1.tgz]|

Sources can be compiled to build the AMAPmod project using the following commands:
cd AMAPmod/

make alldepends

make all

make install

The linking phase of AMAPmod depends on the availability of a number of external libraries.
To get a list of these libraries, the INSTALL file in the directory AMAPmod should be
checked.

Almost all the source files of AMAPmod are included in this directory. However, AMAPmod
currently uses the library Tools.h++ from RogueWave inc. (for historical reasons). This
software is proprietary and thus, is not included in this distribution. However, people who
would like to compile AMAPmod can buy the library (see www.roguewave.com). It is our
intention that AMAPmod version 2 will entirely be an open software.

If you wish to participate in the development of AMAPmod, please contact us at
aml@cirad.fr.

Then, you are done with the installation of AML.

2.3 File access convention

Each time a new application is studied with AMAPmod, you may create a new directory in
the user's home directory. Files used by AML can be located anywhere in the Linux
hierachical file system, provided the user can access them. All references to files from within
a file or from AML must be given explicitly. References to files must always be made
relatively to the location where the reference is made.

If you have problems please contact :

AMAPmMod (28/06/02) 2-3

ftp://ftp.cirad.fr/dist/amap/AMAPmod/AMAPmod-1.8-1.tgz
ftp://ftp.cirad.fr/dist/amap/AMAPmod/AMAPmod-1.8-1.tgz
http://www.roguewave.com/
mailto:aml@cirad.fr
mailto:aml@cirad.fr

Part | O Installation

or refer to the amapmod forum :

hmapmod@cirad.fi]

To subscribe to the list, you have to send an email at the address pmapmod-request@cirad.ft|
and simply say "subscribe" in the mail message body. Upon subscribing, you should receive
an introductory message, containing list policies and features. Save this message for future
reference; it will also contain exact directions for unsubscribing. Then messages can be sent to
the list usingJamapmod@cirad.fi]

In order to unsubscribe to the list, the introductory message contains the exact command
which should be used to remove your address from the list. However, in most cases, you may
simply send the command "unsubscribe" followed by the list name:

unsubscri be anapnod

(This command may fail if your provider has changed the way your address is shown in your
mail.)

Please do not put your commands on the subject line; Majordomo does not process commands
in the subject line.

2-4 AMAPMod (28/06/02)

mailto:aml@cirad.fr
mailto:amapmod@cirad.fr
mailto:amapmod-request@cirad.fr
mailto:amapmod@cirad.fr

Part | 0 AMAPMOD: an Overview

3 AMAPMOD: AN OVERVIEW

31 I ntroduction

During the 70’s, plant architecture progressively emerged as a new area of interest in different
research domains, e.g. computer simulation [34], theoretical biology [18], botany [30; 31],
agronomy [8], forestry [38], horticulture [36], plant-environment interaction modelling [45].
All these domains considered plants from very different perspectives, but they all had in
common particular interest in the organisation of plant vegetative structures, i.e. in plant
architecture.

In order to model plant architectures, people first attempted to measure plant organ
parameters and other morphological characters. This was used to set the values of plant
growth model parameters using empirical data, eg. [10; 15; 17; 35; 40], or to better
understand the organisation of plant components, e.g. [3; 33; 42]. Recently, studies using
plant architecture have entered a second phase, where the objective is to study variations of
biological phenomena within crowns, e.g. [7; 50]. To achieve this goal, several works
proposed to record topological information of plant components and to organise other
information according to topology [16; 25; 32].

Godin and Caraglio recently introduced a plant representation formalism that is able to
integrate several scales of description within a single model [20]. This formal representation
is the central data structure of the AMAPmod system, which is a computational platform
providing tools to create, explore and analyse plant architecture databases [22]. The
representation model accounts for plant architectures measured at different scales (node,
annual shoot and axis for example), different dates and may integrate different types of
attributes, geometrical or biological [22]. A set of dedicated statistical tools is used to identify
in plant architecture remarkable structures or regularities which are not directly apparent in
the data [25; 28]. Tools are also provided to compare biological structures, such as axes or
branching systems, based on a comparison of their components [13; 28]. In agronomic
applications, these tools have been used to characterise and compare genotype behaviour and
cultural conditions [5; 6; 17; 28; 46; 50].

This chapter describes the constitution of a plant architecture database and its exploration with
the AMAPmod system. It emphasises how the different techniques and tools can be combined
and applied using AMAPmod. Section 3-2 gives an overview of AMAPmod and outlines the
different data structures and models that can be constructed and used in the system and gives
an overall description of the system. The use of AMAPmod is then illustrated in Section 3-3
on an actual-scale plant architecture database. The different steps in a typical exploration are
successively illustrated using this database.

3.2 AMAPMod system overview

AMAPmod provides users with a methodology and corresponding tools to measure plants,
create plant databases, analyse information extracted from these databases. This methodology
can be depicted as follows (Figure 3-1) :

AMAPmMod (28/06/02) 31

Part | O AMAPMOD: an Overview

/ Plant EiDataExtractionfE Modeling\
Internal 5

Plant Plant Representation
measurement code '

Form ...
Classes ...

) Decompos ...
Topology ...

Features ...

Code ...

/P1/U1
+Ul ...

(a) ® U ©

¢ o

Figure 3-1 Synoptic of the AMAPmod system.

10110000101
00110011101
11101101011

Plant architectures are described from field observations using a dedicated encoding language
(Figure 3-1ha and 1b). These descriptions can then be decoded by the AMAPmod system
which builds a specific internal representation of plant architecture). The
resulting database can then be analysed with various statistical analysis tools. Plants can be
graphically reconstructed and vizualised in 3 dimensions. Various types of data can be
extracted and analysed with different viewpoints (Figure 3-1H). Different families of
probabilistic or stochastic models are provided in the system (Figure 3-1F). These models are
intended to be used as advanced statistical analysis tools for exploring in greater depth the
information contained in the database. All these tools are available through a querying
language called AML (AMAP Modelling Language) which enables the user to work on
various objects, i.e. formal representation of plants, samples of data or models. AML provides
the user with a homogeneous language-based interface to load, display, save, analyse or
transform each type of object. Let us briefly review these AMAPmod components.

3.2.1 Plant architecture databases

Plants are formally represented in AMAPmod by multiscale tree graphs (MTGs), [20]. A
MTG basically consists of a set of layered tree graphs, representing plant topology at different
scales (internodes, growth units, axes, etc.). To build up MTGs from plants, plants are first
broken down into plant components, organised in different scales (Figure 3-2h and 6b).
Components are given labels that specify their type (Figure 3-2p, U= growth unit,
F = flowering site, S = short shoot, I = internode). These labels are then used to encode the
plant architecture into a textual form. The resulting coding file (Figure 3-2F) can then be
analysed by AMAPmod to build the corresponding MTG. Basically, in an MTG, the
organisation of plant components at a given scale of detail is represented by a tree graph,
where each component is represented by a vertex in the graph and edges represent the

32 AMAPmMod (28/06/02)

Part | 0 AMAPMOD: an Overview

physical connections between them. At any given scale, the plant components are linked by
two types of relation, corresponding to the two basic mechanisms of plant growth, namely the
apical growth and the branching processes. Apical growth is responsible for the creation of
axes, by producing new components (corresponding to new portions of stem and leaves) on
top of previous components. The connection between two components resulting from the
apical growth is a "precedes" relation and is denoted by a '<'. On the other hand, the branching
process is responsible for the creation of axillary buds (these buds can then create axillary
axes with their own apical growth). The connection between two components resulting from
the branching process is a "bears" relation and is denoted by a '+'. A MTG integrates - within
a unique model - the different tree graph representations that correspond to the different scales
at which the plant is described.

Various types of attribute can be attached to the plant components represented in the MTG, at
any scale. Attributes may be geometrical (e.g. diameter of a stem, surface area of a leaf or
3D positioning of a plant component) or morphological (e.g. number of flowers, nature of the
associated leaf, type of axillary production - latent bud, short shoot or long shoot -).

MTGs can be constructed from field observations using textual encoding of the plant
architecture as described in [22] . Alternatively, code files representing plant
architectures can also be constructed from simulation programs that generate artificial plants,
[11]. The code files usually have a spreadsheet format and contain the description of plant
topology in the first few columns and the description of attributes attached to plant
components on subsequent columns.

AMAPmMod (28/06/02) 33

Part | O AMAPMOD: an Overview

(b)

U2 u2
X
1ny'?
1
1991
u2
1992
F1
11
Fix | 110
X \Ig 'XFl
Fom 18
u2 7St
u2

Sim 16 u2 J

F1,, % F1

u2 115 U1

111
1y 110 ‘\910 =g

FI 40

s L
U1l 113 ¥ u2
112
Ul
U1

(d) L ©

O u2 /P1
A9 0w ~A91/U1

/112+A91/U1

A<U2
/I8+A92/F1
/19+A92/F1
/110+A92/F1
/I11+A92/U1

A<A92/F1
/M+U2

/113+A91/U1
/110+A92/F1
/115+A92/F1

/M+U2

A<U2
/16+A92/S1
/17+A92/S1
/18+A92/F1
/19+A92/F1
/110+A92/F1

A<A92/F1
/M+U2

A9l r<U2
0 A<A92/F1
ul +02
/12+02

Figure 3-2 Encoding plant architecture as a MTG. (@) A part of the plant is considered. (b)
Plant components are identified within the crown. (C) The organisation of these components
and their attributes are encoded in a code file. (d) A MTG representing the branching system
can be built by AMAPmod from this code file. The plant representation at annual shoot scale

is in red and at growth unit scale in yellow.

34 AMAPmMod (28/06/02)

Part | 0 AMAPMOD: an Overview

3.2.2 Coding Individuals

Different strategies have been proposed for recording topological structures of real plants, e.g.
[44; 32] for plant represented at a single scale and [21; 25], for multiscale representations. In
AMAPmod, plant topological structures are abstracted as multiscale tree graphs. Describing a
plant topology thus consists of describing the multiscale tree graph corresponding to this
plant. The description of a given plant can be specified using a "coding language". This
language consists of a naming strategy for the vertices and the edges of multiscale graphs. A
graph description consists of enumerating the vertices consecutively using their names. The
name of a vertex is constructed in such a way that it clearly defines the topological location of
a given vertex in the overall multiscale graph. The vertices and their features are described
using this formal language in a so called "code file". Let us illustrate the general principle of

this coding language by the topological structure of the plant depicted in

Figure 3-3 Coding the topological structure of a two year old poplar tree.

Each vertex is associated with a label consisting of a letter, called its class, and an integer,
called its index. The class of a vertex often refers to the nature of the corresponding botanical
entity, €.g. | for internode, U for growth unit, B for branching system, etc. The index of a
vertex is an integer which enables the user to locally identify a vertex among its immediate
neighbors. Apart from this purely structural role, indexes may be used to convey additional
meaning : they can be used for instance to encode the year of growth of an entity, its rank in
an axis, etc.

At a given scale, plants are inspected by working upwards from the base of the trunk and
symbols representing each vertex and its relationship to its father are either written down or
keyed directly into a laptop computer.

AMAPmMod (28/06/02) 35

Part | O AMAPMOD: an Overview

Ny
13

~
N
\
N
11616
-
’
s
-
-

4
s

-

OO OO0
.

PO RO OO

o G0

Figure 3-4 (a) tree graph at internode scale (b) multiscale tree graph (MTG)

The coded string starts with the single symbol '/'. Coding a single axis (€.g. the series of
internodes of the trunk depicted in Figure 3-4p) would then yield the string :

/11<] 2<] 3<1 4<] 5<] 6<] 7<| 8<] 9<] 10<I 11<] 12<| 13<I 14<] 15<I 16<1 17<I 18<I 19

For a branching structure (Figure 3-4f), encoding a tree-like structure in a linear sequence of
symbols leads us to introduce a special notation, frequently used in computer science to

encode tree-like structures as strings (e.d. [39]). A square bracket is opened each time a
bifurcation point is encountered during the visit (i.e. for vertices having more than one son). A
square bracket is closed each time a terminal vertex has just been visited (i.e. a vertex with no
son) and before backtracking to the last bifurcation point. In the above example, entity | 6 is a
bifurcation point since the description process can either continue by visiting entity | 7 or
| 20. In this case, the bifurcation point | 6 is first stored in a bifurcation point stack (which is
initially empty). Secondly, an opened square bracket is inserted in the output string and
thirdly, the visiting process resumes at one of the two possible continuations, for example
| 20, leading to the following code :

/1 1<l 2<1 3<I 4<1 5<| 6] +I 20

The entire branch | 20 to | 28 is then encoded like entities | 1 to | 6. Entity | 29 has no son,
and thus is a terminal entity. This results in inserting a closed square bracket in the string :

36 AMAPMod (28/06/02)

Part | 0 AMAPMOD: an Overview

/11<] 2<] 3<] 4<] 5<| 6] +| 20<I 21<| 22<I 23<| 124<| 25<]| 26<I 27<| 28<]| 29]

The last bifurcation point can then be popped out of the bifurcation point stack and the
visiting process can resume on the next possible continuation of |6, i.e. |7, leading
eventually to the final output code string :

/11<] 2<] 3<1 4<] 5<| 6] +| 20<I 21<| 22<I 23<| 124<| 25<I| 26<I 27<] 28<]| 29]
<I 7<I 8<I 9<I 10<I1 11<I 12<I 13<] 14<I 15<] 16<I 17<I 18<I] 19]

Let us now extend this coding strategy to multiscale structures. Consider a plant described at
three different scales, for example the scale of internodes, the scale of growth units and the
scale of plants (Figure 3-4p). The depth first procedure explained above is generalized to
multiscale structures in the following way. The multiscale coding strategy consists basically
of describing the plant structure at the highest scale in a depth first order. However, during
this process, each time a boundary of a macroscopic entity is crossed when passing from
entity a to entity b, the corresponding macroentity label, suffixed by a '/ ', must be inserted
into the code string just before the label of b and after the edge type of (a,b). If more than one
macroscopic boundary is crossed at a time, corresponding labels suffixed by /' must be
inserted into the code string at the same location, labels of the most macroscopic entities first.
In the multiscale graph of for example, the depth first visit is carried out at the
internode level (highest scale). The visit starts by entering in vertex | 1 at the scale of
internodes. However, to reach this entity from the outside, we cross boundaries of P1 and U1,
in this order. Then the depth first visit starts by creating the code string :

/P1/ UL/ 11

Then, the coding procedes through vertices | 1 to | 6, with no new macroscopic boundary
encountered. | 6 is a bifurcation point and as explained above, this vertex is stored in the
bifurcation point stack, a [' is inserted in the code string and the depth first process continues
on the son of | 6 whose label is | 20. Since to reach | 20 from | 6 the macroscopic boundary
of the first growth unit of the branch is crossed, on | 20 the generated code string is

[/ P1/ UL/ 1 1<l 2<I 3<I 4<I 5<1 6] +U1/ | 20

Similarly on the new branch, coding continues and crosses a growth unit boundary between
internodes | 24 and | 25 :

[P1/ U1/ 1 1<] 2<] 3<| 4<] 5<] 6[+U1/ | 20<I 21<I 22<I 23<| 24<U2/ | 25<I 26
<| 27<I 28<I 29]

Once the end of the branch is reached at entity | 29, a "] ' is inserted in the code string and the
process backtracks to bifurcation point | 6 in order to resume the visit at the internode scale
on the next son of | 6, i.e. | 7. Then coding goes through to the end of the poplar trunk since
there are no more bifurcation points. Between entities | 7 and |19, two growth unit
boundaries are crossed which generate the final code string :

[P1/ UL/ 1 1<l 2<I 3<] 4<I 5<1 6] +UL/ | 20<I 21<] 22<] 23<I 24<U2/ | 25<] 26<I 27<I 28
<l 29] <1 7<1 8<1 9<U2/ 1 10<I 11<] 12<I 13<I 14<] 15<U3/ | 16<I 17<I 18<I 19]

AMAPmMod (28/06/02) 37

Part | O AMAPMOD: an Overview

It is often the case in practical applications that a number of attributes are measured on certain
plant entities. Measured values can be attached to corresponding entities using a bracket
notation, '{. . . }'. For instance, assume that one wants to note the length and the diameter of
observed growth units. For each measured growth unit, a pair of ordered values defines
respectively its measured length and diameter. Then, the precedent code string would
become :

/[P1/U1{10, 5. 9}/ 1 1<l 2<I 3<1 4<1 5<1 6] +UL{ 7, 3. 5}/ 1 20<I 21<I 22<I] 23<I 24
<U2{4, 2. 1} /1 25<I] 26<I 27<1 28<1 29] <I 7<I 8<1 9<U2{ 8, 4. 3} / 1 10<I 11
<l 12<] 13<I 14<1 15<U3{7.5, 3. 9}/ 1 16<1 17<I 18<1 19

In this string, we can read that the first growth unit of the trunk, U1, has length 10 cm and
diameter 5.9 mm (units are assumed to be known and fixed).

In practical applications, coding plants as raw sequences of symbols becomes quite
unreadable. In order to give the user a better feedback of the plant topology in the code itself,
we can slightly change the above code format in order to achieve better legibility. Each square
bracket is replaced by a new line and an indentation level corresponding to the nested degree
of this square bracket. Similarly, a new line is created after each feature set and the feature
values are written in specific columns. The following table gives the final code corresponding
to the example in Figure 3-3.

Length Diameter

/ P1/ Ul 10 5.9
/1 1<l 2<1 3<| 4<I 5<1 6
+U1 7 3.5
[120<] 21<] 22<] 23<| 24<U2 4 2.1
/1 25<I 26<I 27<I 28<I 29
<| 7<I 8<I 9<U2 8 43
/110<Il 11<I 12<I 13<I 14<| 15<U3 7.5 39

/116<117<]18<I 19

3.2.3 Exploration: a simple example

Once a plant database has been created, it can be analyzed using the AMAPmod software.
The different objects, methods and models contained in AMAPmod can be accessed through a
functional language called AML. This language has been designed to optimize access to plant
databases.

* Creating plant representations

The formal representation of a plant, and more generally of a set of plants, can be built by
AMAPmod from its code file using the AML function MT) :

AML> g = MG "tree_code_file.txt")

3-8 AMAPMod (28/06/02)

Part | 0 AMAPMOD: an Overview

The procedure MI'G attempts to build the plant formal representation, checking for syntactic
and semantic correctness of the code file. If the file is not consistent, the procedure outputs a
set of errors which have to be corrected before applying a new syntactic analysis. Once the
file is syntactically consistent, the MTG is built (cf. Figure 3-4b) and is available in the
variable g. However, for efficiency reasons, the latest constructed MTG is said to be "active" :
it will be considered as an implicit argument of most of the functions dealing with MTGs. To
get the list of all vertices contained in g, for instance, we write :

AML> vlist = VtxList()
instead of
AML> vlist = VtxList(Q)

The function Vi xLi st () extracts the set of vertices from the active MTG g and returns the
result in variable vl i st .

Once the MTG is loaded, it is frequently useful to make sure that the database actually
corresponds to the observed data. Part of this checking process has already been done by the
MI'G) function. But, some high-level checking may still be necessary to ensure that the
database is completely consistent. For instance, in our example, we might want to check the
number of plants in the database. Since plants are represented by vertices at scale 1, the set of
plants is built by :

AML> plants = VtxList(Scale -> 1)

Like vl i st, the set pl ant s is a set of vertices. The number of plants can be obtained by
computing the size of the set pl ant s.

AML> plant_nb = Size(pl ants)

Each plant constituting the database can be individually and interactively accessed via AML.
For instance, assuming the plant corresponding to the example of is represented
by a vertex (at scale 1) with label P1. Plant P1 can be identified in the database by selecting
the vertex at scale 1 having index 1 :

AML> plantl = Foreach _p In plants : Select(_p, |ndex(_p)==1)

In this expression, the For each construct is used to browse the set of plant vertices pl ant s.
For each plant vertex _p in this set, operator Sel ect is applied and returns a non void value
only for vertices whose index value is 1. Pl ant 1 thus contains the vertex representing plant
P1. Now it is possible to apply new functions to this vertex in order to explore the nature of
plant P1. Assume for instance we want to know the number of growth units composing P1 :

AML> gu_nb = Si ze(Conponents(plantl))

Conponent s() 1is a built-in function which applies to a vertex v and returns the vertices
composing v at the next superior scale. Since pl ant 1 is a vertex at scale 1, representing plant
P1, components of pl ant 1 are vertices at scale 2, i.e. growth units. It is also possible to

AMAPmMod (28/06/02) 39

Part | O AMAPMOD: an Overview

compute the number of internodes composing a plant by simply specifying the optional
argument Scal e in function Conponent s :

AML> internode_nb = Size(Conponents(plantl, Scale -> 3))

Many such direct queries can be made on the plant database which provide interactive access
to it. However, a complementary synthesizing view of the database may be obtained by a
graphical reconstruction of plant geometry. Geometrical parameters, like branching and
phyllotactic angles, diameters, length, shapes, are read from the database. If they are not
available, mean values can be inferred from from samples or can be inferred from additional
data describing plant general geometry [19]. A 3D interpretation of the MTG provides the
user with natural feedback on the database. Built-in function Pl ant Fr ane() computes the
3D-geometry of plants. For example,

AML> franel = Pl ant Frane(pl ant 1)

computes a 3D-geometrical interpretation of P1 topology at scale 2, i.e. in terms of growth
units (Figure 3-5p). Like in the previous example, Pl ant Fr ane takes Scal e as an optional
argument which enables us to build the 3D-geometrical interpretation of P1 at the level of

internodes (Figure 3-5p) :

a b

Figure 3-5 3D geometrical reconstruction of the MTG. Reconstruction (a) at growth unit
scale. (b) at internode scale.

Refinements of this 3D geometrical reconstruction may be obtained with the possibility to
change the shape of the different plant components, possibly at different scales, to tune
geometrical features (length, diameter, insertion angle, phyllotaxy, ...) as functions of the
topological position of entities in the plant structure.

» Extraction of plant entity features

When attributes of entities are available in MTGs, it is possible to retrieve their values by
using the function Feat ur e()

3-10 AMAPMod (28/06/02)

Part | 0 AMAPMOD: an Overview

AML> first_gu = Trunk(plantl)@
AML> first_gu_dianmeter = Feature(first_gu, "D anmeter")

The first line retrieves the vertex corresponding to the first growth unit of the trunk of P1
(function Tr unk() returns the ordered set of components of vertex P1, and operator @with
argument 1 selects the first element of this set). Then, in the second line, the diameter of this
growth unit is extracted from the database. Variable fi r st _gu_di anmet er then contains the
value 5.9 (see the code file). Similarly the length of the first growth unit can be retrieved :

AML> first_gu length = Feature(first_gu, "Length")

Variable fi rst _gu_I| engt h contains value 10.

The user can simplify this extraction by creating alias names :

AML> dianeter(_x) = Feature(_x, "Dianeter")
AML> length(_x) = Feature(_x, "Length")

It is then possible with these functions to build data arrays corresponding to feature values
associated with growth units.

AML> growth unit_set = VtxList(Scale -> 2)
AML> Foreach x In growth _unit _set : length(_x)

Moreover, new synthesized attributes can be defined by creating new functions using these
basic features. For example, making the simple assumption that the general form of a growth
unit is a cylinder, we can compute the volume of a growth unit :

AML> volume(_x) = (Pl*dianmeter(_x)"2 / 4)*length(_x)
where Pl denotes the real constant Ttand * denotes the power function. Now, the user can use

this new function on any growth unit entity as if it were a feature recorded in the MTG. For
instance, the volume of the first growth unit is computed by :

AML> first_gu_length = vol ume(first_gu)

The total volume of the trunk :

AML> trunk_volume = Sun(Foreach _gu In Trunk(plant1l)
vol ume(_gu))

The wood volume of the whole plant can be computed by :

AML> plant_volunme = Sum(Foreach _gu |In Conponents(plantl)
vol ume(_gu))

» Extracting moreinformation from plant databases

As illustrated in the previous section, plant databases can be investigated by building
appropriate AML queries. Built-in words of the AML language may be combined in various
ways in order to create new queries. In this way, more and more elaborated types of queries
can be constructed by creating user-defined functions which are equivalent to computing

AMAPmMod (28/06/02) 311

Part | O AMAPMOD: an Overview

programs. In order to illustrate this procedure, let us assume that we would like to study
distributions of numbers of internodes per growth units, such distributions being an important
basic prerequisite for botanically-based 3D plant simulations (e.g. [2; 9; 37; 3]). At a first
stage, we consider all the growth units contained in the plant database together. We first need
to define a function which returns the number of internodes of a given growth unit. Since in
the database, each growth unit (at scale 2) is composed of internodes (at scale 3) we compute
the set of internodes constituting a given growth unit _x as follows :

AML> internode_set(_x) = Conponents(_x)

The object returned by function i nt er node_set () is a set of vertices. The number of
internodes of a given growth unit is thus the size of this set :

AML> internode _nb(_x) = Size(internode_set(_Xx))

Second, the entities on which the previous function has to be applied, must be located in the
database. A set of vertices is created by selecting plant entities having a certain property.

The set of growth units is the set of entities at scale 2 :

AML> gu_set = VtxList(Scale -> 2)

Third, we have to apply function i nt er node_nb() to each element of the selected set of
entities :

AML> sanplel = Foreach _x In gu_set : internode_nb(_x)

We use iterator For each in order to browse the whole set of growth units of the database,
and to apply our i nt er node_nb() function to each of them.

Now, we want to get the distribution of the number of internodes on a more restricted set of
growth units. More precisely, we would like to study the distribution of internode numbers of
different populations corresponding to particular locations in the plant structure. We thus have
to define these populations first and then to iterate the function i nt er node_nb() on each
entity of this new population like in the previous example. Let us consider for example the
population made of the growth units composing branches of order 1. Consider again the
whole set of growth units gu_set. Among them, those which are located on branches
(defined as entities of order 1 in AML) are defined by :

AML> gul = Foreach _x In VtxList(Scal e->2)
Select(_x, Oder(_x) ==1)

Here again, we use the iterator For each in order to browse the whole set of growth units of
the database, and to apply the Sel ect operator to each of them. Sel ect will return only
growth unit vertices whose order is 1. AML variable gul thus contains all the growth units in
the corpus which are located on branches. Eventually, after the sample of values is built, the
above function is applied to the selected entities :

AML> sanple = Foreach _x In gul : internode_nunber(_x)

At this stage, a set of values has been extracted from the plant database corresponding to a
topologically selected set of entities. This sample of data can be further investigated with

312 AMAPMod (28/06/02)

Part | 0 AMAPMOD: an Overview

appropriate AML tools. For example, AML provides the built-in function Hi st ogran()
which builds the histogram corresponding to a set of values.

AML> histol = Hi stogran{sanpl e)
AM_L> Pl ot (hi stol)

This plot gives the graph depicted in [Figure 3-6p. Similarly, by selecting samples
corresponding to different topological situations, we would obtain the series of plots in

Figure 3-6|[4].

order 1 order 2

12 25
10 20

IS SIS

0 10 20 30 40 50 60 0 10 20 30 40 50

a b
order 3 order 4
30 30
20 20
10 10
0 0
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30
C d

Figur e 3-6 Different distributions of the number of internodes per growth unit, in different
topological situations.

3.24 The AMAPmod querying language: AML

AML is a functional language that provides users with an interactive interface to plant
architecture databases. Databases, extracted data, statistical data samples and models are all
represented in AML by dedicated data types that can be built and managed using specific
functions. These functions are designed in order to provide users with high-level access to
these generally complex objects. Let us first sketch the basics of the AML language.

From a practical viewpoint, AML is an interactive command interpreter that processes user's
commands one after the other. AML's prompt AML> indicates that the system is waiting for
user's input. After each input, the system evaluates the user's command and returns a message
displaying the type of the object computed from the evaluation and its contents. For example,
the command to read an array of integers from an ASCII file provides the following
interaction:

AML> ARRAY(“ny_file_of _integers”)
<ARRAY(INT)> [1,9,3,7,12,19]

AMAPmMod (28/06/02) 3-13

Part | O AMAPMOD: an Overview

In AML, all operations are expressed as function calls. AML contains a built-in set of
functions, called primitives that can be split into several groups.

A first group provides a kernel of standard functions comprised of doing arithmetics,
reading/writing data, storing variables, working on built-in data types, building new data
types, displaying graphics, etc.

A second group of functions consists of primitives that enable the user to access the plant
architecture database. This contains primitives for loading, exploring, extracting information,
vizualising and comparing MTGs.

A third group consists of statistical tools that can be used to explore and to analyse data
extracted from MTGs. Primitives to estimate model parameters and to check for the validity
of these models, to generate data samples from simulation are provided for each model.

Based on AML primitives, the user can build his own functions, which correspond to AML
programs. A user-define function is an expression containing one or several free variables that
is given a name. For instance, consider the definition of a cone frustum with base diameter b,
top diameter t and height h. The volume of a cone frustum can be defined in AML as a
function, named cf vol , taking three arguments:

AML> cfvol (_b, t, h) = Pi * h* (_b"2 + 72 + b*t) [12

The underscore sign is used to make a distinction between free variables - used to define user
functions - and normal computer variables, used to store values and computed objects. Free
variables are not used to store any value, they only appear in expressions to identify a given
term in different positions of an expression. Computer variable have a name not preceded by
an underscore sign and appear in the left-hand side of an assignment expression:

AML> volunmel = cfvol (1,1, 4) # volunel is a conputer variable
<REAL> 3. 14159 # val ue conputed by the call to
cfvol and stored in vol unel

Several types of objects are defined in AML. They are first basic types like | NT, REAL, CHAR,
STRI NG, DATE, BOOL, etc. These types can be combined to create new types using type
constructors such as ARRAY, SET or LI ST:

AML> array = [1,9, 3] # creates an array containing 3 I NTs
<ARRAY(INT)> [1, 9, 3]

ARRAYs are ordered sets of elements with identical types; SETs are sets of elements of
identical types with no notion of order and containing no duplication of elements; LI STs are
ordered sets of elements with possibly different types. Since ARRAY and LI ST objects are
ordered sets, their i-th element can be defined:

AML> array@ # extracts the second el enent from array
<INT> 9

All the preceding types correspond to objects that can be built by primitives that belong to the
AML kernel. However, other AML primitives allow the user to build more specific objects.
These specific objects are usually built by primitive constructors that have the name of the
object type: for instance the primitive MI'G can be applied to a file containing the code of a

314 AMAPMod (28/06/02)

Part | 0 AMAPMOD: an Overview

plant architecture to check its syntactic and semantic correctness and to build a MTG object
containing the plant architecture information:

AML> ny_plant = MIG “codefile”)
<MIG vtxnb = 1546 size = 10 kb

Similarly, an object of type H STOGRAM can be built from an array of integers using the
primitive Hi st ogr am

AML> hl = Histogram([1,2,2,3,3,2,4,2,3,2])
<H STOGRAM> sanpl e size: 10 nean: 2.4
st andar d- devi ati on: 0. 843

or from a file containing the frequencies for each possible value.

Once specific objects such as MI'G or Hl STOGRAM are built, they can be displayed, plotted,
transformed or compared using special primitives that apply to these objects. A sub-sample
for instance can be extracted from the object hl using the primitive Val ueSel ect by
specifying the interval of values that must be kept:

AML> h2 = Val ueSel ect (hl, 2, 3) # selects a sub-sanple of hl
#12,2,3,3,2,2,3,2]
<Hl STOGRAM> sanpl e size: 8 nean: 2.375
st andard-devi ation: 0.518

Primitive functions have mandatory arguments and optional arguments. Mandatory arguments
are identified according to their position in the argument list while optional arguments are
given names and are not mandatory in the primitive function argument list. For example, in
the primitive MI'G primitive, to bound the number of errors output by the parser if any, the
user may specify the optional variable MaxEr r or Nb as follows:

AML> ny_plant = MIGQ “codefile”, MaxErrorNb -> 10)

In AML, loops can be carried out using iterators. The most common iterator enables the user
to browse the elements of a set (either an ARRAY, a SET or a LI ST) and to apply to each of
them a particular function. For instance, the set of square values corresponding to an array of
integers can be computed as follows:

AML> square_vals = Foreach x In [1,2,3,4 : x"2
<ARRAY(INT)> [1, 4,9, 16]

In section we will illustrate several aspects of constitution and analysis of plant
architecture databases by providing the AML queries that correspond to each step of a
modelling session.

3.25 Typesof extracted data

As mentioned above, various types of data can be extracted from MTGs. For each plant
component in the database, attributes can be extracted or synthesised using the AML
language. The wood volume of a component, for instance, can be synthesised from the
diameter and the length of this component measured in the field. The type of measurement
carried out in the context of architectural analysis emphasises the use of discrete variables

AMAPMod (28/06/02) 315

Part | O AMAPMOD: an Overview

which can be either symbolic, e.g. the type of axillary production at a given node (latent bud,
short shoot or long shoot) or numeric (number of flowers in a branching structure). In general,
a plant component can be qualified by a set of attributes, called a multivariate attribute. A
plant component, for instance, could be described by a multivariate attribute made up of the
volume, the number of leaves, the azimuth and the botanical type of the constituent.

Multivariate attributes correspond to the first category of data that can be extracted from
MTGs. A second and more complex category of particular importance in AMAPmod is
defined by sequences of - possibly multivariate - attributes. The aim of this category is to
represent biological sequences that can be observed in the plant architecture. These sequences
may have two origins: they can correspond to changes over time in the attributes attached to a
given plant component. In this case, the sequences represent the trajectories of the
components with respect to the considered attributes and the index parameter of the sequences
is the observation date. Sequences can also correspond to paths in the tree topological
structures contained in MTGs. In this case, the index parameter of the sequences is a spatial
index that denotes the rank of the successive components in the considered paths. Spatially-
indexed sequence is a versatile data type for which the attributes of a component in the path
can be either directly extracted or synthesised from the attributes of the borne components. In
the later case, all the information contained in the branching system can be efficiently
summarised into a sequence of multivariate attributes, corresponding to the main axis of the
branching system.

A third category of object can be extracted from MTGs, namely trees of — multivariate -
attributes. Like sequences, these objects are intended to preserve part of the plant organisation
in the extracted data. Tree structures represent the raw organisation of the components that
compose branching structures of the plant at a certain scale of analysis.

Data extracted from MTGs can thus be ordered according to their level of structural
complexity: unstructured data, sequences, trees. These levels correspond to different degrees
to which the structural information contained in the MTG is summarised and are associated
with different statistical analysis techniques.

3.26 Statistical exploration and model building

To explore plant architecture, users are frequently led to create data samples according to
topological criteria on plant architecture. A wide range of AML primitives that apply to
MTGs enable the user to express these topological criteria and select corresponding plant
components. Samples of the three main structural data types can be created as described
below:

Multivariate samples: Simple data samples can be created by computing the set of - possibly
multivariate - attributes associated with a selected set of components, €.g. the number of
flowers borne by components that appeared in the plant structure during 1995. Since a very
large panoply of methods are available in statistical packages for analysing multivariate
samples, only a reduced core of tools have been integrated in AMAPmod for exploring these
objects. If more specific statistical methods are required, the user can export data to other
softwares such as SAS or S-PLUS.

Samples of multivariate sequences: The focus in AMAPmod is on data analysis tools for
samples of sequences. In the context of plant architecture analysis, these objects present two
advantages. On the one hand, part of the plant organisation is directly preserved in the sample

3-16 AMAPMod (28/06/02)

Part | 0 AMAPMOD: an Overview

through the notion of "sequence" discussed above. On the other hand, the structural
complexity of samples of sequences still remains tractable and efficient exploratory tools and
statistical models can be designed for them [28; 29]. The AMAPmod system includes mainly
classes of stochastic processes such as (hidden) Markov chains, (hidden) semi-Markov chains
and renewal processes for the analysis of discrete-valued sequences. A set of exploratory tools
dedicated to sequences built from numeric variables is also available, including sample
(partial) autocorrelation functions and different types of linear filters (for instance symmetric
smoothing filters to extract trends or residuals).

Samples of multivariate trees: The analysis of samples of tree structured data is a challenging
problem. A sample of trees could represent a set of comparable branching systems considered
at different locations in a plant or in several plants. Similarly, the development of a plant can
be represented by a set of trees, representing different steps in time of a branching system.
Plant organisation for this type of object is relatively well preserved in the raw data. However,
this requires a higher degree of conceptual and algorithmic complexity. We are currently
investigating methods for computing distances between trees [13] which could be used as a
basis for dedicated statistical tools.

AMAPmod contains a large set of tools for analysing these different types of samples, with
special emphasis on tools dedicated to the analysis of samples of discrete-valued sequences.
These tools fall into one of the three following categories:

— exploratory analysis relying on descriptive methods (graphical display,
computation of characteristics such as sample autocorrelation functions, etc.),

— parametric model building,
— comparison techniques (between individual data).

The aim of building a model is to obtain adequate but parsimonious representation of samples
of data. A parametric model may then serve as a basis for the interpretation of a biological
phenomenon. The elementary loop in the iterative process of model building is usually broken
down into three stages:

1. The specification stage consists of determining a family of candidate models on the basis
of the results given by an exploratory analysis of the data and some biological knowledge.

2. The estimation stage, consists of inferring the model parameters on the basis of the data
sample. This model is chosen from within the family determined at the specification stage.
Automatic methods of model selection are available for classes of models such as (hidden)
Markov chains dedicated to the analysis of stationary discrete-valued sequences. In
AMAPmod, the estimation is always made by algorithms based on the maximum
likelihood criterion. Most of these algorithms are iterative optimisation schemes which
can be considered as applications of the Expectation-Maximisation (EM) algorithm to
different families of models, [12; 26; 27]. The EM algorithm is a general-purpose
algorithm for maximum likelihood estimation in a wide variety of situations best
described as incomplete data problems.

3. The validation stage, consists of checking the fit between the estimated model and the
data to reveal inadequacies and thus modify the a priori specified family of models. In the
AMAPmod system, theoretical characteristics can be computed from the estimated model
parameters to fit the empirical characteristics extracted from the data and used in the
exploratory analysis.

AMAPMod (28/06/02) 317

Part | O AMAPMOD: an Overview

The parametric approach based on the process of model building is complemented by a
nonparametric approach based on structured data alignment (either sequences or trees).
Distance matrices built from the piece by piece alignments of a sample of structured data can
be explored by clustering methods to reveal groups in the sample.

3.3 lllustration: exploring an appletreeorchard

Let us now illustrate the approach implemented in the AMAPmod system in a real
application. To do this, we shall consider an apple tree orchard and show how a plant
architecture database can be created from observations [24]. Then, we shall use this database
to illustrate the use of specific tools employed to explore plant architecture databases.

3.3.1 Biological context and data collection

The application is part of a general selection program, conducted at INRA (Institut National
de la Recherche Agronomique), and aims to improve apple tree species as regards
morphological characters and more classical criteria such as fruit quality and disease
resistance. In this particular example, two apple tree clones were chosen for their contrasting
growth and branching habits. The first clone (‘"Wijcik') exhibits a very particular growth and
branching habit, characterised by short internodes, great diameters and the absence of long
axillary branches. By contrast, the second clone ('Baujade') exhibits many long and flexible
branches. A population of 102 hybrids was obtained by crossing these two clones. The
objective of this work was to study how morphological characters, such as the length of the
internodes or the number of long lateral branches, are distributed within the progeny.

Creation of the database: The branching systems borne by the three-year-old annual shoot of
the trunk is described for each individual. The branching system is first broken down into
axes I.e. linear portions of stem derived from the same bud. Each axis is then divided into
portions created during the same year (called annual shoots). When cessation and resumption
of growth occur within a year, the annual shoot can be split into growth units, i.e. portions
created over the same period (or between two resting periods). Finally, the growth units can
be divided into internodes, i.e. portions of stem between two leaves. Regarding these
successive decompositions, a given branching system is simultaneously considered at four
scales. The different plant components and their connections are represented into a code file
as explained previously.

In order to give a quantitative idea of the total resources necessary for an application of this
size, it should be noted that all the measures were carried out by a team of 6 persons over 5
days. The collected data, initially recorded on paper, were then computer-entered by 1 person
over 20 days using a text editor and consists of a file of approximately 16000 lines of code.
The corresponding MTG is constructed in 45 seconds on a SGI-INDY workstation. It contains
about 65000 components and some 15000 attributes. The overall size of the database is 7 Mb.

3.3.2 3D visualisation of real plants

To build the database associated with the collected data, the AMAPmod system is launched
and an MTG is built from the encoded plant file:

AML> pl ant _dat abase = MI “appl etree_code. t xt”)

3-18 AMAPMod (28/06/02)

Part | 0 AMAPMOD: an Overview

The primitive MI'G attempts to build a formal representation of the orchard, checking for
syntactic and semantic correctness of the code file. If the file is not consistent, the procedure
outputs a set of errors which must be corrected before applying a new syntactic analysis. Once
the file is syntactically consistent, the MTG is built and is available in the variable
pl ant _dat abase. However, for efficiency reasons, the latest constructed MTG is said to be
"active": it will be considered as an implicit argument for most of the primitives dealing with
MTGs. For example, to obtain the set of vertices representing the plants contained in the
database, i.e. vertices at scale 1, the primitive Vt xLi st is used and applies by default to the
active MTG pl ant _dat abase:

AML> plant_list = VtxList(Scale -> 1)

It is then possible to obtain an initial feedback on the collected data by displaying a 3D
geometrical interpretation of a plant from the MTG. This notably allows the user to rapidly
browse the overall database. For instance, a geometric interpretation of the Sth plant in the set
of plants described in the MTG can be computed and plotted using the primitive

Pl ant Fr ane as follows, ():

AML> geom struct = Plant Frane(pl ant _|ist @)
AML> Pl ot (geom struct)

Such reconstructions can be carried out even if no geometric information is available in the
collected data. In this case, algorithms are used to infer the missing data where possible
(otherwise, default information is used) [19]. In other cases, plants are precisely digitised and
the algorithms can provide accurate 3D geometric reconstructions [7; 22; 47; 49].

Apart from giving a natural view of the plants contained in the database, these
3D reconstructions play another important role: they can be used as a support to graphically
visualise how various sorts of information are distributed in the plant architecture.
E?lo for example shows the organisation of plant components according to their branching
order (trunk components have order 0, branch components have order 1, etc.). In AML, this
would be obtained by the following commands:

AML> color_order(_x) = Switch Oder(_x) Case 0: MediunG ey
Case 1. DarkG ey Case 2: LightGey Case 3: Black
Default: Wite

AML> Pl ot (geom struct, Color -> col or_order)

This representation emphasises different informations related to the branching order: it can be
seen in that the maximum branching order is 4, that this order 1s reached only
once in the tree crown, and that this occurs at a floral site (black component).

AMAPmMod (28/06/02) 3-19

Part | O AMAPMOD: an Overview

Order 3

| \ / \ lll
R\Lr’ * i_}; : \f"

""'I"[LT&'—\M.

By W

-
e

i

Figure 3-7 (a) 3D reconstruction of an apple tree recorded in the database. (b) Branching
orders (green = 0, red = 1, light blue = 2, black = 3). (c) Years of growth (black = 1st year,
green = 2nd year, red = 3rd year). (d) Growth rhythms (black = long internodes, red = scars,
green = short internodes).

The use of the 3D representation of plant structure can also be illustrated in the context of
plant growth analysis. The year in which each component grew can be retrieved from a
careful analysis of the plant morphological makers. If this information is recorded in the
MTG, it is then possible to colour the different components accordingly. |Figure 3-7¢ shows,
for instance, that a branch appeared on the trunk during the first year of growth. This
information can then be linked to other data, €.g. the branching order of a component or the

3-20 AMAPMod (28/06/02)

Part | 0 AMAPMOD: an Overview

number of fruits borne by a component, and thus provides deeper insight into the plant growth
process.

Thanks to the multiscale nature of the plant representation, more or less detailed information
can be projected onto the plant structure. Let us consider again the context of plant growth
analysis. Plant growth is characterised by rhythms that result in the production of long
internodes during periods of high activity and short internodes during rest periods (indicated
on the plant by scares close together). These informations, at the level of internodes, can be
projected onto the plant 3D structure (). Like the year of growth, this information
enables us to access plant growth dynamics, but now, at an intra-year scale.

Finally, another use for the virtual reconstruction of measured plants is illustrated in
@a and 3-8b. These plants have been reconstructed from the MTG at the scale of each leafy
internode. This enables us to obtain a natural representation of the plant which can be used for
instance in models that are intended to describe the interaction of the plant and its
environment (€.g. light) at a detailed level, e.g. [41]. More generally, the user can plot a set of

plants from the database (Figur e 3-9):

AML> orchard = Pl ant Franme(pl ant _|i st)
AML> Pl ot (or chard)

Figure 3-8 Virtual 3D reconstruction of the geometry of a plant with positioning of leaves (a)
and fruits (b).

AMAPmMod (28/06/02) 321

Part | O AMAPMOD: an Overview

Figure 3-9 3D representation of the information contained in the architectural database (Only
15 plants are represented out of 102).

3.3.3 Extraction of data samples

Visualizing informations projected onto the 3D representation of plants is one way to explore
the database. More quantitative explorations can be carried out and the most simple of these
consists of studying how specific characters are distributed in the architecture of the plant
population. To do this, samples of components are created corresponding to some topological
or morphological criteria, and the distributions of one or several characters (target characters)
are studied on this sample. This data extraction always follows the three following steps:

— Firstly, a sample of components is created to study the target character.

— Secondly, the character itself is defined. It may be more or less directly derived from
the data recorded in the field. For example, it is straightforward to define the diameter
of a component if this has been measured in the field. On the other hand, the maximum
branching order of the components that are borne by a given component needs some
computation.

— Thirdly, the target character is computed for each component of the selected sample of
components.

The output of these three operations is a set of values that can be analysed and visualised in
various ways. Let us assume for instance that we wish to determine the distribution of the

3-22 AMAPmMod (28/06/02)

Part | 0 AMAPMOD: an Overview

number of internodes produced during a specific growth period for all the plants in the
database. It is first necessary to determine the sample of components on which we wish to
study this distribution. In our case, we assume that we are interested in the growth units of the
trunk that are produced during the first year of growth. This would be written in AML as:

AM_L> sanple = Foreach _conponent In growth_unit_|ist
Sel ect (_conponent, Order (_conponent) == 0 And
I ndex(_conponent) == 90)

The variable sanpl e thus contains the set of growth units whose order is 0 (i.e. which are
parts of trunks) and whose growth year is 1990 (assuming 1990 corresponds to the first year
of growth). The second step consists of defining the target character. This can be done by
defining a corresponding function:

AML> nb_of _i nternodes(_x) = Size(Conponents(_x))

The number of internodes of a component _x (assumed to be a growth unit) is defined as the
size of the set of components that compose this growth unit _x (assuming that growth units
are composed of internodes). Finally, this function is applied to each component in the

previously selected sample and the corresponding histogram is plotted (Figure 3-10):

AML> sanpl e_val ues = Hi stogran{Foreach _conponent In sanple :
nb_of i nternodes(_conponent))
AML> Pl ot (sanpl e_val ues)

This example illustrates the kind of interaction a user may expect from the exploration of tree
architecture. In the field, the growth units of the trunks produced during the first year of
growth present a variable length, ranging roughly from 10 to 100 internodes. However, the
quantitative exploration of the database shows that the histogram exhibits two relatively well-
separated sub-populations of components (|Fi§ure 3—10}. The sub-population of short
components corresponds to the first annual shoots of the trunk, made up of two successive
intra-annual growth units, while the sub-population of long components corresponds to the
first annual shoots made up of a single growth unit.

Frequency

+

0 10 20 30 40 50 60 70

Number of internodes

Figure 3-10 Histogram of the number of growth unit internodes for year 90 on the trunk.

In order to separate and characterise these two sub-populations, we can make the assumption
that the global distribution is a mixture of two parametric distributions, more precisely, two

AMAPmMod (28/06/02) 3-23

Part | O AMAPMOD: an Overview

negative binomial distributions. The parameters of this model can be estimated from the
above histogram as follows:

AML> m xture = Estimate(sanple_value, “M XTURE",
“NEGATI VE_BI NOM AL”, “NEGATI VE_BI NOM AL")
AML> Pl ot (m xture)

For all parametric models in the system, the function Est i mat e performs both parameter
estimation and computation of various quantities (likelihood of the observed data for the
estimated model, theoretical characteristics, etc) involved in the validation stage. As
demonstrated by the cumulative distribution functions in , the data are well
fitted by the estimated mixture of two negative binomial distributions. The weights of the two
components of the mixture are very close (0.49 / 0.51), the first being centred on 21
internodes and the second on 53 internodes (Figure 3-11h). Due to the small overlap of these
two mixture components (Figure 3-11f), the extracted sample can be optimally split up into
two optimal sub-populations with a threshold fixed at 37.

As illustrated in this example, using AMAPmod, the user can query the database, make
assumptions and look for data regularities. This interactive exploration process enables the
user to build a rich and detailed mental representation of the architectural database, which
relies on various complementary viewpoints.

3.34 Extraction and analysis of biological sequences

The previous section illustrates the extraction of a simple sample type, made up of numeric
values. In this section, we consider a more complex sample type, made up of sequences of
values. For example, in the apple tree database, let us consider sequences of lateral
productions along trunks. Our aim is to analyse how lateral branches are distributed along the
trunks of hybrids.

(@) (b)

o
L
+

w
L
+

[Jdata
—u— distribution 1

IS
L
+

—=—data

Frequency

—e+— distribution 2 —0— mixture

—— mixture
A

Y

A W
N &
i 4
N A
A
i
A

|||||||||||||||||||||

w
L
+

)
L
+

Cumulative distribution function

)
0 -annrikecheceesecedecectesssss

50 60 70 0 10 20 30 40 50 60 70

Number of internodes Number of internodes

Figure 3-11 Modelling the number of growth unit internodes for year 90 on the trunk by a
mixture of two parametric distributions.

The sequences are coded as follows: for each plant, the 90 annual shoot of the trunk is
described node by node from the base to the top. Each node is qualified by the type of lateral
production (latent bud: 0, one-year-delayed short shoot: 1, one-year-delayed long shoot: 2 and
immediate shoot: 3). This sample of sequences is built as follows in AML:

3-24 AMAPMod (28/06/02)

Part | 0 AMAPMOD: an Overview

AML> seq = Foreach _conponent In growth_unit_sanple :
Foreach _node I n Axis(_conponent, Scale -> 4)
Switch lateral _type(_node)

Case BUD: 0 Case SHORT: 1 Case LONG 2
Case | MVEDI ATE: 3 Default: Undef

The AML variable growt h_unit _sanpl e contains the set of growth units of interest
(assumed to be selected before). For each component in this set, the array of nodes that
compose its main axis is browsed by the second For each construct. Finally, for each node, a
function | at eral _t ype() (defined elsewhere) is used to encode the nature of the lateral
production at that node.

illustrates the diversity of annual shoot branching structures encountered in the
studied hybrid family, which results from the different branching habits of the two parents. In
our context, we wish to characterise and classify the hybrids according to their branching
habits. The difficulty arises from the fact that the branching pattern is made of a succession of
branching zones which are not characterised by a single type of lateral production but by a
combination of types (e€.g. short shoots interspersed with latent buds). We shall use this
example to illustrate how parametric models may be used in AMAPmod to identify and
characterize successive branching zones along these annual shoots.

We assume that sequences have a two-level structure, where annual shoots are made up of a
succession of zones, each zone being characterised by a particular combination of lateral
production types. To model this two-level structure, we use a hierarchical model with two
levels of representation. At the first level, a semi-Markov chain (Markov chain with null
self-transitions and explicit state occupancy distributions) represents the succession of zones
along the annual shoots and the lengths of each zone [6; 28; 29]. Each zone is represented by
a state of the Markov chain and the succession of zones are represented by transitions between
states. The second level consists of attaching to each state of the semi-Markov chain a discrete
distribution which represents the lateral productions types observed in the corresponding
zone. The whole model is called a hidden semi-Markov chain [26; 27].

The model parameters are estimated from the extracted sample of sequences by the function
Esti mat e:

AML> hsnt = Estimate(seq, “H DDEN SEM - MARKOV', initial hsnt,
Segnentation -> True)

The first argument seq represents the extracted sequences, “H DDEN_SEM - MARKOV”
specifies the family of models and i ni tial _hsnt is an initial hidden semi-Markov chain
which summarises the hypotheses made in the specification stage. An optimal segmentation
of the sequences is required by the optional argument Segnent at i on set at Tr ue.

AMAPMod (28/06/02) 325

Part | O AMAPMOD: an Overview

000000001112121111211111111111111111110000000001110
| 11 11 Il |
state 0 state 2 state 1 state 2

(b) Close to Baujade parent |

000000000000022112110111010000011222222222222
| 11 11 Il 111 |
state 0 state 1 state 3 state 1 state 3 state 4

(c) Intermediate case with

scattered long shoots

0000000000101112111121120111000200000112120000
| Il Il Il Il Il |
state 0 state 2 state 3 state 1 state 3 state 1

(d) Intermediate case with

a dense long shoot zone

0: latent bud, 0000011121222220000000111111111010000000000000
1: one-year-delayed short shoot, | | 1L Il IL Il !
state 0 state 2 state 3 state4 state | state 2 state 1

2: one-year-delayed long shoot.

Figure 3-12 Example of sequences showing different branching habits in the hybrid family.

The hidden semi-Markov chain built from the 90 annual shoots of the 102 hybrids is depicted
in with the following convention: each state is represented by a box numbered in
the lower right corner. The possible transitions between states are represented by directed
edges with the attached probabilities noted nearby. Transient states are surrounded by a single
line while recurrent states are surrounded by a double line. State i is said to be recurrent if
starting from state i, the first return to state i always occurs after a finite number of transitions.

3-26 AMAPMod (28/06/02)

Part | 0 AMAPMOD: an Overview

A nonrecurrent state is said to be transient. The state occupancy distributions which represent
the length of the zones in terms of number of nodes are shown above the corresponding
boxes. The possible lateral productions observed in each zone are indicated inside the boxes,
the font sizes being roughly proportional to the observation probabilities(for state 3, these
probabilities are 0.1, 0.62 and 0.28 while for state 4, these probabilities are 0.01, 0.07 and
0.92 for latent bud, one-year-delayed short shoot and one-year-delayed long shoot
respectively). State 0 which is the only transient state is also the only initial state as indicated
by the edge entering in state 0. State 0 represents the basal non-branched zone of the annual
shoots. The remaining five states constitute a recurrent class which corresponds to the
stationary phase of the sequences.

03 04

021

014 / \

1.0

TN

0: latent bud,

1: one-year-delayed short shoot,
2: one-year-delayed long shoot,
3: immediate shoot.

Figure 3-13 Hidden semi-Markov chain built from the 90 annual shoots of the 102 hybrids.
Only transitions whose probability = 0.02 are represented. The less probable transitions
(respectively states) are represented by dotted edges (respectively dotted boxes).

Building a parametric model gives us a global insight into the structure of the 90 annual shoot
of the trunk for the 102 hybrids. The adequacy of the estimated model to the data is checked
by examining the fitting of theoretical characteristic distributions computed from the model
parameters to the corresponding observed characteristic distributions extracted from the data.
Counting characteristic distributions for example focus on the number of occurrences of a
given feature per sequence. The two features of interest are the number of series (or clumps)
and the number of occurrences of a given lateral production type per sequence. The fits of

counting distributions (Figure 3-14) can be plotted by the following function:
AML> Pl ot (hsnt, “Counting”)

AMAPMod (28/06/02) 327

Part | O AMAPMOD: an Overview

(a) Number of series of short shoots per sequence (b) Number of short shoots per sequence
16 T 8
u—
14+ 7
W
A "
12 / \L— 6
10 r 5 u
Z\ |] 3 l.
5 < [observed 5 4 ! u| [observed
= = |]
g . —u—theoretical |) —u— theoretical
= | = / "
6+ 3 L]
y l
o J .
44 \ 214 il HH
.
1 H 1 o ‘ |
. N e ‘ ‘
0 | LA s e [i 'TDT.+ +a4 0 W H H 1‘ f ‘ 1‘ ‘ H‘ 1‘ H ‘W""‘
0 2 4 6 8 100 12 14 16 0 10 20 30 40 50
Number of series per sequence Number of occurrences per sequence
(c) Number of series of long shoots per sequence (d) Number of long shoots per sequence
251 20+
18
0+ e 16
.
14 4
"
7 15 7 1241}
] [observed g \ [Jobserved
= =
g " —s—theoretical | § N —s— theoretical
=10 1 =8| [w
.\U
| 6 N
l-ﬂ
5] " 41 .“lbl
AN 24 "
. ‘ o
0 H— by 1”17\11'M oy 0 AL L B e]
0 2 4 6 8 10 12 0 5 10 15 20 25 30
Number of series per sequence Number of occurrences per sequence

Figure 3-14 Fit of theoretical characteristic distributions computed from the model
parameters to the corresponding observed distributions extracted from the data.

In addition, the optimal segmentation of the observed sequences in successive zones (
can be extracted from the model as a by-product of estimation of model parameters by
the following function:

AML> segnented_seq = Extract Dat a(hsnt)

segnent ed_seq represents the observed sequences augmented by a variable which contains
the corresponding optimal state sequences (. A careful examination of this
optimal segmentation help us highlight a discriminating property: it suggests using the
absence of state 4 in this optimal segmentation as a discrimination rule between hybrids closer
to the Wijcik parent than to the Baujade parent (and conversely). State 4 corresponds to a
dense long branching zone characteristic of the Baujade parent. Two sub-populations close to
each of the parents are extracted by the function Val ueSel ect relying on the
absence/presence of state 4 on the 1st variable:

AML> wijcik seq = Val ueSel ect (segnented_seq, 1, 4,
Mode -> Reject)

AML> bauj ade_seq = Val ueSel ect (segnented_seq, 1, 4,
Mode -> Keep)

328 AMAPMod (28/06/02)

Part | 0 AMAPMOD: an Overview

Simply counting the number of axillary long shoots per sequence would not have been
sufficient, since for a given number of long shoots, these can be either scattered (Figure |
@b or aggregated in a dense zone (). This is confirmed by comparing the
empirical distributions of the number of series with the number of occurrences of axillary
long shoots per sequence extracted from the two hybrid sub-populations. The empirical
distributions of the number of series/number of occurrences of axillary long shoots (coded by
2) per sequence for the sub-population close to the Wijcik parent can be simultaneously

plotted by the following function (Figur e 3-15p):

AML> Pl ot (Extract H stogran(w jci k_seq, “NbSeries”, 2, 2),
Extract H stogramw j ci k_seq, “NoQccurrences”, 2, 2))

These empirical distributions are very similar for the sub-population close to the Wijcik

parent, (Figure 3-15R). Most of the series are thus composed of a single long shoot. These

empirical distributions are very different for the sub-population close to the Baujade parent,
(Figure 3-15p). In this case, the series are frequently composed of several successive long

shoots.

The studied sample of sequences encompasses a broad spectrum of branching habits ranging
from the Wijcik to the Baujade parent one. Hence, the building of a parametric model is
mainly used for identifying a discrimination rule to separate the initial sample of branching
sequences into two sub-samples.

(a) Wijcik cluster (b) Baujade cluster

O number of series [number of series

Frequency
1)
Frequency
(=)

W number of occurrences W number of occurrences

8,

6+ 1

4t .1

Ll

0+ 0 HlHH‘l1‘1‘1llHlHHlllHIH
5 0 15 20

0 1 2 3 4 5 6 0

: :I:
25

Number of patterns per sequence Number of patterns per sequence

Figure 3-15 Number of series/occurrences of long shoots per sequence for the two sub-
populations close to each parent.

AMAPmMod (28/06/02) 3-29

Part I 00 The AML language

4 THE AML LANGUAGE

AML is a functional language which enables the user to build more or less complex data-
structures and to explore them by applying various high-level primitives. Some of them are
classical data structures like arrays, lists, or histograms for example, while others are
specifically dedicated to plant analysis, like plant formal representations, sequentially
organized data or various types of stochastic models available in AMAPmod.

The set of system functions that are available in AMAPmod is divided into modules (Kernel,
MTG, STAT,...). The kernel module contains functions working on standard types, i.e.
arithmetic and mathematical functions, functions to deal with strings, arrays, sets, lists,
functions to convert types to other types, and general purpose functions.

41 Startingan AMAPMmMod session
An AMAPmod session is launched by the command

am

which calls the AMAPmod shell language (or command interpreter): anm . This is indicated
by the following prompt:

AML>

which means that the interperter is ready for analyzing user commands. As you type in
commands, the AML interprets what is type after each newline. The result of the computation
is displayed on the next line, before resuming with a new prompt. AML uses the readline
function to buffer the command line, which means that you can edit your line using standard
line editor keys (arrows, backspace, character insertion). You can obtain a detailed description
of the command line functions and short-hands by invoking the readline man page if available
on your system.

> man readline

If the command is launched without argument, the program looks for a file called ". am " in
the current directory. If the file is not found here, aml looks for it in the user's home directory.
If this file is finally found, it is interpreted before the interpreter prompt is displayed.
Otherwise, the interpreter is launched and a message quoting the fact that the file ". am "
could not be found is displayed. The option - i deactivate the search for the file ". am ".

> am -
A certain number of other options can be passed to the aml command.

— Option - h displays the list of all the options available with the aml command.
— Option -i "filename" loads file "filename" before displaying the user's prompt.

— Option - b "filenamel" "filename2" ... loads a series of files in batch mode, in the order
where they appear in the argument list.

The user closes an AML session by typing the command :

AML> bye

AMAPmMod (28/06/02) 41

Part | 00 The AML language

During an AML session, all what is typed by the user is recorded after each newline in a file
named .amlog in the current directory. You can use this file to restore what was typed during
the last session. WARNING, this file is cleared each time you launch aml. If you wish to save
the information it contains, you must copy this file into a file with a different name:

> cp .am og ny_session. save

42 AML

A command line in AML enables the user to execute an AMAPmod command. These built-in
functions are called primitives and can be used as atomic entities to build new high-level
functions.

Objects can be either temporarily built or stored in AML variables.

4.3 Data structures

The AML language contains several types of objects corresponding to different data
structures.

4.3.1 Simpletypes

Simple types are integers (I NT), reals (REAL), booleans (BOOL), characters (CHAR), strings of
characters (STRI NG), and vertices (VTX). Types are syntactically detected by AML: when you
type 1, it is automatically recognized as an | NT whereas when you type 1. O it is recognized
as a REAL.

Elementary types can be combined using type constructors in order to define new types. Type
constructors are ARRAY, SET and LI ST.

432 Arrays

An array is an object made of an ordered collection of objects of the same type. Let us
consider how arrays can be built in AMAPmod on a few examples:

AML> # Explicit construction
AML> al = [33, 2, 8, 4]
<ARRAY(I NT) > [33, 2, 8, 4]
AML> # Automatic construction
AML> al = [1:10]
<ARRAY(INT)>[1,2,3,4,5,6,7,8,9, 10]
AML> # Construction of an array as the value returned by a
function
AML> vlist = VtxList()
<ARRAY(VTX)> [1,2,3,4,5,6,7,8,9, 10,11, 12, 13, 14]
AML> vlist = Sons(2)
<ARRAY(VTX)> [3, 4, 5, 6]
AM> ...

Vt xLi st () and Sons() are example of AML built-in functions, called primitives. Primitives
may have mandatory arguments and optional arguments. Function Sons() for instance has a
mandatory argument of type VTX, while function Vi xLi st () has no mandatory argument.

12 AMAPMod (28/06/02)

Part I 00 The AML language

Function Sons() has optional arguments which can be specified by their name: for example
the set of sons connected to their father by a '+' edgetype can be obtained by specifying the
optional argument EdgeType as follows:

AML> Vlist = Sons(2, EdgeType->'+")
<ARRAY(VTX) > [3, 4, 5]

Similarly, the set of vertices of a given MTG at a given scale may be obtained by specifying
the optional argument Scal e:

AML> VIist = VtxList(Scal e->1)
<ARRAY(VTX) > [1, 9]

433 Sets

A set is an unordered collection of objects. A set contains objects with same type and may not
contain several objects with same value. For example:

AML> s=Set (2, 3,10, 3, 2,2, 2,10, 11, 2)
<ARRAY(I NT) > [2, 3, 10, 11]

AML> s=Set (2, 3, Undef, 3, Undef)
<ARRAY(| NT) >[2, 3, Undef]

AML> s=Set([1,2,3],[9],[1.[1,2,3],[9])
<ARRAY(ARRAY((INT))>[[1.191.11, 2, 3]]

In a set the order of the element (when displayed) is irrelevant. The operator @ thus cannot be
applied to sets. An ARRAY can be transformed into a SET using primitive ToSet :

AML> a=Array(2, 3,10, 3,2, 2,2,10, 11, 2)
<ARRAY(INT)> [2, 3,10,3,2,2,2,10, 11, 2]
AML> s=ToSet (a)
<ARRAY(INT)> [2, 3, 10, 11]

434 Ligt

A list is an ordered collection of objects, possibly of different types. In a list, the order of the
object is significant (the operator @ can be used):

AML> | = List("A",7)
<LI ST(STRING, I NT) > [A, 7]
AML> | = List("A", Undef, 7)
<LI ST(STRI NG, UNDEF, i nt) > [A, Undef , 7]
AML> | @
<| NT> 7
AML> | = List("A", 7, List([1,91], True))

<LI ST(STRI NG, | NT, LI ST(ARRAY(| NT) , BOOL)) >
[A 7,[[1,91], TRUF]

AVL> | @@
<ARRAY(| NT) > [1, 91]

AMAPMod (28/06/02) 4-3

Part | 00 The AML language

4.4 Iterators

AML provides a conventional set of statements for expressing selection and looping. Here we
will give examples of foreach statements. Consider copyning 10 elements from one array into
another :

AML> al = [1, 2, 3]
AML> a2 = Foreach _i Inal: _i + 2
<ARRAY(VTX) > [3, 4, 5]

An iterator is used to go through collection of objects of type ARRAY or SET or LI ST (here
al) and to apply a given function (here _i +2) to each object (here represented by variable
_i). This is a very generic way to explore data bases and extract samples of different types.

It 1s often useful in AML to filter arrays (or sets, or lists) according to given boolean criteria.
This can be performed with the AML primitive Sel ect . Assume, for example, that we want
to extract the values of an array less than a given threshold, we would write:

AML> Foreach_i In arrayl: Select(_i, _i<7)
(ARRAY(REAL)) [2.2,3.1,0.9,2.1,2.9]

45 Functions

A user can define AML his own functions on the basis of AML primitives. This AML
program is actually defined as a function. The notion of function is very similar to the notion
of mathematical function. For instance the mathematical function

f(x) = 3x+ 2
would be defined in AML by :
AML> f(_x) = 3*_x+2

In this example, f is a user-defined function. AML functions can be considered as a programs
which computes output values for given input values. A function f is given an input value in
the following way:

AM_> f(5)
<I NT> 17

If one wants to apply a function to a series of values, a first solution would be to apply
consecutively the function to each value of the series. However, more generally, a function
can be applied in one step to a series of values using an iterator. Assume a series of values is
defined in the variable al for example:

AML> al =1[1,2,3,4,5, 6]
<ARRAY(INT)> [1, 2, 3,4,5, 6]

AML> a2 = Foreach _x In al:f(_x)
<ARRAY(I NT)> [5, 8,11, 14, 17, 20]

The For each iterator scans the array al=[1,2,3,4,5,6] and successively applies the function f

to each element. The iterator returns the array made of the values returned by function f on
each element of al : [f(1),f(2),f(3),f(4),f(5),f(6)]. AML contains conditional functions such as

44 AMAPmMod (28/06/02)

Part I 00 The AML language

| f Then El se whose result depend on a boolean condition. For instance a function for
encoding a series of REAL values in a binary form depending on whether they are above or
under a given threshold would be defined as:

AML> encode(_r) = If _r>7 Then 1 Else O

The function can then be applied to encode a series of values in one step:

AML> arrayl=[2.2,3.1,0.9,10.1,9.1,7.0,2.1,2.9]
<ARRAY(REAL)> [2.2,3.1,0.9,10.1,9.1,7.0,2.1, 2. 9]
AML> Foreach_i In arrayl: encode(_i)
<ARRAY(INT)> [0,0,0,1,1,0,0,0]

4.6 Comments and indentation

Files containing AML commands can contain comments. Judicious use of comments and
consistent use of indentation can make the task of reading and understanding a program much
more efficient. AML uses the # symbol to indicate a comment:

This is a comment of the end of the |ine

When AML encounters the # symbol, the interpretor ignores all text remaining on that line.
Comments can be grouped on several lines within forward parenthesis and # as shown here :

(# This is a coment
whi ch continues in a second |line
#)

In this case parenthesis and # open and close the comment. To open the comment (# must be
placed on the begining of the line.

If you must write macros complicated, you can define your function on several lines
separating each line by a slash:

function (_x) = Foreach i In[1,2,3,4,5 6] :\
Foreach j In [1,2,3,4] : i%*j

This function is written on two lines and computes the producted of two arrays. Similarly
nested | f Then El se statements can be idented for better legibility:

color(_x,_y) =\
If Size(Sons(_x))==0 And Year(_y)==99 \
Then return Blue \
If dass(Father(_x)) =="'S \
Then Red \
El se Yell ow \
El se Bl ack

4.7 Access to shell commands

At any time you can launch a shell command by typing command after a ! :

AML> ! |s
my filel.txt nmy file2. txt ny file3.txt
AML> | pwd

ol

AMAPMod (28/06/02) 4-

Part | 00 The AML language

/ home/ j ens/ amapnod/ oaktr ee

4.8 Input and Output

AML provides different ways of displaying, saving, reading or printing objects. These input
and output operators are generic for all objects.

A short description of the value of an object can be displayed in textual form on the standard
output by typing its name:

AML> arrayl = [1, 2, 3]
AML> ...
AML> arrayl

This command displays on the standard output the contents of variable ar r ay1 by giving its
type followed by its value :

<ARRAY(I NT)> [1, 2, 3]

The function Di spl ay allows the user to display an ASCII representation of an object on the
standard output more or less exhaustively. This description depends on the particular object
used. The option “Level” can be used to get more or less information about the object.

Several objects can be saved to a file in differents formats. Using the function Save, an objetc
is saved by default in an ASCII form. Such a saved object can be loaded using its explicit
constructor:

AML> array = [1, 2, 3]
AML> Save(arrayl,”fil enane.dat”)
AML> array2 = Array(”"fil enane.dat”)

Some objects can be also saved with the Spr eadSheet format which enables, for example,
the user to save a possibly multidimentional array in a format that can be loaded later on with
a spreadsheet program like Excel. On the other hand a binary file can be generated using the
option For mat - >Bi nar y. The object can be reloaded later with the command Load.

AML> array=[[0,1,2,3],[1,1,2,4]]

AML> seq = Sequences(array)

AM_L> Save(seq, "fil enane. bi n”, For mat - >Bi nary)
AML> seg2 = Load("fil enane. bin”)

In fact, in the version 1.2 of AMAPmod, not all objects have a binary format option, such an
object need to be recomputed each time AML is launched. Version 2.0 of AMAPmod will
have a binary format option for all objects.

For certain types of object (Arr ay, Sequences, ...), a graphical display can be obtained with
the command Pl ot. Except Pl ant Frame objects, the Pl ot function creates gnuplot
windows :

AML> arrayl =[1, 2, 3]
AML> Pl ot (arrayl)

4-6 AMAPmMod (28/06/02)

Part I 00 The AML language

On Irix only

A Pl ant Fr anme objects creates a gl ance window. @ ance files can be saved by specifying a
file name :(by default the file name is “line”)

AML> pf = PlantFrane([1]) # PlantFrame rooted in 1
AML> Plot(pf, File->"fil enane”)

AML creates three files respectively called “filename.dta”, “filename.inf”, “filename.lig”. The
object can then be displayed using glance when AML is closed. File names which differs only

by a terminating number (i.e. filenamel and filename2) generate a conflict for gl ance and
should be avoided.

AMAPMod (28/06/02) a-7

Part | O The MTG module

5 THEMTG MODULE

A plant architecture described in a coding file can be loaded in AML using primitive MTG:
gl = MTE "fil enane”)

The MTG primitive attempts to read a valid MTG description and parses the coding file. If
errors are detected during the parsing, they are displayed on the screen and the parsing fails.
In this case, no MTG is built and the user should make corrections to the coding file. If the
parsing succeeds, This function creates an internal representation of the plant (or a set of
plants) encoded as a MTG. In this example, the MI'G object is stored in variable g1 for further
use. Note that a MTG should always be stored in a variable otherwise it is destroyed
immediately after its building. The last built MTG is considered as the “active” MIG. It is used
as an implicit argument by all the functions of the MTG module.

It is possible to change the active MTG using primitive Act i vat e :

AML> gl = MTIE "filenamel”) # gl is the current MIG
AML> g2 MIG"fil ename2”) # g2 becones the current MIG
AML> Activate(gl) # gl is now again the current MIG

51 AML primitivesrelated to MTGs

In addition to standard primitives for managing ARRAYs, LI STs, SETs, etc., AML provides a
set of primitives for accessing more specific objects. There exists for example a
comprehensive set of primitives related to MTGs. These primitives may be directly used on
the active MTG or they may be combined with each other in order to define new functions on
MTGs. Let us give a few examples of these specific primitives.

* MTG constructor: MTG(STRI NG) .
A MTG can be built from its code file by using the primitive MI'G() which takes one
mandatory argument, i.€. the name of the MTG code file.

* Extraction of vertex sets: e.g. Vt xLi st ().

Different types of lists of vertices can be extracted from a MTG through the primitive
Vit xLi st () (see part II, . Notably, the set of primitives at a given scale is obtained
with the optional argument Scal e.

* Primitives returning vertex attributes: €.g. Cl ass(vtx), | ndex(vtx), Feat ure(vtx,
feature_nane).

The different attributes attached to a given vertex can be retrieved by these functions. The
class and the index of a vertex are respectively returned by primitives Cl ass() and
I ndex().

The value of any other attribute may be obtained by specifying its name:

AML> Feature(vl, "Length”)

Returns the | engt h (if any) of vertex v1. These primitives return scalar (I NTEGER,
STRI NG, REAL), i.e. elementary types different from VTX.

e Primitives for moving in MTGs: eg. Father(vtx); Conpl ex(vtx),
Successor (vtx), Predecessor(vtx).

AMAPmMod (28/06/02) 5-1

Part | O The MTG module

Some primitives take a VTX as an argument and return a VTX. These primitives allow
topological moves in the MTG, i.e. they allow to select new vertices with topological
reference to given vertices.

* Primitives for creating collections of vertices: €.g. Sons(vtx), Conponents(vtx),
Axi s(vtx).
These primitives return sets of vertices associated with a certain vertex. Conponent s()
returns all the vertices that compose at the scale immediately superior a given vertex.
Axi s() returns the ordered set of vertices which compose the axis which the argument
belongs to.

* Primitives for creating graphical representations of MTGs: Pl ant Frame(vtx),
Pl ot (Pl ant Frane), Dr essi ngDat a(fi | enane), Vi rt ual Pat t er n().
Pl ant Fr ame enables the user to compute 3D-geometrical representations of MTGs (see

part II, .

The above primitives can be combined together using the AML language to extract from plant
databases various types of information.

52 AMAPMod (28/06/02)

Part | O The STAT module

6 THESTAT MODULE

Le module STAT d'AMAPmod propose un ensemble de méthodes d'analyse de données a
base de probabilités discretes et de processus stochastiques a temps discret et a espace d'états
discret. Ces méthodes font appel soit a des techniques non-paramétriques (par exemple calcul
d'une distance entre deux séquences) soit a des techniques paramétriques (par exemple
estimation des parametre d'un mélange fini de lois discrétes a partir d'un échantillon de
valeurs discretes). Le module STAT integre ainsi un ensemble de méthodes exploratoires pour
les échantillons de valeurs discréetes et les échantillons de séquences basé essentiellement sur
des techniques non-paramétriques. L'approche paramétrique repose d'une part sur des
algorithmes d'estimation efficaces et d'autre part sur des méthodes d'évaluation de
'adéquation du modele estimé a 1'échantillon de données utilisé pour I'estimation. Le coeur du
module STAT réside dans l'inférence de processus stochastiques a temps discret et a espace
d'états discret a partir d'échantillons de séquences discretes éventuellement multivariées.

Le module STAT a été congu pour répondre a un certain nombre de problématiques d'analyse
de données dans le cadre de 1'étude de la croissance de la plante. Ceci explique d'une part que
l'on se soit concentré sur le discret étant donné la part prépondérante de ce type de variable
aussi bien qualitative (devenir d'un bourgeon axillaire choisi parmi bourgeon latent, rameau
court, rameau long et rameau a développement immeédiat) que quantitative (nombre
d'entrenoeuds d'un unité de croissance, nombre de cycles d'une pousse annuelle, ordre
maximum port€...) dans la description de la structure de la plante. D'autre part, la description
sous forme de séquences discrétes qui permet de préserver tout ou partie de l'information
structurelle est a la base de I'essentiel des méthodes proposées.

Le module STAT peut aussi étre utilis¢é indépendamment du contexte de 1'é¢tude de la
croissance des plantes grace a la possibilit¢ de construire des échantillons de données
directement a partir de fichiers ASCII.

6.1 L'organisation du module STAT

Les types manipulés par le module STAT d'AMAPmod appartiennent a deux catégories :
e les échantillons de données,

* les modeles.

Les types « données » et les types « modele » se regroupent en applications figurées par les
cadres en pointillés dans la :

* lois et combinaisons de lois (A),
* processus de renouvellement (B),
* modé¢les Markoviens (C),

* analyse des cimes (D).

AMAPmMod (28/06/02) 6-1

Part | O The STAT module

m
_/
@) A
. -r - —-—"—-—"">"—">"-"~"~>~">~">~"~>~"~"~"~>~"~"~-~"~"~"~"~"~"~"~"=~"=~"~“"F~-~"~"~"=-~"~-"~"~-~" -~/ -~/ - - - - -~ - - - - == | - - \\
(—— HISTOGRAM —— DISTRIBUTION :
|
| |
I— L MIXTURE |
: N MIXTURE_DATA @ |
1 | convoLuT ON_DATA L CONVOLUTION 1
|
|
1 L COMPOUND_DATA L COMPOUND |
\ /‘
B
B T
| —TIME_EVENTS—— RENEWAL_DATA | RENEWAL |
|
\ S [
C
2 """ " ">">">">">">"»">">"»">"»"=>""»"»"-"»""-""""9~"“">">">">">>">">">"~>">"~>"\”"=”""-~"="~"="="="="="=”" "7 L N
/ MARKOV

SEMI-MARKOV

|
| [
[
| |
| [
: | DISCRETE_ MARKOV_DATA ‘
[SEQUENCES e :
| [
| [
| [
| [
| I

SEMI-MARKOV_DATA

L

Figure 6-1 Organisation des types du module STAT.

Ces deux niveaux d'organisation sont traduits dans la fig 1. Les différents types sont structurés
en une arborescence qui représente la notion d'héritage. Ainsi, les types « données » (type 2)
sont des types particuliers (type 1) et les types H STOGRAM M XTURE_DATA,
CONVOLUTI ON_DATA et COVPOUND_DATA sont des types « histogramme » particuliers
(type 4). Les sommets numérotés représentent les types dont l'utilisateur ne peut pas créer
d'instances (d'objets réels). A chacun de ces types correspond un ensemble de fonctions
partagées par tous les types hérités du type en question. Ainsi, tous les types (type 1)
partagent un certain nombre de fonctions d'entrée (Load) et de sortie (Di spl ay, Pl ot,
Print, Save). Tous les types « données » (type 2) peuvent étre utilisés comme argument de
la fonction Esti mat e alors que tous les types «modele » (type 3) peuvent étre utilisés
comme argument de la fonction Si mul at e. Les sommets associés a un nom représentent les
types dont l'utilisateur peut créer des instances. Ces instances peuvent étre obtenues soit par
un algorithme a partir d'un objet du module STAT, soit par lecture d'un fichier ASCII ou d'un

6-2 AMAPmMod (28/06/02)

Part | O The STAT module

fichier binaire, soit par extraction a partir d'une représentation de plantes appelée MTG (cf. E|
[The MTG module). Les types dont des instance peuvent étre crées a partir d'un fichier ASCII
ou par extraction sont figurés en fonte standard alors que les types dont les instances sont
obligatoirement le résultat d'algorithmes a partir d'un objet du module STAT sont figurés en
italique.

6.1.1 Application lois et combinaisons delois

Le type 5 traduit la notion de loi discrete. Les types hérités du type 5 effectivement utilisables
sont les suivants :

e DI STRI BUTI ON: loi discréte,

* M XTURE : mélange fini de lois discrétes,

e CONVOLUTI ON: produit de convolution de lois discretes,

e COVPOUND: loi composée construite a partir de lois discretes.

Le type DI STRI BUTI ON couvre les lois paramétriques discrétes usuelles (binomiale,
binomiale négative, Poisson) munies d'un parametre de translation. Notons que le loi
binomiale négative est définie avec un parameétre réel et une probabilité. Les trois autres types
de lois discretes correspondent a des combinaisons de lois discretes.

Le type 4 traduit la notion d'ensemble de réalisations d'une variable aléatoire discréte. Les
types hérités du type 4 effectivement utilisables sont les suivants :

e H STOGRAM: histogramme,

* M XTURE_DATA : données générées par un mélange fini de lois discretes,

e CONVOLUTI ON_DATA : données générées par un produit de convolution de lois discretes,
e COVPOUND_DATA : données générées par une loi composée.

6.1.2 Application processus de renouvellement

Le type RENEWAL correspond aux processus de renouvellement. Les processus de
renouvellement sont construits & partir de lois discrétes, telles que définies dans le type
DI STRI BUTI ON, représentant l'intervalle de temps entre 2 événements et appelée loi
inter-événement. Le type T| ME_EVENTS correspond a un ensemble de couples de réalisations
de deux variables aléatoires, la premicre traduisant l'intervalle de temps entre deux dates
observation et la seconde, le nombre d'événements survenus entre ces deux dates. Trés
souvent, l'intervalle de temps entre les deux dates observation est le méme pour toutes les
mesures de nombre d'événements et ce type peut alors étre vu comme un histogramme de
nombre d'événements survenus pendant un intervalle de temps fixé donné. Le type
RENEWAL_DATA hérité du type TlI ME_EVENTS correspond a des données générées par un
processus de renouvellement.

6.1.3 Application modeles Markoviens
Le type 6 se décomposent en deux types, les types 7 et 8 qui traduisent respectivement la

notion de modéle Markovien et de modéle Markovien caché.

Les types hérités du type 7 effectivement utilisables sont les suivants :
e MARKOV : chaine de Markov,

AMAPmMod (28/06/02) 6-3

Part | O The STAT module

e SEM - MARKOV : semi-chaine de Markov.

Les types hérités du type 8 effectivement utilisables sont les suivants :
e HI DDEN_MARKOV : chaine de Markov cachée,
e HI DDEN_SEM - MARKOV : semi-chaine de Markov cachée.

Les chaines de Markov, de méme que les chaines de Markov cachées sont d'ordre quelconque
(dans la pratique limité a 4). Il est possible de s'intéresser a des chaines de Markov
non-homogenes, c'est a dire telles que les probabilités de transition dépendent de 1'index. Les
lois d'occupation des états des semi-chaines de Markov et des semi-chaines de Markov
cachées sont des lois discrétes paramétriques telles que définies dans le type DI STRI BUTI ON
avec la restriction que le parameétre de translation est supérieur ou €gal a 1 ce qui traduit le fait
que 1'on reste au moins un instant dans un état. Enfin, ces types de mod¢le s'appliquent de
maniere intéressante si le nombre de réalisations possibles de chacune des variables aléatoires
indexées est limité (2 10 par exemple). Par contre, il n'y a pas de contraintes sur les natures
des ¢états de ces modeles (combinaison quelconque d'états récurrents, transitoires ou
absorbants).

Le type DI SCRETE_SEQUENCES traduit la notion d'ensemble de séquences discrétes. On
entend par séquence discréte une suite de vecteurs aléatoires discrets indexés par un
parameétre. Le type MARKOV_DATA, hérité du type DI SCRETE_SEQUENCES, correspond a des
données générées par des chaines de Markov ou des chaines de Markov cachées alors que le
type SEM - MARKOV_DATA, aussi hérité du type DI SCRETE_SEQUENCES, correspond a des
données générées par des semi-chaines de Markov ou des semi-chaines de Markov cachées.

Deux types annexes non-représentés sur la font partie de I'application modéles
Markoviens :

* SEQUENCES : séquences assujetties a des contraintes plus faibles que les séquences
représentées dans le type DI SCRETE_SEQUENCES et ne pouvant donc servir d'entrée a
l'estimation des parametres d'un modele Markovien,

e CORRELATI ON: coefficients de corrélation calculés a partir d'un ensemble de séquences.

6.1.4 Application analyse des cimes

Le type TOP_PARAMETERS correspond aux parametres d'une cime (probabilité de croissance
axe porteur, probabilité de croissance axe porté et rapport de rythme d'élongation axes
portés/axe porteur). Le type TOPS correspond a un ensemble de cimes, c'est a dire a un
ensemble de systémes ramifiés avec un seul ordre de ramification.

Enfin, nous avons les cinq types annexes suivants :

e VECTORS : ensemble de vecteurs,

* VECTOR_DI STANCE : parameétres de définition d’une distance entre vecteurs,
e DI STANCE MATRI X : matrice des distances/dissimilarités entre formes,

e CLUSTERS : résultat d'une partition en Kk groupes d'un ensemble de formes a partir de la
matrice des distances entre formes,

e REGRESSI ON: résultats d’une régression simple.

6-4 AMAPmMod (28/06/02)

Part | O The STAT module

6.2 Lesfonctions AML du module STAT

Nous distinguons trois catégories de fonctions :
¢ les fonctions d'entrées/sorties,
* les fonctions de manipulation des données,

» les fonctions algorithmiques permettant notamment de créer un objet de type « modele » a
partir d'un objet de type «données» par estimation ou de créer un objet de type
« données » a partir d'un objet de type « modele » par simulation.

sortie ASCII (Di spl ay) sortie ASCII (Di spl ay)
sortie graphiqueinteractive (Pl ot) sortie graphique interactive (Pl ot)
fichier ASCII (Save) fichier ASCII (Save)
fichier tableur (Save) fichier tableur (Save)
fichier binaire (Save) fichier binaire (Save)
manipulation / Esti nat e /
objet de type objet de type
"donnée" "modele"
X Simul ate X
fichier binaire (Load) fichier binaire (Load)
fichier ASCII (constructeur) fichier ASCII (constructeur)

représentation formelle de la plante (constructeur)

Figure 6-2 Schéma de principe d'application des fonctions aux objets.

6.2.1 Lesfonctionsd entrées/sorties

A chaque type figuré en fonte standard sur la correspond une forme syntaxique qui
permet de définir une instance de ce type dans un fichier ASCII. La forme syntaxique des
types « données » se rapproche de tableaux de nombres alors que la forme syntaxique des
types « modele » est construite a partir de mots clés qui traduisent la structure du modele. Par
convention, le séparateur est une suite quelconque d'espaces et de tabulations. Il est possible
d'insérer des commentaires (ligne commencant par un # ou fin de ligne apres le #) dans ces
fichiers ASCII. Les fonctions d'entrée ou constructeur ont pour nom le type de I'objet créé.
Par exemple, la fonction Hi st ogr amconstruit I'objet hi st o de type H STOGRAMa partir du
fichier " exenpl e. hi s".

hi sto = Hi stogram("exenpl e. his")

Les objets de type DI STRI BUTI ON, M XTURE, CONVOLUTI ON, COVPOUND, RENEWAL peuvent
étre construits a partir de lois discrétes ou de familles de lois discrétes, c'est a dire d'objets de
type DI STRI BUTI ON, M XTURE, CONVOLUTI ON, COVPOUND. Les objet de type « données »
peuvent étre construits soit a partir de fichiers ASCII, soit a partir de structures de données
extraites d'un MTG.

AMAPmMod (28/06/02) 6-5

Part | O The STAT module

I1 est possible de visualiser tout objet a I'écran au format ASCII grace a la fonction Di spl ay.

En plus de la forme syntaxique définissant l'objet, différentes informations supplémentaires
sont affichées, ce qui permet d'avoir un compte rendu du traitement ayant généré l'objet. Le
niveau de détail de ces informations supplémentaires est géré par l'argument optionnel
Det ai | . La forme ASCII d'un objet peut étre imprimée par le fonction Pr i nt .

Un objet peut étre sauvegardé dans un fichier grace a la fonction Save. Trois formats de
fichier sont possibles :

e format ASCII (For nat - >ASCI 1),
* format binaire (For nmat - >Bi nary),

* format Tableur (For mat - >Spr eadSheet).

Les fichiers au format ASCII sont identiques a ce que sort a I'écran la fonction Di spl ay pour
un niveau de détail donné. Tout objet du module STAT peut étre sauvegardé au format binaire
et rechargeé grace a la fonction Load. Les fichiers au format Tableur sont destinées a la mise
en page de graphiques en vue de la production de documents.

Un objet peut étre visualisé graphiquement grace a la fonction Pl ot . Les visualisations
graphiques sont faites par le logiciel GNUPLOT.

6.2.2 Lesfonctions de manipulation des données

Différentes manipulations sont possibles sur les données. Il est ainsi toujours possible de
concaténer des ensembles de données du méme type (fonction Mer ge). De nombreuses
manipulations spécifiques sont aussi possibles.

6.2.3 Lesfonctionsalgorithmiques

Les trois principales fonctions sont la fonction Esti mat e qui crée un objet « modele » a
partir d'un objet « données » par estimation, la fonction Si mul at e qui crée un objet de type
« données » a parti d'un objet de type « modele » par simulation et la fonction Conpar e. La
fonction Conpar e calcule des mesures de dissimilarités entre histogrammes, ou des distances
entre vecteurs ou entre séquences, ou les vraisemblances de séquences discrétes pour une
famille de modeles Markoviens (chaine de Markov, semi-chaine de Markov, chaine de
Markov cachée ou semi-chaine de Markov cachée) ou encore des divergences entre modeles
Markoviens.

La fonction Cl ust er i ng réalise la partition en K groupes d'un ensemble de formes a partir de
la matrice des distances entre formes. La fonction Conpari sonTest compare deux
histogrammes au moyen de tests d'hypothéses. La fonction Cont i ngencyTabl e calcule un
tableau de contingence a partir d'un ensemble de vecteurs. La fonction
Model Sel ecti onTest teste I'ordre ou 1’agrégation des états d'une chaine de Markov a partir
d'un ensemble de séquences discrétes. La fonction Regressi on réalise une régression
linéaire ou non-paramétrique simple (une seule variable explicative). La fonction Segnent
permet de segmenter des séquences discretes en utilisant une chaine de Markov cachée ou une
semi-chaine de Markov cachée. Cette fonction crée donc un objet de type « données » a partir

6-6 AMAPMod (28/06/02)

Part | 0 The STAT module

d'un objet de type «données» initial et d'un objet de type « modele». La fonction
Var i anceAnal ysi s réalise une analyse de variance a un facteur.

AMAPmMod (28/06/02) 6-7

Part Il REFERENCE MANUAL

1 THE KERNEL MODULE OF AML
This part describes the functions of the kernel module of the AML language.

11 Listealphabétique desfonctions AML

Abs 1-6
AlIPos 1-7
Angle 1-8
Append 1-9
Arithmetic operators 1-11
Array 1-13
At 1-18
Boolean operators 1-19
Ceil 1-20
[Comparison operators 1-21
Constants 1-22
Date operators 1-23
Delete 1-26
Display 1-27
DisplayAllNames, DisplayAllUserNames 1-28
Echo 1-29
FchoOn / EchoOff 1-30
EDist 131
Filter 1-32
Flatten 1-33
Floor 1-34
Forcach 1-35
Head 1-36
[dentity 1-37
[f-Then-Else 1-38
[nsertAt 1-39
Inter 1-41

1-1

AMAPmMod (28/06/02)

Part Il O The Kernel module of AML

[nvert 1-42
[ist 1-43

Mathematical functions 1-44
Max 1-45
Min 1-46
Mod 1-48
Norm 1-50
Plot, NewPlot 1-51

Pos 1-52
Prod 1-54
ProdSeries 1-55
RemoveAt 1-56
Rint 1-58
Save 1-59
Select 1-60
Series 1-61

Set 1-62
SetMinus 1-63

Size 1-64
Sort 1-65
SProd 1-66
SubArray 1-67]
Sum 1-68
Switch 1-69
Tail 1-70
ToArray 1-71]
'olnt 1-72
ToList 1-73

ToReal 1-74
ToSet 1-75
ToString 1-76
Trigonometric functions 1-77
[runcate 1-78
Union 1-79
VProd 1-80

12 Liste par type desfonctionsAML

Arithmetic operators

el + e2
el - e2
el * e2
el /| e2

- el

el Mod e2
Abs(el)

Fl oor (el)
Ceil (el)
Rint(el)
Truncat e(el)
Tol nt (el)
ToReal (el)

Numeric functions
Sqgrt(el)
Log(el)
Logl0(el)

T2 AMAPMod (28/06/02)

Part Il O The Kernel module of AML

Exp(el)
el N e2
Cos(el)
Sin(el)
Tan(el)
Acos(el)
Asin(el)
At an(el)

Constants

Undef UNDEF

Bl ack | NT
VWhite | NT
Geen | NT

Red | NT

Bl ue | NT

Yel | ow | NT
Violet |NT

Li ght Bl ue | NT
True BOOL

Fal se BOOL
Current Pl ot t edQbj

ANY

Current W ndow W NDOW
Def aul t W ndow W NDOW

Pi REAL

Boolean operators

el And e2
el O e2
Not el

Logical operators
el == e2
el !'= e2

Comparison operators

el < e2
el <= e2
el > e2
el >= e2

Operators on Dates

Second | NT

M nute | NT

Hour | NT

Day | NT

DateUnit | NT

Dat eFor mat STRI NG
el + e2

AMAPmMod (28/06/02)

1-3

Part Il O The Kernel module of AML

el - e2
Dat e(el)
ToTi meUni t (el)

Control expressions

Sel ect (el, pred)
If el Then e2 El se e3
Switch el Case e2 : e3 Case e4 : e5 ... Default : e6

Set type operators
[el,e2,...,eN
[el:e?]

[el: e2: e3]
Array(el,e2,...,eN
Set(el,e2,...,eN
List(el,e2,...,eN
el @2

Head(el)
Tai | (el)

Pos(el, e2)

el+e2

el-e2
Append(el, e2)
Renove(el)

I nsert At (el, e2)
RenoveAt (el, e2)
I nvert(el, e2)
ToArray(el)
ToSet (el)
ToLi st (el)

Sum(el)

Prod(el)

Max(el)

M n(el)

Fl atten(el)

Si ze(el)

Sort (el)

el | e2

el & e2

Set M nus(el, e2)
Filter(el, e2)
EDi st (el, e2)
SProd(el, e2)
VProd(el, e2)
Angl e(el, e2)

Nor m(el)

Iterator
Foreach c In el : e2

1-4 AMAPMod (28/06/02)

Part Il O The Kernel module of AML

General functions

EchoOn()

EchoOF f ()

Del ete(el,e2,...,eN
D spl ay()

Di spl ay(el)

Di spl ayAl | ()
Save(el)

Pl ot (el)

NewP| ot (el)

1.3 Detailed description

AMAPmMod (28/06/02) 1-5

Part Il O The Kernel module of AML

Abs

Absolute value.
USAGE

Abs(x)
ARGUMENTS

X (I NT or REAL) : a numerical value

RETURNED OBJECT
The value returned by Abs has the same type as x. If x is Undef , returns Undef .

DESCRIPTION

Returns the absolute value of x.

NOTE

This function is similar to the corresponding double function of the host system
(Unix, ...).

SEE ALSO

Ceil ,Fl oor, Truncate, Ri nt, Tol nt, ToReal .

EXAMPLES

AML> Abs(3)

<I NT>3
AML> Abs(-3)

<I NT>3
AML> Abs(-3.1)

<REAL>3. 1

16 AMAPMod (28/06/02)

Part Il O The Kernel module of AML

Al | Pos

The set of all positions of an element in an array or a list.

USAGE

Al | Pos(array, elenent)

ARGUMENTS

array (ARRAY(T) or LI ST(T)). T is any type. If the argument is Undef, returns
Undef

el ement (T). element that is searched for in the arr ay.

RETURNED OBJECT

The function returns an array of integers ARRAY(| NT). If the argument is Undef,
returns Undef .

DESCRIPTION

Al | Pos returns the set of positions of all the occurences of el enent in array.

SEE ALSO

ARRAY constructor, Tai | , At , Head.

EXAMPLES

AML> Al'l Pos([10,11, 10,13, 10, 15], 10)
<ARRAY(| NT) >[1, 3, 5]

AML> All Pos([1, 2,3, 2,2, 3, 4, Undef, 3], Undef)
<ARRAY(| NT) >[8]

AML> All Pos([1,2,3,2,2,3,4,Undef, 3],7)
<ARRAY(ANY) >[]

AMAPmMod (28/06/02) 1-7

Part Il O The Kernel module of AML

Angl e
Angle made by the vectors corresponding to two arrays of reals.

USAGE
Angl e(al, a2)
ARGUMENTS

al, a2 (ARRAY(REAL)). These two arrays must have identical size.

RETURNED OBJECT

The result is an angle expressed in radians (real between 0 and Pi). If one of the
arguments is Undef , returns Undef . If the dimension is O the result is Undef .

DESCRIPTION

Angle made by the vectors corresponding to two arrays of reals.

SEE ALSO

EDi st, SProd, Norm VPr od, Array.

EXAMPLES

AML> Angle([1.,0.,0.],[0.,1.,0.])
<REAL> 1. 5708

AML> Angle([1.,0.,0.1,[1.,1.,1])
<REAL> 0. 955317

T-8 AMAPMod (28/06/02)

Part Il O The Kernel module of AML

Append

Appends a value to ARRAYs, SETs, STRI NGs.

USAGE

Append(set, val)
Append(stgl, stg2)

ARGUMENTS

set (ARRAY(T))orset (SET(T))orset (LIST(...)),
val (T), value that must be appended at the end of set .
st gl, st g2 (STRI NG): contatenation of a character to a STRI NG

RETURNED OBJECT

— When an element appended to a set object set, the initial object is physically
affected by the operation. The value returned is the (modified) argument itself (and
not a modification of a copy of the argument). If set is Undef, returns Undef . If
set isnot Undef and val is Undef, then Undef is appended to the argument.

— For a STRI NG on the contrary, the concatenation of the two strings is a new
STRI NG, different from both st g1 and st g2.

DESCRIPTION

If set is an ARRAY, Append(set, val) makes the element val beappended at the end
of set.

SIDE EFFECT

Important: contrary to most functions in AML which leave their argument unchanged,
this fonction modifies its set argument. The value returned is the modified argument.

SEE ALSO

Uni on, | nt er, Set M nus, Dat e operators, ToSet , TOArr ay.

EXAMPLES

AML> a=[1,2,4,3,4,5,6, 4]
<ARRAY(INT)> [1,2,4,3,4,5,6, 4]
AML> Append(a, 2)
<ARRAY(INT)> [1,2,4,3,4,5,6, 4, 2]
AML> a

<ARRAY(INT)> [1,2,4,3,4,5,6, 4, 2]
AML> s=Set(1,2,4,3,4,5,6,4)
<SET(INT)> [1, 2,3, 4,5, 6]

AML> Append(s, 2)
<SET(INT)> [1, 2, 3, 4,5, 6]
AML> Append(s, 7)
<SET(INT)>[1,2,3,4,5,6,7]
AML> s
<SET(INT)>[1,2,3,4,5,6,7]

AMAPmMod (28/06/02) 1-9

Part Il O The Kernel module of AML

AM_>
AM_>

AML>

AML>

Concat enation of strings
st g1=" AMAP"; st g2="nod"
<STRI N& nod

Append(stgl, stg2)

<STRI N& AMAPnod

stgl

<STRI N& AVAP

1-10

AMAPmMod (28/06/02)

Part Il O The Kernel module of AML

Arithnmetic operators

+,-,*,/ Classical arithmetic operators. Addition of a value to ARRAYs, SETs,
LI STs, STRI NGs and DATEs.

USAGE

a+b,a- b,a* b,a/ b, - a :arithmetic operators.

set + val, set — val :physical addition of an element to a set object.
stgl + stg2 :contatenation of a character to a STRI NG

dl + i, d1 — i :addition of i time units to a date.

ARGUMENTS

a, b (I NT or REAL) : numerical values. For arithmetic operators, any combination of

types | NT and REAL is possible.

set (ARRAY(T))orset (SET(T))orset (LI ST(...)),val (T)
st g1 (STRI NG), st g2 (STRI NG)
d1 (DATE),i (I NT).

RETURNED OBJECT

For arithmetic operators, the result is | NT only in the case where both a and b are
| NTs. Otherwise the result is REAL. If either a or b is Undef, returns Undef . A
division by 0 returns an Undef value.

When an element is added to or removed from a set object set , the initial object is
physically affected by the operation. The value returned by either these operators
is the (modified) argument itself (and not a modification of a copy of the
argument). If set 1s Undef, returns Undef. If set is not Undef and val is
Undef , then the result

For a STRI NG on the contrary, the concatenation of the two strings is a new
STRI NG, different from both st g1 and st g2.

For date incrementation, cf. Dat e operators.

DESCRIPTION

If a and b are integer values, a / b performs an integral division. The arguments
have to be casted to REALs if one wants to apply a division between arguments
considered as REAL numbers.

'+'and - ' can be used to physically add or remove elements from a set object.

If set is an ARRAY, set + val makes the element val be appended at the end of
set.set - val removes the first occurence of element val in the array set 1.
'+"and '- ' can be used to concatenate two strings.

'+"and '- ' can be used for adding i time units to a date, cf. Dat e operators.

SIDE EFFECT

Important: contrary to most functions in AML which leave their argument unchanged,
this fonction modifies its set argument. The value returned is the modified argument.

SEE ALSO

AMAPmMod (28/06/02) 1-11

Part Il O The Kernel module of AML

Uni on, | nt er, Set M nus, Dat e operators, ToSet , TOArr ay.

EXAMPLES
AML> # Arithnetic operators
AML> 9/ 2
<I NT>4
AML> 5 + 3
<I NT>8
AML> 5.0 + 3
<REAL>8
AM> 9/ 0
Undef
AML> # Addition / Deletion of elenents of set objects
AML> a=[1,2,4,3,4,5, 6, 4]
<ARRAY(INT)> [1,2,4,3,4,5,86, 4]
AML> a + 2
<ARRAY(INT)> [1,2,4,3,4,5,6, 4, 2]
AML> a
<ARRAY(INT)> [1,2,4,3,4,5,6, 4, 2]
AML> a - 4
<ARRAY(INT)> [1,2,3,4,5, 6,4, 2]
AML> a - 4
<ARRAY(INT)> [1, 2, 3,5, 6, 4, 2]
AML> s=Set(1,2,4,3,4,5,6,4)
<SET(INT)> [1,2,3,4,5, 6]
AML> s + 2
<SET(INT)> [1,2,3,4,5, 6]
AML> s + 7
<SET(INT)>[1,2,3,4,5,6,7]
AML> s
<SET(INT)> [1,2,3,4,5,6, 7]
AML> s - 2
<SET(INT)> [1,3,4,5,6,7]
AML> # Concatenation of strings
AML> stgl = "AMAP" ; stg2 = "nod”
<STRI NG nod
AML> stgl + stg2
<STRI NG AMAPnod
AML> stgl
<STRI NG ANAP
1-12

AMAPmMod (28/06/02)

Part Il O The Kernel module of AML

Array
ARRAY constructor

USAGE

[x1,x2,...,xn]
[io]]
[i:]:step]

ARGUMENTS

x1, x2,..., xn (T) : values of identical type. Type T can be any type. Any xk can be
Undef .
i,],step (I NT or REAL): for incremental constructor.

RETURNED OBJECT

In the constructor form x1, x2,..., xn, assuming the type of xk is T, the value returned
an array constructor is an ARRAY(T) if at least one is not Undef . If all are Undef the
constructor returns Undef .

In the incremental form of the constructor, if all the arguments i, j, step are
integers, the array returned has type ARRAY(| NT) . If any of the argument is REAL, the
array returned has type ARRAY(REAL) . If any of the arguments is Undef , the result is
Undef .

DESCRIPTION

An ARRAY is a set-type, i.e. the type of a collection of objects. Like for SETs, all the
elements of an ARRAY must have the same type. However, an ARRAY can contain
Undef elements. Contrary to SETs, elements of an ARRAY are ordered by a total order
relation. It is thus meaningful to speak of the i th element of an ARRAY, provided i is
greater than 0 and less than the size of the array.

An incremental constructor, [i:]], enables the user to build incremental series of
values starting at a lower-bound i and finishing at a higher-bound j . The default
increment value is 1 if i 2] and -1 if i >} . If i <} for example, the resulting ARRAY is
[i,i+1, i+2,..., i+m j] where m is such that i +m<j <i +m+1. To change this
increment, one must specify the step of the increment by using [i :] : st ep] .

DETAILS

- In version 1.x of AMAPmod there is no way of saving or loading binary
representations of arrays

- An array can be saved in ASCII format, using primitive Save:
AML> Save(arrayl,”fil enane”)

For exporting data to other programs, an option For mat is provided that save an array
in the selected format. Current values of For mat option can be ASCII (default option)
or SpreadSheet. The SpreadSheet value enables the user to save a possibly

AMAPmMod (28/06/02) 1-13

Part Il O The Kernel module of AML

multidimentional array in a format that can be loaded later on with a spreadsheet
program:

AML> arrayl=[[1,2,3],[4,5,6],[7,8,9]]
AML> Save(arrayl, ”fil enane”, For mat - Spr eadSheet)

This command saves arrayl in file " f i | enane” as follows:
#2

~A R
0 Ul N
© o w

- An array that has been saved with the previous command in ASCII format can be
loaded in ASCII format using its explicit constructor Arr ay:

AML> Array(”fil enane”)

A file which consists of objects of type | NT, REAL, STRI NG, having the same type,
separated by white space characters can be loaded as a multidimentional array as
follows:

AML> Array(”filename”,[nl,n2,...,Nn4])

where filename is the name of a file containing homogeneous ASCII data (of only one
type). The data in the file can be any of the simple types: | NT, CHAR, REAL, BOCL,
DATE, STRI NG If a multidimentional array with m dimensions is expected, then the
number of elements of each dimension, except the last one nm, must be indicated as an
argument, in increasing order of dimensions. The number of element of the last
dimension derives from the numbers other dimensions and from the size of the file.
For example, assume we have an ASCII file of 21 integers and we want to load this
file into a 2-dimensional array whose first dimension has 7 elements and whose
second dimension has 3 elements. Then, we must load the file as follows:

AML> Array("filenane”,[7])
<ARRAY(ARRAY(int))> [[46,58, 4, 10, 11, - 23,0], [5, 16,
-7,15,17,-29,1],[36, 26,5,12,11,-13, 1]]

The same file considered as a monodimensional array would be loaded as follows:

AML> Array("filenanme”,[])
<ARRAY(I NT) > [46, 58, 4, 10, 11, - 23,0, 5, 16, -7, 15, 17,
-29,1, 36, 26,5, 12, 11, - 13, 1]

- For certain types of arrays, a graphical display of an array can be obtained with the
command PI ot . These arrays are either 1- 2- or 3- dimensional arrays of | NTs, REALs
or DATEs. These arrays can be Plotted as follows:

Pl ot of 1-dimensional arrays:
AML> y1 = [2,4,22,40, 49, 53, 55, 45, 33, 27, 19, 13, 10, 12, 7]
AML> Plot(yl)#fig

1-14

AMAPmMod (28/06/02)

Part Il O The Kernel module of AML

This simple command assumes that the elements of array y1 are y-coordinates of
points whose X-coordinate can be implicitly defined by the rank of the element in the
array y 1. The output of the Pl ot () command thus looks as follows:

In this graphic points are linked to each other by a line. Other styles of plot can be
usedby specifying the optional parameter St yl e. St yl e can be one of the following:
l'i nes, points,|inespoints,dots,inpul ses, steps, boxes (I i nespoints is
the default).

AML> Plot(yl, Styl e->"boxes”)

The default values of the implicit X-coordinates can be changed with optional
parameters XQut Set , XSt ep, XMax, XM n. Similarly, the bounds of the y axis that are
graphically displayed is estimated from the values of array y1. These bounds can be
changed with options YM n and YMVax.

AML> Pl ot (y1, XQut set - >- 10, XSt ep- >2, XMax- >50, YMax- >100) # fi g

Titles can be given to coordinate axes and to the plot with options XTitl e, YTitl e,
Ti t | e which must take STRI NG values.

AM_L> year =1997
AML> Plot(yl, Title->"CObservationsin”+ToString(year),\
AML> Xtitle->"Branchorde”, YTitl e->"anount of Apples”) # fig

If both X and y coordinates of every points are explicitly defined, it is possible to plot
the points in two different ways. First, we may give an array of points defined by their
(X, y) coordinates:

AML> pl=[[10,2],[15,4],[22, 22],[24,40],[30, 49] ,[45, 53], \
AML> |58, 45], [61, 33],[67, 27], 80, 19], [87, 13], [90, 10] , \
AML> [95,12],[100, 7]]

We thus have a set of points whose X- and y-coordinates are respectively in the arrays
x1 and y1. To plot the corresponding points, we have to specify with option XAxi s
which of them corresponds to the X coordinates

AML> Pl ot (pl, XAxis->1) # fig

In this expression XAxi s has value 1, which means that the first element of each array
defining the coordinates of points of p1 must be interpreted as the X-coordinate of the
point.

This method can be extended for plotting several curves on the same graphic. If we
assume that for each X-coordinate, two Yy-coordinates are defined, cooresponding
respectively to two different curves. We can make up 3uples (X, i, ¥2) containing one
x-coordinate and the two corresponding y-coordinates for the two curves, i.e.
respectively y1 and y2. Thus defining the two curves comes down to giving a set of 3-
uples like:

AML> p2=[[10, 2,-1],[15, 4, -6],[22, 22, -12], [24, 40, - 5], \
AML> [30, 49, -1], [45, 53, - 6] , [55, 55, - 10] , [58, 45, - 6], \
AML> [61,33,-2],[67,27,-5],[80,19,-13],[87,13,-7], \

AMAPmMOod (28/06/02) 1-15

Part Il O The Kernel module of AML

NOTE

AML> [90, 10,-1],[95,12,-5],[100,7,-15]]
AML> Pl ot (p2, XAxi s->1)#fi g

This method can be extended to any number of curves n. In this case an array pn of
Nn-uples has to be built. The command Pl ot (pn) plots N curves with implicit X-
coordinates. If the ith value of the n-uples designates the X-coordinates, this can be
indicated by option XAXi s:

AML> Pl ot (pn, XAXi s->i)

which plots n-1curves.

There exists another way to plot several curves in the same window. One has to create
an array representing each series of y values (one series for each curve and represented
as an array like y1). For instance, to plot the two curves corresponding to array y1 and
to array x1 (defined below), we just have to specify that the arrays y1 and x1
corresponds to groups of data associated with our curves. This is done with option
G oups which specifies how should be interpreted the elements (which are arrays of
integers y1 and x1) of the array passed as an argument to plot:

AML> x1=[10, 15, 22, 24, 30, 45, 55, 58, 61, 67, 80, 87, 90, 95, 100]
AML> Plot([yl, x1], G oups->"curves”).

In this case, the X-coordinates of curve points are defined implicitly: elements of y1
corresponds to a first group of y-coordinates (defining the first curve) and elements of
x1 corresponds to a second group of y-coordinates (defining a second curve). The
x-coordinates can be explicitly defined by specifying a group of values associated with
them. In our example, we can for instance specify with option XAxi s that the second
array, x1, actually corresponds to the X-coordinates of the curve points whose
y-coordinates are given in the first array y1:

AML> Plot([yl, x1], G oups->"curves”, XAXi s->2).

Two arrays are equal whenever their ith element are equal, for all possible i . This
notably entails that two identical arrays must have the same size.

SEE ALSO

Si ze, At, Sum Seri es, Pos, Al | Pos, | nvert, Set, Li st, ToOArray, ToSet,
TolLi st.

EXAMPLES

AML> a=[".am”,”.nmg",”.am og”,”. hmi]
<ARRAY(STRING > [.am ,.ntg,.am og, . hnmj
AML> a=[[1,2],[3,4,5],Undef,[7],[8,9, 10]]
<ARRAY(ARRAY(INT))>[[1,2],[3,4,5],Undef,[7],[8,9, 10]]
AML> a=[1: 9]
<ARRAY(INT)>[1, 2, 3,4,5,6,7,8,09]
AML> a=[1:9: 2]
<ARRAY(INT)>[1,3,5,7,9]

1-16

AMAPmMod (28/06/02)

Part Il O The Kernel module of AML

AML> a=[9:1:-2]
<ARRAY(INT)>[9, 7,5, 3, 1]
AML> a=[9:1]
<ARRAY(INT)>[9,8,7,6,5,4,3,2,1]
AML> a=[1.1:9:2.7]
<ARRAY(REAL)>[1.1, 3.8, 6.5]
AML> a=[Date(”01/01/97"), Date(”11/01/97"), Date(”24/01/97"),\
AML> Date(”03/02/97")]
<ARRAY(DATE) > [01/01/97, 11/01/97, 24/01/97, 03/02/97]

AMAPmMOod (28/06/02) 1-17

Part Il O The Kernel module of AML

At
ith element of an array, @.
USAGE
array@
ARGUMENTS
array (ARRAY(T) or LI ST(...)). Tisany type
i (I NT). It can have either a positive or a negative value. It cannot be 0.
RETURNED OBJECT
If ar r ay has type ARRAY(T), the function returns an element of type T. If ar r ay has
type LI ST(T, T,, ..., T, the function returns an element of type T,.
DESCRIPTION
Returns the ith element of an array or a list. If i has a negative value, @returns the ith
element with respect to the end of ar r ay, i.e. if n is the size of ar r ay, it corresponds
to the n-i +1 the element of arr ay.
SEE ALSO
ARRAY constructor, Pos.
EXAMPLES
AML> i=[10, 11,12, 13,14, 15] &
<I NT> 14
AML> i=[10, 11, 12, 13, 14, 15] @
<I NT> 10
AML> i=[10,11,12,13,14,151 @1
<I NT> 15
AML> i=[10,11,12,13,14,15] @5
<INT> 11

AML> |=List("A",3,[1,2 3], True, 67,9.8) @
<ARRAY(I NT)> [1, 2, 3]

T-18 AMAPMod (28/06/02)

Part Il O The Kernel module of AML

Bool ean oper ators
True, False, And, Or, Not

USAGE

X And y
Not (x !'= True)
x Oy

ARGUMENTS

True and Fal se (BOOL) are boolean constants.
X,y (BOCL or | NT). If an | NT is used, a non-zero value is consired as a Tr ue value
and 0 is equivalent to Fal se.

RETURNED OBJECT

The values by these functions are boolean (type BOOL). Any of the arguments may
have value Undef . In this case, the result is always Undef .

DESCRIPTION

These are classical boolean operators. They are commonly used to make up predicates,
i.e. functions that return a boolean value.

SEE ALSO

Conpar i son operators, Sel ect, | f - Then- El se, Swi t ch.

EXAMPLES

AML> 1 And True
<BOOL> True
AML> Not (Not (0 O Fal se))
<BOOL> Fal se
AML> Undef And True
Undef
AML> # Definition of apredicate
AML> pred(_x) = If x >3 And x < 10 Then True El se Fal se
<FUNC> Function
AML> pred(4)
<BOOL> True
AML> pred(11)
<BOOL> Fal se

AMAPmMod (28/06/02) 1-19

Part Il O The Kernel module of AML

Cei |
Integer no less than.

USAGE
Cei | (x)
ARGUMENTS

X (I NT or REAL) : a numerical value

RETURNED OBJECT

The value returned by Cei | has the same type as x. If x is Undef , returns Undef .

DESCRIPTION

Returns the integer no less than x.

NOTE

This function is similar to the corresponding double function of the host system
(Unix, ...).

SEE ALSO

Abs, Fl oor, Truncat e, Ri nt, Tol nt, ToReal .

EXAMPLES

AML> Ceil (3)
<| NT>3
AML> Ceil (3.1)
<REAL>4
AML> Ceil (-3)
<| NT>-3
AML> Ceil (-2.9)
<REAL>- 2

T-20 AMAPMod (28/06/02)

Part Il O The Kernel module of AML

Conpari son operators

::’ ': <’ <:, >, >=

USAGE

X ==Yy
X =y
X <=y

ARGUMENTS

X, Yy (ANY) for logical equality/difference operators == and ! =. The arguments must
have identical types.

X,y (I NT, REAL, DATE) for order comparison operators <, <=, >, >=

RETURNED OBJECT

The returned values are boolean values (type BOOL). Any of the argument may have
value Undef .

DESCRIPTION

The logical truth value of expressions x ==y and x ! = y is defined by the type of
object that are being compared (for the precise definition associated with a particular
type of object, look at the constructor functions of that object).

SEE ALSO

AML Objects constructors, Not , And, Or .

EXAMPLES

AML> 1 == (9 Mod 4)
<BOOL> True
AML> Not (1 == (9 Mod 4))
<BOOL> Fal se
AML> Undef ==
<BOOL> Fal se
AML> Undef == Undef
<BOOL> True
AML> Date("04/01/97") < Date(”05/01/97")
<BOOL> True

AMAPmMod (28/06/02) 1-21

Part Il O The Kernel module of AML

Const ant s

Undef, True, Fal se, Pi , Bl ack, Wi te, G een, Red, Bl ue, Yel | ow, Vi ol et ,
Li ght Bl ue, Current Pl ot t edCbj , Cur r ent W ndow, Def aul t W ndow, Second,
M nut e, Hour , Day, Dat eUni t , Dat eFor mat .

22 AMAPMod (28/06/02)

Part Il O The Kernel module of AML

Cov

Computes the covariance of elements of two arrays.

USAGE
Cov(al, a2)

ARGUMENTS

al, a2 (ARRAY(T) or SET(T)). T is either | NT or REAL. Argunents nust have
the sanme type

RETURNED OBJECT

Ifal and a2 have type ARRAY(T) or SET(T), the function returns an element of
type REAL. If the argument is Undef , returns Undef

DESCRIPTION

Returns the mean value of the elements of array. If al = &1,X2,..,X,.. 2and a2

=§1.,Y2,..,Yi,.- 2then Cov(al, a2) is the real :
M@ g Xy XY

Ifal or a2 contain Undef elements, these elements are considered as Nul | values.

SEE ALSO
Array, Set, Seri es, Si ze, EDi st, Angl e, Norm
VPr od, Pl us, Ti nes, Var, Mean.

EXAMPLES

AML> Cov([6.5,4.5,4.9,7.2,0.6,4.5],[7.1,3.9,9.5,18.4,6.7,6.7])
<I NT> 5. 18167

AMAPmMod (28/06/02) 1-23

Part Il O The Kernel module of AML

Dat e operators

+, -, Second, Minute, Hour, Day, DateUnit, DateFormat, Date, ToTimeUnit.

USAGE

dl + nb

dl - nb

dl - d2

Dat e(stg)
ToTi meUni t (i)

ARGUMENTS

d1, d2 (DATE)

nb,i (I NT)

stg

Second, M nut e, Hour, Day (I NT): definition of classical date units in terms of
integers.

Dat eUni t (I NT): value of the current date unit.

Dat eFor mat (STRI NG): STRI NG indicating the format of dates currently used in the
system.

RETURNED OBJECT

The addition/substraction of a date and an integer returns a DATE. The new date is the
old date incremented/decremented by nb times Dat eUni t .

The difference between two dates returns an | NT corresponding to the number of
Dat eUni t between these two dates. This difference can be a negative integer.

Second =1, M nut e =60, Hour =3600, Day = 86400 are global constant values.
Global variables and their default wvalues: DateFormat = "DDMMYY",
Dat eUni t = 86400. These values are used as parameters by other date functions.

The value returned by Dat e() is an | NT corresponding to the integer encoding of a
date defined as a STRI NG. If st g is Undef , returns Undef .

The value returned by ToTi neUnit is the conversion of number i into a
corresponding number of Dat eUni t s. Ifi is Undef , returns Undef .

DESCRIPTION

Dat eUni t is given the default value Day. It may be changed to other values, for
example Dat eUni t = Hour. Once a Dat eUni t is fixed, other date functions can be
used. The Dat eUni t is implicitly used as a global variable by the other functions
when necessary (e.g. in incrementation of dates, or integer conversions to dates).

Function Date() converts a STRI NG into a date. It uses the current value of
Dat eFor mat to encode strings as DATE objects. Valid values of Dat eFor nat are
strings: "DDMM", "DDMMYY", "MMYY", "DDMMTIME", "DDMMYYTIME". A
date STRI NG with format DDMMYY is a STRI NG like "09/07/97", where '/ is a
mandatory separator between date fields. A time STRI NGis a series of 1 to 3 integers
separated by a "' Valid time strings are "12:35:01", "12:35:", "12:35" or "12".
Whenever time information is used, e.g. Dat eFor nat = DDMMTIME, valid time

1-24

AMAPmMod (28/06/02)

Part Il O The Kernel module of AML

strings have to be concatenated to date strings, separated by a white space: e.g.
"09/07 12:35:01".

NOTE
Dates have to be greater than 01/01/1901.

SEE ALSO

MTG module: Dat eSanpl e, Fi r st Def i nedFeat ur e, Last Def i nedFeat ur e,
Next Dat e, Previ ousDat e

EXAMPLES

AM_> DateUnit
<| NT>86400
AM_> Dat eFor mat
<STRI NG>DDWVMT| VE
AML> dl1 = Date(”10/0912:33")
<DATE> 10/09 12: 33
AM_> Dat eFor mat
<STRI NG>DDMWY
AML> dl1 = Date(”10/09/97")
<DATE> 10/ 09/ 97
AML> # Adding 10 days to dil
AML> d2 = dl1 + 10
<DATE> 20/ 09/ 97
AM.> d2 - di

<| NT>10

AML> DateUnit = Mnute
<| NT>60

AML> ToTi meUni t (420)
<| NT>7

AMAPmMOod (28/06/02) 1-25

Part Il O The Kernel module of AML

Del et e

Delete an object from the current set of AML objects.

USAGE

Del et e(nanel, nane2, ...)

ARGUMENTS

nanel, nane2,... (STRI NG) : names of the object to be deleted.

RETURNED OBJECT

No value is returned.

DESCRIPTION

The objects passed as arguments are deleted from the set of AML objects. This means
that the name of the corresponding variables is no longer used and that the
corresponding memory zone is freed.

NOTE

Since the a AML variable is designated by its name, this name is always evaluated to
the corresponding AML object and not to a STRI NG Therefore, to apply Del et e
correctly to a variable whose name is var 1 for instance, one has to explicitly write
Del ete(”var1”) or more simply Del et e(”var1”) (the quote character before a
STRI NGname suppress the evaluation of the STRI NG).

SEE ALSO
EXAMPLES
AML> | = 9; j="Hello"; varl=[1, 2, 3]
<ARRAY(INT)> [1, 2, 3]
AML> ?
[| NT ' 9
j STRI NG ‘Hello

varl ARRAY(INT) [1,2,3]
AML> Delete(’'i,’ varl)
AML> AM_>?

j STRI NG Hel | o

1-26 AMAPMod (28/06/02)

Part Il O The Kernel module of AML

Di spl ay
Display an ASCII representation of an object.

USAGE

Di splay(obj)

Di splay(obj, Detail - 2)
ARGUMENTS

obj (T) : the object can have any type.

OPTIONAL ARGUMENTS

Byt eSi ze (I NT). This option can be used for any object to change the size of other
optional arguments can exist depending on the object.
e.g. Detai | (I NT): level of detail at which the argument is being displayed.

RETURNED OBJECT

No value is returned.

DESCRIPTION

The type of ASCII description depends on the particular AML object used. Some
objects provides ASCII representations at several levels of detail. Refer to object
constructors for precise display of a particular display.

SEE ALSO

2,77

"o

EXAMPLES

AM_L> # exanpl e of a Sequences obj ect
AML> seql = Sequences(”datafile.seq”) # this command builds a
Sequences object froma list of ascii sequences
AML> Displ ay(seql, Vi ewPoint->Data) # di splays the raw data
corresponding to the sequence

AMAPmMOod (28/06/02) 1-27

Part Il O The Kernel module of AML

Di spl ayAl | Nanes, Di spl ayAl | User Nanes
Display user or system variables and functions, ?, ??

USAGE

)

? var nane
?7?

ARGUMENTS

var nanme (STRI NG) : name of a user variable

RETURNED OBJECT

This function returns no value.

DESCRIPTION

Command ? prints the content of an object identified by its name to the screen. If no
name is given, the command prints the list of user variables. To print all the functions
and variables defined in the system, use the command ?7.

NOTE

When using command ??, variables, constants of functions defined in the system are
displayed with ":' as a prefix character. The names are sorted in alphabetical order.

SEE ALSO

Di spl ay.

EXAMPLES

AML> ?
No user object defined.
AML> =1
<I NT>1
AML> ?
i <INT>: 1
AML> f(_Xx)= x+1
f <FUNC> : Function

AML> ?
f <FUNC> : Function
i <INT>: 1

AML> AM_>?j
i <INT>: 1

1-28 AMAPMod (28/06/02)

Part Il O The Kernel module of AML

Echo

Displays messages on the screen

USAGE
Echo(argl, arg2, .., argi,.., argn)
ARGUMENTS

argi (ANY) : the ith arg (i=1...n) can be of any type. The number of argument n is
arbitrary, provided it is greater than or equal to 1.

OPTIONAL ARGUMENTS

Byt eSi ze (I NT) : This optional argument must be used when the size of the string
representing an object in the list of arguments exceeds 10000 bytes (you are warned
by a message whenever this occurs).

RETURNED OBJECT
STRI NG
DESCRIPTION

This function can be used to build messages during some AML function computation.
This is helpful while debugging AML functions to store and display intermediate
results.

SEE ALSO
Di spl ay, EchoOn, EchoOff.

EXAMPLES
AML> a = [1,2,3]
AML> Echo(“array a =", a, “has a size =", Size(_a))

AML> f(_x) = Switch x \

AML> Case 1: G een

AML> Case 2: Red

AML> Case 3: Yellow

AML> Default: (meEcho(“Col or not found for value “, _x); Bl ack)

AML> f(2)

<| NT> 3 # code for Red
AML> m

<STRI NG m

AML> f(7)

<INT> 0 # code for Bl ack

AML> m

<STRI NG “Col or not found for value 7"

AMAPmMod (28/06/02) 1-29

Part Il O The Kernel module of AML

EchoOn / EchoO f

Put echo on during batch reading of a file

USAGE

EchoOn()
EchoO f ()

ARGUMENTS

No argument.

RETURNED OBJECT

No returned value.

DESCRIPTION

When a file is run in batch, using: aml -i fil enane

DESCRIPTION

No output is made of the computations made within the file. It is possible to change
this by writing in the file "filename" the command EchoOn() . As soon as it is read,
aml outputs the results of subsequent computation on the standard output. The effect
of this command can be cancelled by the command EchoOr f ().

NOTE

These functions can be used for debugging a batch file as follows: in order to trace the
different steps of a program, the user can call EchoOn() and insert debugging strings
in the file. Since STRI NGs objects are evaluated as strings of characters, the resulting
STRI NG will be output to the standard output as soon as a STRI NG object is
encountered in the batch file. When a particular debugging STRI NG is output to the
screen, the user thus knows that a particular step of computation has been reached.

SEE ALSO
Di spl ay

EXAMPLES

exanmple of a batch file

EchoOn()

string object which will be echoed to the screen,
indicating to the user which step of conputation is being
comput ed

"stepl”

1+4

"step2” # another debugging string

+2

EchoOF f ()

Sqrt (10)

T-30 AMAPMod (28/06/02)

Part Il O The Kernel module of AML

ED st
Euclidean distance between two points represented by two arrays.

USAGE
EDi st (array)

ARGUMENTS

array (ARRAY(REAL)). These two arrays must have identical size.

RETURNED OBJECT

The distance between two array is a REAL. If one of the arguments is Undef , returns
Undef

DESCRIPTION

Denote a, qxl,xz,...xn], a, qyl,yz,...yn]. The norm of arrays ar r ay is defined by:

sﬂ/%l@@&kg

Nor m Angl e, SPr od, VPr od, Arr ay.

SEE ALSO

EXAMPLES

AML> EDist([1.,0.,0.],[1.,0.,10.])
<REAL> 10

AM.> EDist([1.,0.],[0.,1.])
<REAL> 1.41421

AMAPmMod (28/06/02) 1-31

Part Il O The Kernel module of AML

Filter

Applies a linear filter to an array, which outputs an array made of locally weighted
mean values of the initial array.

USAGE
Filter(array, filt)

ARGUMENTS

array (ARRAY(T)). T is either | NT or REAL. ar r ay is the array to be filtered.
filt (ARRAY(T")). T iseither | NT or REAL. fi |t is the array used to filter ar r ay.
filt must have an odd number of elements.

RETURNED OBJECT

The function returns an element of type ARRAY(REAL) . If the argument is Undef ,
returns Undef

DESCRIPTION

This function is used to apply a linear filter to an array of numeric values. This can be
used for instance to smooth a series of values by replacing each value of the initial
array array by a mean of its neibourgh values. Let us denote ar r ay=[x,,%,,...X, |

and filt=[a,a,,...a,]. Since k is an odd number, let us denote | Hmﬁﬂlgz Then
the function Fi | t er returns an array whose ith element is given by:

|
D FRTHIS S

==

|
Za|+j+l‘5(i+j)[[[1,n]

=~

with the convention that then 0, ;q,,, =0 if i [5] &{1,n] and 1 otherwise. In this case

the sum at the denominator is limited to j such that i (=] T}1,n]. If for some i, the value
of this sum happens to be null, the division is not made and the result is simply

|
zal+j+l‘xi+j 'd(i +))i,n] *

=~

SEE ALSO
Array, List, Pos, At, Head, MovingAverage.

EXAMPLES

AML> Filter([1,5,2,1,-7,1,1,1,1,9,1,1,1,1],[1,1,1,1,1]) \
AM_> # snoot hes a series of val ues
<ARRAY(INT)> [2.67,2.25,0.4,0.4,-0.4,-0.6,
-.6,2.6,2.6,2.6,2.6,2.6,1, 1]
AML> Filter([1,5,2,1,-7,1,1,1,1,9,1,1,1,1],[1,-2,1]) \
AML> # enphasi zes the devi ations
<SET(INT)>[-3,-7,2,-7,16,-8,0,0,8,-16,8,0,0, 1]

T-32 AMAPMod (28/06/02)

Part Il O The Kernel module of AML

Fl atten

Flattens the structure of nested arrays or sets

USAGE

Flatten(array)

ARGUMENTS

array (ARRAY(T) or SET(T)). T is any type.

RETURNED OBJECT

If array has type ARRAY(ARRAY(T)), the function returns an element of type
ARRAY(T) . If the argument is Undef , returns Undef

DESCRIPTION

This function is used to flatten the structure of nested arrays or sets. Let us assmue that
array is a nested array: array has the form[x1 I S Xn], where X is an ARRAY:

X B YL Yo Vi |-

The array array can thus be written
[[yl',y;,...,yl'(l],[yf,y22,...,yiz],...,[y{‘,y;,...,yzn]]. Then, the flattened array obtained
from ar r ay is the ARRAY:

[V Y5 Ve Vo Voo Yiegoe e Vs Vs Vi

NOTE

This function can be applied to any nesting combination of ARRAYs and SETs (cf.
example)

SEE ALSO
Array, Li st, Pos, At , Head.

EXAMPLES

AML> Flatten([[10,11],[12],[],[13, 14, 15]])
<ARRAY(| NT) > [10, 11, 12, 13, 14, 15]

AML> Flatten(Set([10,11],[12],[],[11,11,12])
<SET(INT)> [10, 11, 12]

AMAPmMod (28/06/02) 1-33

Part Il O The Kernel module of AML

Fl oor
Integer no greater than.

USAGE

Fl oor (x)

ARGUMENTS

X (I NT or REAL) : a numerical value

RETURNED OBJECT

The value returned by Fl oor has the same type as x. If x is Undef , returns Undef .

DESCRIPTION

Returns the integer no greater than x.

NOTE
This function is similar to the corresponding double function of the host system
(Unix, ...).

SEE ALSO

Abs, Ceil, Truncat e, R nt, Tol nt, ToReal .

EXAMPLES

AML> Fl oor (3)
<| NT>3
AML> Fl oor(3.1)
<REAL>3
AML> Fl oor (- 3)
<I NT>-3
AML> Fl oor (-2.9)
<REAL>- 3

T-34 AMAPMod (28/06/02)

Part Il O The Kernel module of AML

For each
[terator.

USAGE

Foreach _x In set : apply(_x)

ARGUMENTS

_X (tied variable). This variable denotes one element of the set object set .
set (ARRAY(T) or SET(T)). T can be any type.
appl y() (FUNC). This is a function which is used by the iterator.

RETURNED OBJECT

If set has type ARRAY(T) , the iterator returns an ARRAY. If set has type SET(T), the
iterator returns a SET.

DESCRIPTION

The iterator allows us to browse a set object and to apply to each object _x of the set a
given function, apply. This is a very generic way of exploring data bases and
computing samples of any things.

SEE ALSO
Array,Li st, Pos, At, Append.

EXAMPLES

AML> Foreach x In [1:5] : _x+1
<ARRAY(INT)> [2, 3, 4, 5, 6]

AML> Foreach x In [1:10] : Select(_x, _x/2==0)
<ARRAY(I NT) > [2, 4, 6, 8, 10]

AML> Foreach _x In [1:10] : Select(_x+1,_ x/2==0)
<ARRAY(I NT)> [3,5, 7,9, 11]

AMAPmMod (28/06/02) 1-35

Part Il O The Kernel module of AML

Head

First element of an array or a list.

USAGE
Head(array)

ARGUMENTS

array (ARRAY(T) or LI ST(...)). T is any type. If the argument is Undef , returns
Undef

RETURNED OBJECT

If arr ay has type ARRAY(T), the function returns an element of type T. If array has
type LI ST(T,, ...), the function returns an element of type T,. If the argument is
Undef , returns Undef

DESCRIPTION
Returns the first element of an array or a list. lhis is equivalent to the expression

arrayd@l.

SEE ALSO

Array,List,Pos,At, Tail.

EXAMPLES

AML> Head([10, 11, 12, 13, 14, 15])
<I NT> 10

AML> Head([[1,2],[3,4,5],Undef,[7],[8,9,10]])
<ARRAY(| NT) >[1, 2]

AML> Head(List([3,4,5],"alpha”,5.9))
<ARRAY(| NT) >[3, 4, 5]

1-36 AMAPMod (28/06/02)

Part Il O The Kernel module of AML

| dentity

Function identity.

USAGE
| dentity(x)

ARGUMENTS

X (ANY) : the argument can have any type

RETURNED OBJECT

Same type as the argument x.

DESCRIPTION

The identity function simply returns its argument, unchanged.

SEE ALSO
Definition of AML functions.

AMAPmMod (28/06/02) 1-37

Part Il O The Kernel module of AML

| f - Then- El se

Conditional expression.

USAGE

| f Then el se

ARGUMENTS

pr ed (BOOL). Boolean expression which expresses the condition

el (T,). T, can be any type.
e2 (T,). T, can be any type.

RETURNED OBJECT

Depending on the pr ed value, the object returned has the same type as either el or

e’.

DESCRIPTION

This expression returns el if pr ed is True. It returns e2 otherwise.

SIDE EFFECT

Important: in the first version of AMAPmod, the evaluation procedure of expressions
evaluates all subexpressions before evaluating a given expression. Thus, in every
cases, both el and e2 are evaluated first. Then depending on the value of pred the
evaluation of the | f Then El se expression leads to select either el or e2. This
means that some time may be lost in computing useless expressions. This behavior

will be corrected in version 2.

SEE ALSO
Array, Li st, Pos, At, Append.

EXAMPLES

AML> A =3
<| NT>

AML> |f a == 3 Then "Yes” Else "No”

<STRI NG>Yes
AML> f(_x) = If _x == 3 Then "Yes”
<FUNC> Function
AML> f(2)
<INT> 1
AML> f(3)
<STRI NG Yes

1-38

AMAPmMod (28/06/02)

Part Il O The Kernel module of AML

| nsert At
Inserts an element at a given position in an array or a list.

USAGE

I nsertAt (array, elem i)

ARGUMENTS

array (ARRAY(T) or LI ST(...)). T isany type

el em(T). Element to be inserted. If array is of type ARRAY(T), el emmust be of
type T.

i (I NT). Position at which the element must be inserted. It can have either a positive
or a negative value, such that 0 <Abs(i) <Si ze(array).

RETURNED OBJECT
If array is of type ARRAY(T) , the function returns an element of type ARRAY(T) . If
array has type LIST(T, T, ..., T), the function returns an element of type
LIS(T,T,,....T, ,T.T,....T).

DESCRIPTION

Inserts an element at the ith position in an array or a list, i.e. after the insertion,
element el emis at position i in array. If i has a negative value, the function inserts
the element at position i with respect to the end of array, i.e. if n is the size of
array, it corresponds to position n—i + 1 of array.

SIDE EFFECT

Important: contrary to most functions in AML which leave their argument unchanged,
this fonction modifies its array argument. The value returned is the modified
argument.

SEE ALSO

Array, Li st, Pos, At, Append.

EXAMPLES

AML> a = [10, 11, 12, 13, 14, 15]

<ARRAY(I NT) >[10, 11, 12, 13, 14, 15]
AML> |nsertAt(a,9,1)

<ARRAY(I NT)>[9, 10, 11, 12, 13, 14, 15]
AM.> a

<ARRAY(I NT)>[9, 10, 11, 12, 13, 14, 15]
AML> InsertAt([10,11, 12,13, 14,15],9,-1)

<ARRAY(| NT) >[10, 11, 12, 13, 14, 15, 9]
AML> Insert At ([10,11, 12,13, 14, 15],9,5)

<ARRAY(| NT) >[10, 11, 12, 13, 9, 14, 15]
AML> InsertAt([10,11, 12,13, 14,15],9,-5)

<ARRAY(| NT) >[10, 11, 9, 12, 13, 14, 15]

AMAPmMod (28/06/02) 1-39

Part Il O The Kernel module of AML

AML> | nsertAt(List(”al pha”,5,True),[1,2,3],3)
<LI ST(STRI NG | NT, ARRAY(| NT), BOOL> [al pha, 5,[1, 2, 3], True]

T-40 AMAPMod (28/06/02)

Part Il O The Kernel module of AML

| nt er
Intersection of to set objects, &

USAGE

Inter(setl, set2)
setl & set?

ARGUMENTS

set 1, set 2 (ARRAY or SET) : these two arguments must have the same type

RETURNED OBJECT

Inter returns a set object of the same type as its two arguments, i.e. either ARRAY or
SET. If either set 1 or set 2 is Undef , returns Undef .

DESCRIPTION

I nter(setl, set2) returns the set object made up by the objects that both belong
toset 1 and toset 2. If set 1 and set 2 are ARRAYs, | nt er () preserves the order of
object from set 2.

NOTE

| nt er can also be invoked with the minus sign &.

SEE ALSO

Uni on, ToSet , ToArr ay, Sort

EXAMPLES

AML> Inter([1,2,3,4,5,6,7],[0,2,3,4,10])
<ARRAY(ANY) >[2, 3, 4]

AML> Inter_set =1[1,2,3,4,5,6,7] &[0,3,2,4,10]
<ARRAY(ANY) >[3, 2, 4]

AML> Set (1,2,3,4,5,6,7) & Set(0,3,2,4,10)
<set (ANY) >[2, 3, 4]

AMAPmMod (28/06/02) 1-41

Part Il O The Kernel module of AML

| nvert

Inverts the order of the elements of an array or a list.

USAGE

I nvert (array)

ARGUMENTS

array (ARRAY(T) or LI ST(...)). T is any type. If the argument is Undef , returns
Undef

RETURNED OBJECT
If array has type ARRAY(T), the function returns an element of type ARRAY(T) . If
array has type LIST(T, T, ..., T), the function returns an element of type
LIST(T, ..., T, T).Ifthe argument is Undef , returns Undef

DESCRIPTION

Returns the an array or a list made of all the element of ar r ay in reverse order.

SEE ALSO
Array, Li st, Pos, At , Head, Rever se.

EXAMPLES

AM.> Invert([10,11, 12,13, 14, 15])
<ARRAY(| NT) > [15, 14, 13, 12, 11, 10]
AML> Invert([[1,2],[3,4,5],Undef,[7],[8,9,10]])
<ARRAY(ARRAY(INT))>[[8,9,10],[7], Undef,[3,4,5],[1,2]]

T-42 AMAPMod (28/06/02)

Part Il O The Kernel module of AML

Li st

List constructor

USAGE
List(x1,x2,...,xn)
ARGUMENTS
x1,x2,...,xn (T, T, ..., T):TypeT, i Ok On, can be any type. Any xk can be
Undef .
RETURNED OBJECT
If the type of the arguments xk is T, the value returned by a set constructor is an
LIST(T, T, ..., T).
DESCRIPTION

A LI ST is a set-type, i.e. the type of a collection of objects. Contrary to ARRAYs and
SETs, LI ST collections are heterogenous collection of objects. Elements of a LI ST can
have the different types. The order of the elements of a LI ST is relevant.

DETAILS

- In version 1.x of AMAPmod there is no way of saving or loading binary or ASCII
representations of lists.

- There is no possibility to Pl ot LI STs.

- Two LI STs are equal if they have the same elements, in the same order.

SEE ALSO

Si ze, Sum Array, Set, TOArray, ToSet , ToLi st , At, Pos, Al | Pos, Head, Tai |,
I nsert At, RenoveAt, | nvert.

EXAMPLES
AM_>

AM_>
AML>
AML>

AM_>

| = List("A",7)

<LIST(STRING INT)> [A 7]

| = List("A", Undef, 7)

<Ll ST(STRI NG UNDEF, i nt)> [A Undef, 7]

| @

<|INT> 7

| = List(Undef, Undef, Undef)

<LI ST(UNDEF, UNDEF, UNDEF, UNDEF) > [Undef , Undef, Undef]
| = List("A",7,List([1,2], True))

<LI ST(STRI NG | NT, LI ST(ARRAY(| NT), BOOL)) >
[A7,[[1, 2], TRUE]]

AMAPmMod (28/06/02) 1-43

Part Il O The Kernel module of AML

Vet hemati cal functi ons
Sqrt, Power ("), Log, Log10, Exp

USAGE

Sqrt (%)
Exp(x)
a”y

ARGUMENTS

X, a, Yy (I NT or REAL)

Sqrt (square root) takes a non-negative argument.
a ” vy isnot defined fora <0 andy not an integer.
Arguments of Log and Log10 must be positive.

RETURNED OBJECT

The returned values are REAL values. If the above conditions on the argument are not
met, Undef is returned. If either argument is Undef , returns Undef .

DESCRIPTION

These functions are similar to the corresponding double function of the host system
(Unix, ...). Type "man math" on the host system for more details.

SEE ALSO

Tri gononetric functions.

EXAMPLES

AML> Sgrt(81)

<REAL> 9
AML> (-34)"5

<REAL> -4.54354e+07
AML> (-34)7-5

<REAL> -2.20093e-08

T-24 AMAPMod (28/06/02)

Part Il O The Kernel module of AML

Max

Computes the maximum value of the elements of an array or a set.

USAGE
Vax(array)

ARGUMENTS

array (ARRAY(T) or SET(T)). T is either | NT or REAL. If the argument is Undef ,
returns Undef

RETURNED OBJECT

If ar r ay has type ARRAY(T) or SET(T), the function returns an element of type T. If
the argument is Undef , returns Undef

DESCRIPTION

Returns the element whose value is maximum over the set of elements of array. If
ar r ay contains Undef elements, these elements are discarded.

SEE ALSO

Array, Set, Series, Si ze, Sum M n.

EXAMPLES
AML> WMax([10, 11, 12, 13, 14, 15])
<I NT> 15
AML> Max([2, 2, Undef, 7, 1])
<| NT> 7
AML> Max(Foreach _x In[O:Pi:Pi/100] : Cos(_x))
<REAL> 1

AMAPmMOod (28/06/02) 1-45

Part Il O The Kernel module of AML

Mean

Computes the mean value of elements of an array.

USAGE
Mean(array)

ARGUMENTS

array (ARRAY(T) or SET(T)). T is either | NT or REAL. If the argument is Undef ,
returns Undef

RETURNED OBJECT

If array has type ARRAY(T) or SET(T), the function returns an element of type
REAL. If the argument is Undef , returns Undef

DESCRIPTION

Returns the mean value of the elements of array. If array = €1,Y1,21 2 then
Mean(array) is:
1/n@& i .n X

If arr ay contains Undef elements, these elements are considered as Nul | value.

SEE ALSO

Array, Set, Seri es, Si ze, ED st,Angl e, Norm VProd, Array, Pl us, Ti nes.

EXAMPLES

AML> Mean([10, 11, 12, 13, 14, 15])
<| NT> 12.5

AML> Mean([10, 11, 12,13, 14, Undef, 15])
<| NT> 10. 7143

T-26 AMAPMod (28/06/02)

Part Il O The Kernel module of AML

Mn
Computes the minimum value of the elements of an array or a set.

USAGE
M n(array)

ARGUMENTS

array (ARRAY(T) or SET(T)). T is either | NT or REAL. If the argument is Undef,
returns Undef

RETURNED OBJECT

If ar r ay has type ARRAY(T) or SET(T), the function returns an element of type T. If
the argument is Undef , returns Undef

DESCRIPTION

Returns the element whose value is minimum over the set of elements of array. If
ar r ay contains Undef elements, these elements are discarded.

SEE ALSO

Array, Set, Seri es, Si ze, Sum Max.

EXAMPLES
AM.> M n([10, 11,12, 13, 14, 15])
<I NT> 10
AML> M n([2, 2, Undef, 7, 1])
<INT> 1
AML> M n(Foreach x In [0:Pi:Pi/100] : Cos(_Xx))
<REAL> 0

AMAPmMOod (28/06/02) 1-47

Part Il O The Kernel module of AML

M nus

Difference of two arrays.

USAGE
M nus(al, a2)

ARGUMENTS

al, a2 (ARRAY(REAL)). These two arrays must have the same dimension.

RETURNED OBJECT

The result is an ARRAY(REAL) with the same dimension as al and aZ2. If one of the

arguments is Undef , returns Undef

DESCRIPTION

The function returns the vectorial difference of two arrays of dimension n. If al=

6(-1 »Y1,21 9and az2= 6(-2ay25 Z) 9then a= 6(-: Y, Ze:
& &X2,Y1 £Y2,2) £2r

NOTE

There is no limit on the dimensions of the arguments.

SEE ALSO
EDi st, Angl e, Nor m VPr od, Array, Pl us, Ti nes.

EXAMPLES

AML> M nus([1.2,0.,0.,8.5],[0.2,1.,0.,-9.2])
<ARRAY(REAL)> [1.0,-1.,0.,17.7]

Pl us(al, az2) =

1-48

AMAPmMod (28/06/02)

Part Il O The Kernel module of AML

Mod

Modulo function

USAGE
x Mod y

ARGUMENTS

X,y (I NT) : integral value

RETURNED OBJECT

The value returned by Mod is an | NT. If either x or y is Undef , returns Undef .

DESCRIPTION

Returns the remainder of the integral division of x by y.

NOTE

This function is similar to the corresponding double function of the host system
(Unix, ...).

SEE ALSO
/

EXAMPLES

AML> 23Mod3
<I NT>2
AML> -23Mbd3
<REAL> -2
AML> 23Mod- 3
<REAL> 2

AMAPmMod (28/06/02) 1-49

Part Il O The Kernel module of AML

Nor m

Norm of an arrays.

USAGE
Nor n{ array)

ARGUMENTS

array (ARRAY(REAL)). These two arrays must have identical size.

RETURNED OBJECT

The norm of an array is a REAL. If one of the arguments is Undef , returns Undef

DESCRIPTION

Denote ar r ay=[X,,X,....X,]. The norm of arrays ar r ay is defined by:
sH / K x:
ke

EDi st, Angl e, SPr od, VPr od, Arr ay.

SEE ALSO

EXAMPLES

AML> Norm([1.,0.,0.])
<REAL> 1

AML> Norm([1.,3.,0.,.4])
<REAL> 3.18748

1-50 AMAPmMod (28/06/02)

Part Il O The Kernel module of AML

Pl ot, NewPl ot

Plot an object to the screen.

USAGE

Pl ot (obj)
Pl ot (obj, W ndow > w)
NewP!| ot (obj)

ARGUMENTS

obj (T): the object can have any type.

OPTIONAL ARGUMENTS

Optional arguments can exist depending on the type of the first argument.
W ndow (W NDOW : enables the user to redirect a plot to a given graphic window. See
function NewP! ot for a description of how to create new graphic windows.

RETURNED OBJECT

Pl ot returns no value. NewP| ot returns a new W NDOWobject.

DESCRIPTION

Many AML object have a graphical representation. Pl ot displays these graphic
representations to the screen. whenever they exist. See the object constructors for more
details and a list of optional arguments.

SEE ALSO

Load, Obj ect constructors, D spl ay, Save.

EXAMPLES

AML> # Plotting an array

AML> al = [10, 12, 3, 14, 10, 6] # builds a sinple array.

AML> Pl ot (al) # Plot the array

AML> a2=[1,10,-4,-1,0, 2] # builds a second array.

AML> w = NewPl ot (a2) # Plot the array in another
w ndow

AML> a3=[100, 109, 154, 125, 156, 203] # builds a third array.

AML> Pl ot (a3, W ndow >w) # Plot the array in the second
wi ndow and repl aces the plot
of a2

AML> # Plotting a MIG

AML> g = MIE " nyplant.ntg”) # builds a MIG

AML> F = Pl ant Frame(Vt xLi st (Scal e->@l) #Builds a geonetric
interpretation of the first
branchi ng systemof ¢

AML> Pl ot (f) # gives a default visual

interpretation of the MIG

AMAPmMod (28/06/02) 1-51

Part Il O The Kernel module of AML

Pl us

Addition of two arrays.

USAGE
Plus(al, a2)
ARGUMENTS

al, a2 (ARRAY(REAL)). These two arrays must have the same dimension.

RETURNED OBJECT

The result is an ARRAY(REAL) with the same dimension as al and aZ2. If one of the
arguments is Undef , returns Undef

DESCRIPTION

The function returns the vectorial sum of two arrays of dimension n. If al= €1,Y1,21 2and
a2=€2,Y2,222then a= &.¥,22= Plus(al, a2) = €1 X0,y 5Y2,2) 2,

NOTE

There is no limit on the dimensions of the arguments.

SEE ALSO
EDi st, Angl e, Norm VPr od, Array.

EXAMPLES

AML> Plus([1.2,0.,0.,8.5],[0.2,1.,0.,-9.2])
<ARRAY(REAL)> [1.4,1.,0.,-0.7]

152 AMAPMod (28/06/02)

Part Il O The Kernel module of AML

Pos
Position of an element in an array.

USAGE

Pos(array, elenent)

ARGUMENTS

array (ARRAY(T) or LI ST(...)). T is any type. If the argument is Undef , returns
Undef

el ement (T). Element that is searched for in ar r ay.

RETURNED OBJECT

The function returns an integer (I NT) if el enent is in ar r ay. It returns Undef if not.
If the argument is Undef , returns Undef

DESCRIPTION

Pos returns the position of the first occurence of el enent inarray.

SEE ALSO

Array, List,Tail,At, Head.

EXAMPLES

AM.> Pos([10, 11, 12, 13, 14, 15], 14)
<| NT>5

AML> Pos([[1,2],[83,4,5],Undef,[7],[8,9,10]],[3, 4,5])
<| NT>2

AML> Pos([1, 2, Undef, 2], Undef)
<| NT>3

AML> Pos([1,2,3],7)
<UNDEF>Undef

AM_L> Pos(List("al pha”, True,[1,2,3],7)), True)
<| NT>2

AMAPmMOod (28/06/02) 1-53

Part Il O The Kernel module of AML

Pr od

Computes the product of the elements of an array or a set.

USAGE
Prod(array)

ARGUMENTS

array (ARRAY(T)). T is either | NT or REAL. If the argument is Undef, returns
Undef

RETURNED OBJECT

If ar r ay has type ARRAY(T) , the function returns an element of type T, with the same
number of elements. If the argument is Undef , returns Undef

DESCRIPTION

Returns the product of the elements of array. Let array:[x,,xz,...xn], then the

result is <31 X, .

If array contains Undef elements, these elements are considered as having value 1
(they do not affect the overall product of other elements).

SEE ALSO

Array, Set, Seri es, Si ze.

EXAMPLES

AML> Prod([1, 2, 3,4])
<I NT> 24

AML> Prod([10, 11, 12, Undef, 14, 15])
<| NT> 277200

154 AMAPmMod (28/06/02)

Part Il O The Kernel module of AML

Pr odSeri es

Computes the series of incremental products associated with a given sequence of
numerical values.

USAGE

ProdSeri es(array)

ARGUMENTS

array (ARRAY(T)). T is either | NT or REAL. If the argument is Undef, returns
Undef

RETURNED OBJECT

If ar r ay has type ARRAY(T) , the function returns an element of type ARRAY(T) , with
the same number of elements. If the argument is Undef , returns Undef

DESCRIPTION

Returns the mathematical series associated with the sequence of numerical values
defined in array. Let arr ayZ[XI,Xz,...Xn], then the result is the array whose ith

element is defined by @a X, . If arr ay contains Undef elements, these elements are
considered as having value 1 (they do not affect the overall product of other elements).

SEE ALSO

Array, Set , Seri es, Si ze, Prod, Sum

EXAMPLES

AM_L> ProdSeries([1,2,3,4])
<ARRAY(I NT) > [1, 2, 6, 24]
AM_L> ProdSeries([10,11, 12, Undef, 14, 15])
<ARRAY(I NT)> [10, 110, 1320, 1320, 18480, 277200]

AMAPmMod (28/06/02) 1-55

Part Il O The Kernel module of AML

Rand

Computes a random value.

USAGE

Rand()
Rand(i,|)

ARGUMENTS

i,j (INT).j mustbe greater thani .

RETURNED OBJECT

If no argument is given, r and returns a REAL between 0 and 1 (following a uniform
distribution). If two arguments are given, r and returns an | NT at random between |

and |

DESCRIPTION

Based on Linux function Random().

SEE ALSO
STAT module.
EXAMPLES
AML> Rand()
<REAL> 0. 45675
AM_L> Rand(22, 35)
<REAL> 28
Rand is evaluated only once in the following iteration:
AML> Foreach _i In [1,5]:Rand(22, 35)
<REAL> [34, 34, 34, 34, 34]
The following trick is used to have Rand eval uated for
each _i:
AML> Foreach i In [1,5]:Rand(22,35+ i- i)
<REAL> [29, 29, 31, 22, 25]
1-56

AMAPmMod (28/06/02)

Part Il O The Kernel module of AML

RenpveAt
Removes an element at a given position in an array or a list.

USAGE

RenoveAt (array, i)

ARGUMENTS

array (ARRAY(T) or LI ST(...)).Tisany type
i (I NT). Position at which the element must be removed. It can have either a positive
or a negative value. The argument, 0 < Abs(i) < Si ze(array).

RETURNED OBJECT
If array is of type ARRAY(T), the function returns an element of type ARRAY(T) . If
array has type LI ST, the function returns an element of type (T, T, ..., T,
1’ T|+1’ er TN) :

DESCRIPTION

Removes the element at the ith position in an array or a list. If i has a negative value,
the function removes the element at position i with respect to the end of arr ay, i.e. if
nis the size of ar r ay, it corresponds to position n—i + 1 ofarray.

SIDE EFFECT

Important: contrary to most functions in AML which leave their argument unchanged,

this fonction modifies its array argument. The value returned is the modified
argument.

SEE ALSO

Array,Li st, Pos, At, Append, | nsert At.

EXAMPLES

AM_> a=[10, 11, 12, 13, 14, 15]
<ARRAY(| NT) >[10, 12, 13, 14, 15]
AML> RenoveAt (a, 2)
<ARRAY(| NT) >[10, 12, 13, 14, 15]
AML> a
<ARRAY(| NT) >[10, 12, 13, 14, 15]
AML> RemoveAt ([[1,2,3],[10,15]],-1)
<ARRAY(ARRAY((INT))> [[1, 2, 3]]
AML> RenoveAt (List(”al pha”,[1,2,3],5, True), 3)
<LI ST(STRI NG, ARRAY(| NT), BOOL> [al pha, [1, 2, 3], Tr ue]

AMAPmMOod (28/06/02) 1-57

Part Il O The Kernel module of AML

Ri nt
Round to nearest integer.

USAGE
Ri nt (x)

ARGUMENTS

X (I NT or REAL) : a numerical value

RETURNED OBJECT

The value returned by Ri nt has the same type as x. If x is Undef , returns Undef .

DESCRIPTION

Returns the integer nearest to x.

NOTE

This function is similar to the corresponding double function of the host system

(Unix, ...).

SEE ALSO

Abs, Cei |l , Truncat e, Fl oor, Tol nt, ToReal .

EXAMPLES

AML> Rint(3)
<I NT>3
AML> Rint(3.4)
<REAL>3
AM.> Rint(3.5)
<REAL>4
AML> Rint(3.6)
<REAL>4
AML> Rint(-2.9)
<REAL>- 3
AML> Rint(-2.5)
<REAL>- 2
AML> Rint(-2.4)
<REAL>- 2

AMAPmMod (28/06/02)

Part Il O The Kernel module of AML

Save
Save an object to a file in different formats.

USAGE

Save(obj, filenane)
Save(obj, file, Format-> Binary)

ARGUMENTS

obj (T) : the object can have any type.
fil enane (STRI NG): identifies the file in which the object obj is saved.

OPTIONAL ARGUMENTS

Optional arguments can exist depending on the type of the first argument. By default
an ASCII form of the object is saved. This default can be changed using the
optional argument For mat (STRI NG) which specifies the format to be used (ASCII,
BINARY). In version 1.x of AMAPmod, not all objects have a binary format
option. Objects that cannot be saved in BINARY need to be recomputed each time
AML is launched. This will be corrected in version 2.

RETURNED OBJECT

No value is returned.

DESCRIPTION

Save an object to a file in different formats.

SEE ALSO

Load, Obj ect constructors, Di spl ay.

EXAMPLES
AML> #Savi nganarr ay
AML> al =11,2,3,4,5, 6] # builds a sinple array.
AML> Save(al, "filel.dat”) # Save the array to file named
filel. dat

AMAPmMOod (28/06/02) 1-59

Part Il O The Kernel module of AML

Sel ect
Conditional identity function

USAGE
Sel ect (exp, pred)

ARGUMENTS

exp (ANY): argument that can be selected. This argument can have thevalue Undef
pred (BOOL): argument that enables/disable the selection of the value ofthe first
argument

RETURNED OBJECT

Sel ect returns exp if pred is True, VO D if pred is Fal se. If exp is Undef ,
returns Undef if pred is True and returns no value otherwise. If pred is Undef,
returns Undef .

DESCRIPTION

Sel ect is the identity function if its second argument is Tr ue, and returns no value
(VA D) if Fal se. If pred has value Undef , Sel ect returns Undef whatever the value
of exp.

EXAMPLES

AML> Sel ect (3, True)
<I NT>3

AML> Sel ect (3, Fal se)
<va D>

AML> Sel ect (Undef, Tr ue)
<UNDEF> Undef

AML> Sel ect (Undef, Fal se)

<Vva D>
AML> #Filtering an array of val ues
AML> Foreach _i In[1,2,3,2,2,4,1,1] : Select(_i,_i!=2)

<ARRAY(I NT)>[1, 3, 4, 1, 1]

T-60 AMAPMod (28/06/02)

Part Il O The Kernel module of AML

Series

Computes the mathematical series associated with a given sequence of numerical
values.

USAGE

Series(array)

ARGUMENTS

array (ARRAY(T)). T is either | NT or REAL. If the argument is Undef, returns
Undef

RETURNED OBJECT

If ar r ay has type ARRAY(T) , the function returns an element of type ARRAY(T) , with
the same number of elements. If the argument is Undef , returns Undef
DESCRIPTION

Returns the mathematical series associated with the sequence of numerical values
defined in array. Let arr ayZ[XI,Xz,...Xn], then the result is the array whose ith

1

element is defined by £ x, . If array contains Undef elements, these elements are
ki

considered as having Nul | value.

SEE ALSO

Array, Set, Seri es, Si ze, Prod, Cunul at e.

EXAMPLES

AML> Series([1,2,3,4])
<ARRAY(INT)> [1, 3, 6, 10]

AML> Series([10,11, 12, Undef, 14, 15])
<ARRAY(I NT) > [10, 21, 33, 33, 47, 62]

AMAPmMod (28/06/02) 1-61

Part Il O The Kernel module of AML

Set

SET constructor

USAGE
Set (x1, x2,...,Xxn)
ARGUMENTS
x1,x2,...xn (T) : values of identical type. Type T can be any type. Any xk can be
Undef .
RETURNED OBJECT

If the type of the arguments xk is T, the value returned by a set constructor is an
SET(T) if at least one xk is not Undef . If all xk are Undef the constructor returns
Undef .

DESCRIPTION

A SET is a set-type, i.e. the type of a collection of objects. Like for ARRAYs, all the
elements of a SET must have the same type. However, a SET can contain Undef
elements. Contrary to ARRAYs, elements of a SET are not ordered. It is thus
meaningless to speak of the ith element of a SET. Consequently, each element of a set
appears only once in the SET. There are no duplicates of elements.

DETAILS

— In version 1.x of AMAPmod there is no way of saving or loading binary or ASCII
representations of sets. For ASCII representations, one may want to save a SET as

an ARRAY:

AM_L> Save(ToArray(setl),”fil enanme”)

Then, it is possible to load an ASCII ARRAY and to cast it to a SET:

AML> ToSet (Array(”"fil enane”))

— There is no possibility to Pl ot SETS.

— Two sets are equal if they contain the same elements (no matter the order). The
semantics of the equality between two elements is either straightforward (e.g.
equality beween to integers or between an integer and a REAL, etc.) or defined in
the constructor man page of the element.

SEE ALSO
Si ze, Sum Array, Li st, ToArray, ToSet, ToLi st .

EXAMPLES

AML> s=Set (2, 3,10, 3, 2, 2, 2,10, 11, 2)
<ARRAY(I NT) > [2, 3, 10, 11]

AML> s=Set (2, 3, Undef, 3, Undef)
<ARRAY(| NT) >[2, 3, Undef]

AML> s=Set([1,2,3],[9].,[]1,[1,2,3],[9])
<ARRAY(ARRAY((INT))>[[1.,[9].[1, 2, 3]]

1-62 AMAPMod (28/06/02)

Part Il O The Kernel module of AML

Set M nus

Difference between to set objects, -

USAGE
Set M nus(set 1, set 2)

ARGUMENTS

set 1, set 2 (ARRAY or SET) : these two arguments must have the same type

RETURNED OBJECT

Set M nus returns a set object of the same type as its two arguments, i.e. either ARRAY
or SET. If either set 1 or set 2 is Undef , returns Undef .

DESCRIPTION

Set M nus(set 1, set 2) returns the set object made up by the objects of set 1 that
are not in set 2 If set 1 and set 2 are ARRAYs, Set M nus(set 1, set 2) preserves in
the resulting ARRAY the order of elements of set 1.

NOTE

Set M nus can also be invoked with the minus sign - .

EXAMPLES

AML> SetMnus([1,2,3],[3,1,4])
<ARRAY(ANY) >[2]

AML> SetM nus(Set(1,2,3,4,5),Set(1,3,5,6,7))
<SET(ANY) >[2, 4]

AMAPmMod (28/06/02) 1-63

Part Il O The Kernel module of AML

Si ze
Gives the number of elements of an array, a set or a list.

USAGE
Si ze(array)
ARGUMENTS

array (ARRAY(T) or SET(T) or LI ST(...)). Tis either any type. If the argument is
Undef , returns Undef

RETURNED OBJECT

If ar r ay has type ARRAY(T) or SET(T), the function returns an element of type T. If
the argument is Undef , returns Undef

DESCRIPTION

Returns the number of the elements of ar r ay.

SEE ALSO

Array, Set, Seri es, Si ze.

EXAMPLES
AM_> Size([10, 11, 12, 13, 14, 15])
<INT> 6
AML> Size([2,2,Undef,7,1])
<INT> 5
AML> Sjze([2:100])
<I NT> 99

T-64 AMAPMod (28/06/02)

Part Il O The Kernel module of AML

Sor t

Sorts the order of the elements of an array or a set.

USAGE
Sort (array)
ARGUMENTS

array (ARRAY(T) or SET(...)). T is any type. If the argument is Undef , returns
Undef . The elements of ar r ay must have a simple type, i.e. T = | NT or VTX or
REAL or DATE, or CHAR or STRI NG,

RETURNED OBJECT

If array has type ARRAY(T), the function returns an element of type ARRAY(T) . If
array has type SET(T), the function returns an element of type ARRAY(T) . If the
argument is Undef , returns Undef

DESCRIPTION

Returns a sorted array made of all the element of arr ay.

NOTE
- Ifarray is a SET, the object returned is not a SET. Rather, it is an ARRAY.
- The comparison semantics of complex objects is undefined.

SEE ALSO

Array,Li st, Pos, At, Head, | nvert.

EXAMPLES

AML> Sort([12, 14, 12, 15, 11, 13])
<ARRAY(I NT) > [11, 12, 12,13, 14, 15]

AM.> Sort([[1,2],[3,4,5],Undef,[7],[8,9,10]])
<ARRAY(ARRAY(| NT)) >[[8, 9, 10], [7], Undef, [3, 4,5],[1, 2]]

AMAPmMOod (28/06/02) 1-65

Part Il O The Kernel module of AML

SPr od

Scalar product of two arrays.

USAGE

SPROD(AL, A2)

ARGUMENTS
al, a2 (ARRAY(REAL)). These two arrays must have identical size.

RETURNED OBJECT

The result of a scalar product is a REAL. If one of the arguments is Undef , returns
Undef

DESCRIPTION

Denote al qX] 3 Xy penns Xn]and a2 qy] 3 Yaseens yn]. The scalar product of two arrays
with same dimension n is defined by:

n
sHIZ x, Y,
ke

SEE ALSO
EDi st, Angl e, Nor m VPr od, Arr ay.

EXAMPLES
AML> SProd([1.,0.,0.],[0.,1.,0.])
<REAL> 0
AML> SProd([1.,1.,0.,4.],[1.,1.,0.,2.])
<REAL> 10

T-66 AMAPMod (28/06/02)

Part Il O The Kernel module of AML

SubAr r ay

Subarray of an array or a list.
USAGE

SubArray(array, i, j)

SubArray(array, i)

ARGUMENTS

array (ARRAY(T)). T is any type. If the argument is Undef , returns Undef

i,] (INT). Define the bounds (minimum and maximum index in array) of the
subarray. For syntax SubArray(array,i,j),i mustbe positive, non null and j
must be greater than i . For syntax SubArray(array,i),i mustbe non null, but
can have a negative value.

RETURNED OBJECT

If array has type ARRAY(T), the function returns an element of type ARRAY(T) . If
one of the arguments is Undef , returns Undef

DESCRIPTION

— SubArray(array,i,j) returns the array made of the element of array that
have a position between i and j . The elements of the resulting array are in the
same order as in ar r ay. Let us denote ar r ay ﬂxl , Xy 5 ..,Xn]. Then syntax returns

the subarray [xi ,...,X]-]. Ifj > n then the result is the subarray [Xi ,...,Xn].

— Syntax SubArray(array, i) returns the firsti element of array ifi >0 and the
lasti elements if i <0. If Abs(i)>n, then the entire array ar r ay is returned.

SEE ALSO

Array, Li st, Pos, At, Head, Tai | , Val ueSel ect .

EXAMPLES

AM_> SubArray([10,11, 12,13, 14, 15], 2, 4)
<ARRAY(I NT) > [11, 12, 13]

AML> SubArray([10, 11, 12,13, 14, 15], 2, 18)
<ARRAY(I NT)> [11, 12, 13, 14, 15]

AML> SubArray([[1,2],[3,4,5],Undef,[7],[8,9,10]], 3)
<ARRAY(ARRAY(I NT))>[[1, 2],[3, 4, 5], Undef]

AML> SubArray([[1,2],[3,4,5],Undef,[7],[8,9,10]],-2)
<ARRAY(ARRAY(I NT))>[[7],[8,9, 10]]

AMAPmMOod (28/06/02) 1-67

Part Il O The Kernel module of AML

Sum
Sum up the elements of an array or a set.

USAGE
Sum(array)

ARGUMENTS

array (ARRAY(T) or SET(T)). T is either | NT or REAL. If the argument is Undef ,
returns Undef

RETURNED OBJECT

If ar r ay has type ARRAY(T) or SET(T), the function returns an element of type T. If
the argument is Undef , returns Undef

DESCRIPTION

Returns the sum of the elements of ar r ay. If ar r ay contains Undef elements, these
elements are discarded during the Sumoperation (they are considered as having Nul |
value).

SEE ALSO

Array, Set, Seri es, Si ze.

EXAMPLES
AM_> Sun([10, 11, 12, 13, 14, 15])
<I NT> 75
AML> Sun([2, 2, Undef, 7, 1])
<INT> 12
AML> Sum(Foreach x In [1,10,100] : _x*2)
<I NT> 222

T-68 AMAPMod (28/06/02)

Part Il O The Kernel module of AML

Sw tch

Multi-conditional expression.

USAGE
Switch v Case vl : el Case v2 : e2 Case ... Default ek

ARGUMENTS

v (T). is any expression
v1 (Tj). T; can be any type.
el (TiQ). Ti(can be any type.

RETURNED OBJECT

The object returned can have the same type as either e1, e2,...or ek.

DESCRIPTION

This expression returns el if v = v1, e2 if v = v2 etc. It returns ek if none of the
Case expressions matches v.

SIDE EFFECT

Important: in the first version of AMAPmod, the evaluation procedure of expressions
evaluates all subexpressions before evaluating a given expression. Thus, in every
cases, both el and e2 are evaluated first. Then depending on the value of v the
evaluation of the Swi t ch expression leads to select either el or e2 or any other ei
expression. This means that some time may be lost in computing useless expressions.
This behavior will be corrected in version 2.

SEE ALSO

Array, Li st, Pos, At, Append.

EXAMPLES

AML> Switch 1 + 3 Case 1 :"A” Case 2 : "B" Case 3 : "C \
AML> Case 4 : "D Default : "2
<STRI NGD
AML> # A function for coloring a PlantFranme (the argunent
enotes a plant entity)
AML> color _order(_x) = Switch Order(_x) Case 1 : Black \
AML> Case 2: Blue Case 3 : Geen Case 4 : Red Default : Yellow
<FUNC>Func.
AML> f = Plant Franme(1, Scal e-> 3)
<Pl ant Frame> St andard.
AML> Pl ot (f, Col or->col or_order)

AMAPmMod (28/06/02) 1-69

Part Il O The Kernel module of AML

Tai |
Tail of an array.

USAGE
Tai | (array)

ARGUMENTS
array (ARRAY(T) or LI ST(...)). T is any type. If the argument i1s Undef , returns

Undef

RETURNED OBJECT
If array has type ARRAY(T), the function returns an element of type ARRAY(T) . If
array has type LI ST(T,, T,, ..., T,), the function returns an element of type
LI ST(T,, ..., T).If the argument is Undef , returns Undef

DESCRIPTION
Returns the an array or a list made of all the element of array except the first
element. The elements of the resulting array are in the same order as in ar r ay. This is
not equivalent to the expression SubArray(array, 2, Si ze(array)) since Tai |
can take an argument that contains only one or zero elements (which is not the case of
the SubAr r ay expression).

SEE ALSO
Array, Li st, Pos, At, Head.

EXAMPLES

AML> Tail ([10, 11, 12, 13, 14, 15])
<ARRAY(I NT)> [11, 12, 13, 14, 15]
AML> Tail([[1,2],[3,4,5],Undef,[7],[8,9,10]])
<ARRAY(ARRAY(I NT))>[[3,4,5], Undef,[7],[8,9, 10]]
AML> Tail ([3])
<ARRAY(ANY)) >[]
AML> Tail ([])
<ARRAY(ANY)) >[]

1-70 AMAPMod (28/06/02)

Part Il O The Kernel module of AML

TOArr ay
Cast type to ARRAY.

USAGE
ToArray(x)

ARGUMENTS

X (ARRAY or SET or LIST or SEQUENCES or DI SCRETE SEQUENCES or
MARKOV_DATA or SEM - MARKOV_DATA)

RETURNED OBJECT

The value returned by ToAr r ay has type ARRAY. If x is Undef , returns Undef .

DESCRIPTION

Transforms any set type (ARRAY, SET or LI ST or SEQUENCES) to ARRAY whenever
possible. It is always possible to cast a SET to an ARRAY, but a LI ST can only be cast
to a set if all its element have identical type.

NOTE

This function may be useful to remove duplicated elements from an array (cf.
examples)

SEE ALSO

ToSet, ToLi st, ToStri ng, Sequences.

EXAMPLES

AML> a =[1,2,2,2,3,2,4,4,4,2,3,2]
<ARRAY(INT)> [1,2,2,2,3,2,4,4,4,2,3,2]
AML> b = ToSet(a)
<SET(1NT)>[1, 2, 3, 4]
AML> # c corresponds to arraya where duplicated el ement shave
been renoved
AML> ¢ = ToArray(b)
<ARRAY(I NT)>[1, 2, 3, 4]
AML> s = Sequences([[1,2,3,4],[1,2,3]])
<SEQUENCES> 1 VARI ABLE 2 sequences cunulative length: 7
AML> ¢ = ToArray(s)
<ARRAY(ARRAY(I NT))>[[1, 2,3,4],[1, 2, 3]]

AMAPmMOod (28/06/02) 1-71

Part Il O The Kernel module of AML

Tol nt
Cast type to | NT.

USAGE
Tol nt (x)

ARGUMENTS

X (I NT or REAL or VTX or DATE) : a numerical value

RETURNED OBJECT

The value returned by Tol nt has type | NT. If x is Undef , returns Undef .

DESCRIPTION

Cast a numerical value value to an integer. If x has type REAL or | NT, Tol nt is
equivalent to Truncate. If x has type VIX or DATE, Tolnt returns a value
corresponding to a unique internal integer code representing the object x. No
additional meaning is associated with this internal code.

SEE ALSO

Abs, Ceil ,Ri nt, Fl oor, Truncat e, Tol nt, ToReal .

EXAMPLES

AML> Tol nt (3)
<I NT>3
AML> Tol nt (3. 4)
<REAL>3
AML> Tol nt (3. 6)
<REAL>3
AML> Tol nt(-2.9)
<REAL>- 2
AML> Tol nt (-2.4)
<REAL>- 2

1-72 AMAPMod (28/06/02)

Part Il O The Kernel module of AML

ToLi st
Cast type to LI ST.

USAGE
ToLi st (x)
ARGUMENTS

X (ARRAY or SET or LI ST)

RETURNED OBJECT

The value returned by ToLi st has type LI ST. If x is Undef , returns Undef .

DESCRIPTION

Transforms any set type (ARRAY, SET or LI ST) to a LI ST whenever possible. It is
always possible to cast an ARRAY or a SET to a L| ST.

SEE ALSO

ToArray, ToSet, ToSt ri ng.

EXAMPLES

AML> a = [1,2,3,4]
<ARRAY(INT)> [1, 2, 3, 4]
AML> b = TolList(a)
<LI ST(I NT, I NT, I NT, I NT) >[1, 2, 3, 4]

AMAPmMod (28/06/02) 1-73

Part Il O The Kernel module of AML

ToReal
Cast type to REAL.

USAGE
ToReal (x)

ARGUMENTS

X (I NT or REAL) : a numerical value

RETURNED OBJECT

The value returned by ToReal has type REAL. If x is Undef , returns Undef .

DESCRIPTION

Cast a numerical value value to a REAL.

SEE ALSO

Tol nt, ToReal .

EXAMPLES

AML> | =3
<I NT>3
AML> ToReal (i)
<REAL>3
AML> ToReal (3. 4)
<REAL>3. 4

174 AMAPMod (28/06/02)

Part Il O The Kernel module of AML

ToSet

Cast type to SET.

USAGE
ToSet (x)

ARGUMENTS

X (ARRAY or SET or LI ST)

RETURNED OBJECT

The value returned by ToSet has type SET. If x is Undef , returns Undef .

DESCRIPTION

Transforms any set type (ARRAY, SET or LI ST) to a SET whenever possible. It is
always possible to cast an ARRAY to a set, but a LI ST can only be cast to a set if all its
element have identical type.

NOTE

This function may be useful to remove duplicated elements from an array (cf.
examples)

SEE ALSO

ToArray, ToLi st, ToStri ng.

EXAMPLES

AML> a =[1,2,2,2,3,2,4,4,4,2,3,2]
<ARRAY(INT)> [1,2,2,2,3,2,4,4,4, 2,3, 2]
AML> b = ToSet(a)
<SET(INT)>[1, 2, 3, 4]
AML> # c corresponds to arraya where duplicated el ement shave
been renoved
AML> ¢ = ToArray(b)
<ARRAY(| NT) >[1, 2, 3, 4]

AMAPmMOod (28/06/02) 1-75

Part Il O The Kernel module of AML

ToStri ng
Cast type to STRI NG

USAGE
ToString(x)

ARGUMENTS
x (I NT, REAL, VTX, DATE, CHAR)

RETURNED OBJECT

The value returned by ToSt ri ng has type STRI NG If x is Undef , returns Undef .

DESCRIPTION

Transforms simple types to ASCII strings.

SEE ALSO

Tol nt, ToReal .

EXAMPLES

AML> ToString(3)
<STRI NG>3

AML> " AMAPnodv” + ToString(1)
<STRI N& AMVAPnod v1

T-76 AMAPMod (28/06/02)

Part Il O The Kernel module of AML

Trigononetric functions
Sin, Cos, Tan, Acos, Asin, Atan.

USAGE

Cos(x)

Tan(x)

Asi n(x)
ARGUMENTS

X (I NT or REAL)

Tan argument must be different from 72/ 2 [=h7 for any positive or negative n.

Arguments of Acos and Asi n must be in the REAL interval [0,1].
RETURNED OBJECT

The returned values are REAL values. If the above conditions are not met, Undef is
returned. If the argument is Undef , returns Undef .

DESCRIPTION

These functions are similar to the corresponding double function of the host system
(Unix, ...). Type "man math" on the host system for more details.

SEE ALSO

Mathematical functions.

EXAMPLES

AML> Cos(Pi/2)
<REAL>1

AML> Atan(1)
<REAL> 0. 785398

AMAPmMod (28/06/02) 1-77

Part Il O The Kernel module of AML

Truncat e
Truncate to integer.

USAGE

Truncat e(x)

ARGUMENTS

X (I NT or REAL) : a numerical value

RETURNED OBJECT

The value returned by Truncate has the same type as x. If x is Undef , returns Undef .

DESCRIPTION

Truncate x to integer.

NOTE

This function is similar to the corresponding double function "trunc" of the host
system (Unix, ...).

SEE ALSO

Abs, Ceil ,Ri nt, Fl oor, Tol nt, ToReal .

EXAMPLES

AML> Truncat e(3)
<I NT>3

AML> Truncate(3.4)
<REAL>3

AML> Truncat e(3. 6)
<REAL>3

AML> Truncate(-2.9)
<REAL>- 2

AML> Truncate(-2.4)
<REAL>- 2

1-78 AMAPMod (28/06/02)

Part Il O The Kernel module of AML

Uni on
Union of to set objects, |

USAGE

Uni on(set1, set 2)
setl | set2

ARGUMENTS

set 1, set2 (ARRAY or SET) : these two arguments must have the same type

RETURNED OBJECT

Union returns a set object of the same type as its two arguments, i.e. either ARRAY or
SET. If either set 1 or set 2 is Undef , returns Undef .

DESCRIPTION

Uni on(set 1, set2) returns the set object made up by the objects of set 1 and of
set 2. If set1 and set 2 are ARRAYs, Uni on(set 1, set2) concatenates the two
arrays.

NOTE

Uni on can also be invoked with the minus sign | .

SEE ALSO

Inter, ToSet, ToArray, Sort, Merge

EXAMPLES

AML> Union([1,2],]0,2,3,4])
<ARRAY(ANY)>[1, 2,0, 2, 3, 4]

AML> Union(Set(1,2),Set(0,2,3,4))
<SET(ANY) >[0, 1, 2, 3, 4]

AMAPmMOod (28/06/02) 1-79

Part Il O The Kernel module of AML

Var
Computes the covariance of elements of two arrays.
USAGE
Var (al)
ARGUMENTS
al (ARRAY(T) or SET(T)). T is either | NT or REAL.
RETURNED OBJECT
If al has type ARRAY(T) or SET(T), the function returns an element of type REAL. If
the argument is Undef , returns Undef
DESCRIPTION
Returns the mean value of the elements of array. If al = €1,X2,..,Xi,.. 2then
Var (al) is thereal:
2 2
1/n®ia’nxi &X
If a1 contains Undef elements, these elements are considered as Nul | values.
SEE ALSO
Array, Set, Seri es, Si ze, EDi st, Angl e, Norm
VPr od, Pl us, Ti nes, Cov, Mean.
EXAMPLES

AML> Var([6.5,4.5,4.9,7.2,0.6,4.5])
<I NT> 4. 40333

T-80 AMAPMod (28/06/02)

Part Il O The Kernel module of AML

VPr od
Vectorial product of two arrays.

USAGE
VProd(al, a2)

ARGUMENTS

al, a2 (ARRAY(REAL)). These two arrays must have dimension 3.

RETURNED OBJECT

The result of a vectorial product is an ARRAY(REAL) with the same dimension as al
and a2. If one of the arguments is Undef , returns Undef

DESCRIPTION

The function returns the vectorial product of two arrays in dimension 3. If
aldlx.,y,,z] and a2 Hx,,y,,z], then a E{X,y,z] @ VProd(al, a2) with

x dly, %, 7),

yaedd < ot %

z EXl @2 Eg,l 4(2

NOTE

Contrary to SPr od, the dimension is limited here to 3.

SEE ALSO

EDi st, Angl e, Nor m VPr od, Arr ay.

EXAMPLES

AM.> VProd([1.,0.,0.],[0.,1.,0.])
<ARRAY(REAL)> [0.,0.,1.]
AM.> SProd([0.,1.,0.],[1.,0.,0.])
<ARRAY(REAL)> [0.,0.,-1.]

AMAPmMod (28/06/02) 1-81

Part Il O The MTG module

2

THEMTG MODULE

This part describes the functions of the module MTG of AMAPmod.

2.1 List of AML functionsfrom module M TG (alphabetic order)

Activate 2-4
Active 2-5
AlgHeight 2-6
AlgOrder 2-7
AlgRank 2-8
Alpha 2-9
Ancestors 2-10
AXiS 2-11
Beta 2-12
EottomCoord 2-13
ottomDiameter 2-14
Class 2-15
ClassScale 2-16
Complex 2-17
ComponentRoots 2-18
Components 2-20
Coord 2-21
DateSample 2-22
Defined 2-23
Descendants 2-24
'[-)ressingData 2-26
FdgeType 2-27
Extremities 2-28
Father 2-30
Feature 2-32
FirstDefinedFeature 2-33
Height 2-34
Index 2-35
|_astDefinedFeature 2-36
[_ength 2-37
[_ocation 2-38
MatchingExtract 2-39
MTG 2-41
wRoot 2-43
NextDate 2-44
Drder 2-45
Path 2-46
PDir 2-48
PlantFrame 2-49
Plot 2-56
Predecessor 2-60
PreviousDate 2-62
Rank 2-63
RelBottomCoord 2-64
mopCoord 2-65
Root 2-66_
Scale 2-67
SDir 2-69
Sons 2-70
Successor 2-72
TopCoord 2-73
TopDiameter 2-74
2-1

AMAPmMod (28/06/02)

Part Il 0 The MTG module

TreeMatching 2-75
VirtualPattern 2-77
VtxList 2-82

2.2 List of AML functionsfrom module MTG (by type)

Construction
MIG (el)
Activate(el)
Active()
Entry points in the MIG
MI'GRoot ()
Vt xLi st () ARRAY(VTX)

Feature functions

A ass(el)

| ndex(el)

Scal e(el)
Feature(el, e2)
Feature(el, e2, e3)
Gl assScal e(el)
EdgeType(el, e2)
Def i ned(el)

O der (el)
Rank(el)

Hei ght (el)

Order (el, e2)
Rank(el, e2)

Al gOrder(el, e2)
Al gRank(el, e2)
Al gHei ght (el, e2)

Date functions

Dat eSanpl e(el)

Fi r st Defi nedFeat ure(el, e2)
Last Def i nedFeat ure(el, e2)
Dat eSanpl e(el)

Next Dat e(el)

Previ ousDat e(el)

Functions for moving in MTGs

Fat her (el)
Successor (el)
Pr edecessor (el)
Root (el)

Compl ex(el)
Location(el)
Sons(el)

Ancest ors(el)
Descendant s(el)
Extremties(el)

2-2

AMAPmMod (28/06/02)

Part Il O The MTG module

Component s(el)
Component Root s(el)
Pat h(el, e2)

Axi s(el)

Trunk(el)

Geometric interpretation

Pl ant Frane(el)
TopCoord(el, e2)

Rel TopCoord(el, e2)
Bot t omCoor d(el, e2)
Rel Bot t onCoor d(el, e2)
Coord(el, e2)

Dr essi ngDat a(el)

Pl ot (el)

Bott onDi aneter (el, e2)
TopDi aneter(el, e2)

Al pha(el, e2)

Beta(el, e2)
Length(el, e2)

Virtual Pattern(el)
PDir(el, e2)

SDir(el, e2)

Comparison functions

TreeMat chi ng(el)
Mat chi ngExt r act (el)

Options (cf. Fat her ())

EdgeType (+ <, %)
RestrictedTo (NoRestriction,
Cont ai nedl n (i)

Scal e (i)

For mat (ASCI I, GNUPLOT)
Error Nb (i)

2.3 Detailed description

SanmeConpl ex,

SanmeAxi s)

AMAPmMod (28/06/02)

2-3

Part Il 0 The MTG module

Activate
Activate a MTG already loaded into memory

USAGE
Activate(mntg)

ARGUMENTS

nmt g (MIG) : MTG to be activated

RETURNED OBJECT
va D

DESCRIPTION

All the functions of the MTG module use an implicit MTG argument which is defined
as the “active MTG”. This function activates a MTG already loaded into memory
which thus becomes the implicit argument of all functions of module MTG.

DETAILS

When several MTGs are loaded into memory, only one is active at a time. By default,
the active MTG is the last MTG loaded using function MT) . However, it is possible
to activate an MTG already loaded using function Acti vat e(). The current active
MTG can be identified using function Act i ve() .

BACKGROUND
MTGs, AML language

SEE ALSO
MIG, Active().

2-4 AMAPmMod (28/06/02)

Part Il O The MTG module

Acti ve
Returns the active MTG.

USAGE
Active()

ARGUMENTS

None.

RETURNED OBJECT
MIG

DESCRIPTION

This function returns the active MTG. If no MTG is loaded into memory, Undef is

returned.

DETAILS

When several MTGs are loaded into memory, only one is active at a time. By default,
the active MTG is the last MTG loaded using function M) . However, it is possible
to activate an MTG already loaded using function Acti vat e(). The current active

MTG can be identified using function Act i ve().

BACKGROUND
MTGs, AML language.

SEE ALSO

MIG Acti vate().

AMAPmMod (28/06/02)

Part Il 0 The MTG module

Al gHei ght
Algebraic value defining the number of components between two components

USAGE
Al gHei ght (v1, v2)
ARGUMENTS

v1 (VTX) : vertex of the active MTG
v2 (VTX) : vertex of the active MTG

RETURNED OBJECT

I NT. If vl is not an ancestor of v2 (or vice versa) , or if vl and v2 are not
defined at the same scale, an error value Undef is returned.

DESCRIPTION

This function is similar to function Hei ght (v1, v2): it returns the number of
components between two components, at the same scale, but takes into account the
order of vertices vl and v2. The result is positive if v1 is an ancestor of v2, and
negative if v2 is an ancestor of v1.

BACKGROUND
MTGs

SEE ALSO
MI'G, Rank, Or der, Hei ght , EdgeType, Al gO der , Al gRank.

2-6 AMAPMod (28/06/02)

Part Il O The MTG module

Al gO der

Algebraic value defining the relative order of one vertex with respect to another one

USAGE
Al gOrder(vl, v2)

ARGUMENTS

v1 (VTX) : vertex of the active MTG
v2 (VTX) : vertex of the active MTG

RETURNED OBJECT

I NT. If vl is not an ancestor of v2 (or vice versa) , or if vl and v2 are not
defined at the same scale, an error value Undef is returned.

DESCRIPTION

This function is similar to function Or der (v1, v2): it returns the number of ‘+’
-type edges between two components, at the same scale, but takes into account the
order of vertices vl and v2. The result is positive if v1 is an ancestor of v2, and
negative if v2 is an ancestor of v1.

BACKGROUND
MTGs

SEE ALSO
MI'G, Rank, Or der, Hei ght , EdgeType, Al gHei ght , Al gRank.

AMAPmMod (28/06/02) 2-7

Part Il 0 The MTG module

Al gRank

Algebraic value defining the relative rank of one vertex with respect to another one

USAGE
Al gRank(vl, v2)

ARGUMENTS

v1 (VTX) : vertex of the active MTG
v2 (VTX) : vertex of the active MTG

RETURNED OBJECT

| NT. If v1 is not an ancestor of v2 (or vice versa) within the same botanical axis, or
ifvland v2 arenot defined at the same scale, an error value Undef is returned.

DESCRIPTION

This function is similar to function Rank(vl, v2): it returns the number of
consecutive ‘<’-type edges between two components, at the same scale, but takes into
account the order of vertices vl and v2. The result is positive if v1 is an ancestor of
v2, and negative if v2 is an ancestor of v1.

BACKGROUND
MTGs

SEE ALSO
MI'G, Rank, Or der, Hei ght , EdgeType, Al gHei ght , Al gOr der .

2-8 AMAPMod (28/06/02)

Part Il O The MTG module

Al pha

Angle defining the angle between the principal direction of the geometric model of
vertex and the z axis of the global coordinate system.

USAGE
Al pha(p, V)
ARGUMENTS

p (PLANTFRAMNE) : plantframe containing the geometric representation of v.
v (VTX) : vertex of the active MTG

RETURNED OBJECT
REAL

DESCRIPTION

This function returns an angle between the principal direction of the geometric model
of a vertex and the z axis of the global reference system. Note that this angle might
note be defined in the MTG coding file since it may result from an inference process
in the Pl ant Fr anme function.

BACKGROUND
MTGs

SEE ALSO

MIG TopDi aneter, Length, BottonDi aneter, Beta.

AMAPmMod (28/06/02) 2-9

Part Il 0 The MTG module

Ancest ors
Array of all vertices which are ancestors of a given vertex

USAGE

Ancest or s(v)

ARGUMENTS

v (VTX) : vertex of the active MTG

OPTIONAL ARGUMENTS

Restrict edTo (STRI NG): cf. Father

Cont ai nedl n (VTX): cf. Father

EdgeType (CHAR): cf. Father
RETURNED OBJECT

ARRAY(VTX) .

DESCRIPTION

This function returns the array of vertices which are located before the vertex passed
as an argument. These vertices are defined at the same scale as v. The array starts by
v, then contains the vertices on the path from v back to the root (in this order) and
finishes by the tree root.

NOTE

The anscestor array always contains at least the argument vertex v.

BACKGROUND
MTGs

SEE ALSO

MIG Descendant s.

EXAMPLES

AML> v # prints vertex v
<VTX>78
AML> Ancestors(v) # set of ancestors of v at the sane scale
<ARRAY(VTX) >[78, 45, 32, 10, 4]
AML> I nvert(Ancestors(v)) # To get the vertices in the order
fromthe root to the vertex v
<ARRAY(VTX) >[4, 10, 32, 45, 78]

2-10 AMAPMod (28/06/02)

Part Il O The MTG module

AXi s
Array of vertices constituting a botanical axis

USAGE

AXi s(V)
Axi s(v, Scal e-> s)

ARGUMENTS
v (VTX) : Vertex of the active MTG

OPTIONAL ARGUMENTS

Scal e (STRI NG): scale at which the axis components are required.

RETURNED OBJECT
ARRAY(VTX)
DESCRIPTION

An axis is a maximal sequence of vertices connected by ‘<’-type edges. Axis return
the array of vertices representing the botanical axis which the argument v belongs to.
The optional argument enables the user to choose the scale at which the axis
decomposition is required.

BACKGROUND
MTGs

SEE ALSO

MI'G Pat h, Ancest or s.

P

@ white vertices with double circle are
argument(s) of the function

@ Biack vertices are vertices returned by
the function

AMAPmMod (28/06/02) 2-11

Part Il 0 The MTG module

Bet a

Angle defining the angle between the principal direction of the geometric model of
vertex and the x axis of the global coordinate system.

USAGE
Bet a(p, V)

ARGUMENTS

p (PLANTFRAMNE) : plantframe containing the geometric representation of v.
v (VTX) : vertex of the active MTG

RETURNED OBJECT
REAL

DESCRIPTION

This function returns the angle between the principal direction of the geometric model
of a vertex and the x axis of the global reference system. Note that this angle might
note be defined in the MTG coding file since it may result from an inference process
in the Pl ant Fr anme function.

BACKGROUND
MTGs

SEE ALSO

MIG, TopDi anet er, Length, BottonDi aneter, Al pha.

212 AMAPMod (28/06/02)

Part Il O The MTG module

Bot t ontCoor d

Coordinates of the bottom of the geometric model of a component

USAGE
Bot t onCoor d(p, V)

ARGUMENTS

p (PLANTFRAME) : plantframe containing the geometric representation of v.
v (VTX) : vertex of the active MTG

RETURNED OBJECT
ARRAY(REAL)

DESCRIPTION

This function returns the 3D-coordinates of the top of the box containing the
geometric model of a plant component. The result is an array of 3 reals.

BACKGROUND
MTGs

SEE ALSO

MI'G, Pl ant Fr ane, TopCoor d.

AMAPmMod (28/06/02) 2-13

Part Il 0 The MTG module

Bot t onDi anet er

Bottom diameter of the geometric model of a vertex

USAGE
Bot t onDi aneter (p, V)

ARGUMENTS

p (PLANTFRAME) : plantframe containing the geometric representation of v.
v (VTX) : vertex of the active MTG

RETURNED OBJECT
REAL

DESCRIPTION

This function returns the bottom diameter of the geometric model of a vertex. Note
that this diameter might note be defined in the MTG coding file since it may result
from an inference process in the Pl ant Fr ane function.

BACKGROUND
MTGs

SEE ALSO
MIG TopDi aneter, Length, Al pha, Beta.

2-14 AMAPMod (28/06/02)

Part Il O The MTG module

d ass

Class of a vertex

USAGE

G ass(v)

ARGUMENTS

v (VTX) : vertex of the active MTG

RETURNED OBJECT
CHAR

DESCRIPTION

The class of a vertex is a feature always defined and independent of time (like the
index). It is represented by an alphabetic character in upper or lower case (lower cases
characters are considered different from upper cases). The label of a vertex is the
string defined by the concatenation of its class and its index. The label thus provides
general information about a vertex and enables us to encode the plant components.

BACKGROUND
MTGs

SEE ALSO
MI'G | ndex.

AMAPmMod (28/06/02) 2-15

Part Il 0 The MTG module

Cl assScal e
Scale at which appears a given class of vertex

USAGE

Cl assScal e(c¢)

ARGUMENTS
¢ (CHAR) : symbol of the considered class

RETURNED OBJECT
| NT

DESCRIPTION

Every vertex is associated with a unique class. Vertices from a given class only appear
at a given scale which can be retrieved using this function.

BACKGROUND
MTGs

SEE ALSO
MIG d ass, Scal e, | ndex.

2-16 AMAPMod (28/06/02)

Part Il O The MTG module

Conpl ex
Complex of a vertex

USAGE

Conpl ex(v)
Compl ex(v, Scal e-> 2)

ARGUMENTS

v (VTX) : vertex of the active MTG

OPTIONAL ARGUMENTS

Scal e (I NT) : scale of the complex.
RETURNED OBJECT

VTX

DESCRIPTION

Returns the complex of the argument. The complex of a vertex v is has a scale lower
than v: Scal e(v)-1. In a MTG, every vertex except for the MTG root (cf.
Mr'GRoot ()), has a uniq complex. Undef is returned if the argument is the MTG root
or if the vertex is undefined.

DETAILS

When a scale different from Scal e(v)-1 is specified using the optional argument
Scal e, this scale must be lower than that of the vertex argument.

BACKGROUND
MTGs

SEE ALSO
MI'G Conponent s.

AMAPmMod (28/06/02) 2-17

Part Il 0 The MTG module

Conponent Root s

Set of roots of the tree graphs that compose a vertex

USAGE

Conponent Root s(V)
Conponent Root s(v, Scal e-> s)

ARGUMENTS

v (VTX) : vertex of the active MTG

OPTIONAL ARGUMENTS

Scal e (STRI NG): scale of the component roots.

RETURNED OBJECT

ARRAY(VTX)

DESCRIPTION

In a MTG, a vertex may have be decomposed into components. Some of these
components are connected to each other, while other are not. In the most general case,
the components of a vertex are organized into several tree-graphs. This is for example
the case of a MTG containing the description of several plants: the MTG root vertex
can be decomposed into tree graphs (not connected) that represent the different plants.
This function returns the set of roots of these tree graphs at scale Scal e(v)+1. The
order of these roots is not significant.

DETAILS

When a scale different from Scal e(v)+1 is specified using the optional argument
Scal e, this scale must be greater than that of the vertex argument.

BACKGROUND

MTGs

SEE ALSO

MI'G, Conponent s, Tr unk.

EXAMPLES

AML> v=MIGRoot () # racine gl obale du MIG

<ARRAY(VTX) >0
AML> Conponent Roots(v) # ensenble des prem ers vertex des
plantes a | ' échelle 1

<ARRAY(VTX) >[1, 34, 76, 100, 199, 255]
AML> Conponent Roots(v, Scale-> 2) # ensenble des prem ers
vertex des plantes a |'échelle 2

<ARRAY(VTX) >[2, 35, 77, 101, 200, 256]

2-18

AMAPmMod (28/06/02)

Part Il O The MTG module

@ white vertices with double circle are argument(s) of the function
@ Biack vertices are vertices returned by the function

AMAPmMod (28/06/02) 2-19

Part Il 0 The MTG module

Component s

Set of components of a vertex

USAGE

Conponent s(v)
Conmponent s(v, Scal e-> 2)

ARGUMENTS

v (VTX) : vertex of the active MTG

OPTIONAL ARGUMENTS
Scal e (I NT) : scale of the components.

RETURNED OBJECT
ARRAY(VTX)

DESCRIPTION

The set of components of a vertex is returned as an array of vertices. If S defines the
scale of v, components are defined at scale S+ 1. The array is empty if the vertex has
no components. The order of the components in the array is not significant.

DETAILS

When a scale is specified using optional argument Scal e, it must be necessarily
greater than the scale of the argument.

BACKGROUND
MTGs

SEE ALSO
MI'G, Conpl ex.

2

@ white vertices with double circle are
argument(s) of the function

@ Biack vertices are vertices returned by
the function

2-20 AMAPMod (28/06/02)

Part Il O The MTG module

Coord

Top coordinates of the geometric model of a component

USAGE
Coord(p, V)

ARGUMENTS

p (PLANTFRAME) : plantframe containing the geometric representation of v.
v (VTX) : vertex of the active MTG

RETURNED OBJECT
ARRAY(REAL)

DESCRIPTION

This function returns the 3D-coordinates of the top of the box containing the
geometric model of a plant component. The result is an array of 3 reals.

NOTE

This function is similar to TopCoor d.

BACKGROUND
MTGs

SEE ALSO
MI'G, Pl ant Fr ane, TopCoor d, Bot t ontTCoor d.

AMAPmMod (28/06/02) 2-21

Part Il 0 The MTG module

Dat eSanpl e

Array of observation dates of a vertex.

USAGE

Dat eSanpl e(v)
Dat eSanmpl e(v, M nDate-> dl1, MaxDate-> d2)

ARGUMENTS

v (VTX) : vertex of the active MTG.

OPTIONAL ARGUMENTS

M nDat e (DATE) : defines a minimum date of interest.
MaxDat e (DATE) : defines a maximum date of interest.

RETURNED OBJECT
ARRAY(DATE)

DESCRIPTION

Returns the set of dates at which a given vertex (passed as an argument) has been
observed as an array of ordered dates. Options can be specified to define a temporal
window and the total list of observation dates will be truncated according to the
corresponding temporal window.

BACKGROUND
Dynamic MTGs.

SEE ALSO

MI'G Fi r st Def i nedFeat ur e, Last Def i nedFeat ur e, Previ ousDat e,
Next Dat e.

200 AMAPMod (28/06/02)

Part Il O The MTG module

Def i ned

Test whether a given vertex belongs to the active MTG.
USAGE

Def i ned(v)
ARGUMENTS

v (VTX) : vertex of the active MTG

RETURNED OBJECT
BOOL

DESCRIPTION

Test whether a given vertex belongs to the active MTG. Note that if the argument is
an | NT, it is automatically converted to a VTX before the function is applied.

BACKGROUND
MTGs

SEE ALSO
MIG.

AMAPmMod (28/06/02) 2-23

Part Il 0 The MTG module

Descendant s
Set of vertices in the branching system borne by a vertex.

USAGE

Descendant s(v)

ARGUMENTS

v (VTX) : vertex of the active MTG

OPTIONAL ARGUMENTS

Restrict edTo (STRI NG): cf. Fat her

Cont ai nedl n (VTX): cf. Fat her

EdgeType (CHAR): cf. Fat her
RETURNED OBJECT

ARRAY(VTX)

DESCRIPTION

This function returns the set of descendants of its argument as an array of vertices. The
array thus consists of all the vertices, at the same scale as v, that belong to the
branching system starting at v. The order of the vertices in the array is not significant.

NOTE

The argument always belongs to the set of its descendants.

BACKGROUND
MTGs

SEE ALSO

MIG Ancest ors.

EXAMPLES

AML> v #
<VTX>78

AML> Sons(v) # set of sons of v
<ARRAY(VTX) >[78, 99, 101]

AML> Descendants(v) # set of descendants of v
<ARRAY(VTX) >[78, 99, 101, 121, 133, 135, 156, 171, 190]

>-04 AMAPMod (28/06/02)

Part Il O The MTG module

@ white vertices with double circle are
argument(s) of the function

® Black vertices are vertices returned by
the function

AMAPmMOod (28/06/02) 2-25

Part Il 0 The MTG module

Dr essi ngDat a

Data and default geometric parameters used to compute the geometric interpretation of
a MTG (i.e. a PLANTFRANE)

USAGE
DressingbDat a(dressing file)

ARGUMENTS

dressi ng_fil e : Name of the file containing the description of the dressing data.

RETURNED OBJECT
DRESSI NG_DATA

DESCRIPTION

The dressing data contains the default data that are used to define the geometry of an
MTG vertices (i.e. of a plant entities) and to compute their geometric parameters when
inference algorithms cannot be applied. These data are basically constant values and
may be redefined in the dressing file. If no dressing file is defined, default (hard-
coded) values are used (see . The dressing file .drf , if it exists in the current
directory, is always used as a default dressing file.

Objects of type DRESSI NG _DATA is used by primitive Pl ant f r ane. It may also be
used by primitive Pl ot when VI RTUAL_PATTERNs are plotted.

DETAILS

cf. example of a dressing file given in the annex section.
It may be noted that a given DRESS|I NG DATA object can be used for different
PLANTFRAMEs.

BACKGROUND

cf. example of a dressing file given in the annex section.

SEE ALSO

Pl ant Franme, Virtual Pattern, Pl ot.

EXAMPLES

AML> g=MIG"an_ntg”)

AML> d=DressingData("file"”)

AML> fr3=Pl ant Frame(1, Scal e-> 3, Dressi ngbata-> d)
AML> fr4=Pl ant Frame(1, Scal e-> 4, Dressi ngbata-> d)
AML> Pl ot (fr4)

2-26 AMAPMod (28/06/02)

Part Il O The MTG module

EdgeType
Type of connection between two vertices.

USAGE
EdgeType(vl, v2)
ARGUMENTS

v1 (VTX) : vertex of the active MTG
v2 (VTX) : vertex of the active MTG

RETURNED OBJECT
CHAR

DESCRIPTION

Returns the symbol of the type of connection between two vertices (either ‘<’ or ‘+’).
If the vertices are not connected, Undef is returned.

BACKGROUND
MTGs

SEE ALSO

MIG, Sons, Fat her.

P

@ white vertices with double circle are
argument(s) of the function

@ Biack vertices are vertices returned by
the function

AMAPmMod (28/06/02) 2-27

Part Il 0 The MTG module

Eul er Angl es

Computes the Euler angles corresponding to the local coordinate system of a vertex
with respect to the global coordinate system.

USAGE
Eul er Angl es(p, V)

ARGUMENTS

p (PLANTFRAMNE) : plantframe containing the geometric representation of v.
v (VTX) : vertex of the active MTG

RETURNED OBJECT
ARRAY(REAL)

DESCRIPTION

Computes the Euler angles corresponding to the local coordinate system defined by
PDir and SDir of a vertex with respect to the global coordinate system. The result is an
array of 3 reals. First real is the azimuth (rotation about z-axis), the second real is the
elevation (rotation about the y axis). The third real is the twist (rotation about the x
axis).

These angles are exactly those used by the Polhemus 3D digitizer.

BACKGROUND
MTGs

SEE ALSO

MI'G, Pl ant Fr ane, Rel TopCoor d, Rel BottontCoord, TopBottomCoord,
Bott omCoord, Pdir, SDir.

2-28 AMAPMod (28/06/02)

Part Il O The MTG module

Extremties

Set of vertices that are the extremities of the branching system borne by a given
vertex.

USAGE
Extremties(v)
ARGUMENTS
v (VTX) : vertex of the active MTG

OPTIONAL ARGUMENTS

Restrict edTo (STRI NG): cf. Father
Cont ai nedl n (VTX): cf. Father

RETURNED OBJECT
ARRAY(VTX)

DESCRIPTION

This function returns the extremities of the branching system defined by the argument
as an array of vertices. These vertices have the same scale as v and their order in the
array is not significant. The result is always a non empty array.

BACKGROUND
MTGs

SEE ALSO
MI'G, Descendant s, Root , MTGRoot .

EXAMPLES

AML> Descendant s(Vv)

<ARRAY(VTX) >[3, 45, 47, 78, 102]
AML> Extremties(v)

<ARRAY(VXT) >[47, 102]

AMAPmMod (28/06/02) 2-29

Part Il 0 The MTG module

Fat her

Topological father of a given vertex.

USAGE

Fat her (v)

Fat her (v, EdgeType-> <)

Fat her (v, RestrictedTo-> SanmeConpl ex)
Fat her (v, Contai nedln-> cv)

Fat her (v, Scale-> s)

ARGUMENTS

v (VTX) : vertex of the active MTG

OPTIONAL ARGUMENTS

If no optional argument is specified, the function returns the topological father of the
argument (vertex that bears or precedes to the vertex passed as an argument).

It may be useful in some cases to consider that the function only applies to a subpart of
the MTG (e.g. an axis). The following options enables us to specify such restrictions:

EdgeType (CHAR) : filter on the type of edge that connect the vertex to its father
(values can be ‘<’ , “+’, et “*’. Value “*’ means both ‘<’ and ‘+’). Only the vertex
connected with the specified type of edge will be considered.

RestrictedTo (STRI NG): filter defining a subpart of the MTG where the father must
be considered. If the father is actually outside this subpart, the result is Undef .
Possible subparts are defined using keywords: SaneConpl ex, SaneAxis,
NoRestriction. For example, if RestrictedTo 1is given the value
SameConpl ex, Fat her (v) returns a defined vertex only if the father f of v exists
in the MTG and if v and f have the same complex.

Cont ai nedl n (VTX): filter defining a subpart of the MTG where the father must be
considered. If the father is actually outside this subpart, the result is Undef . In this
case, the subpart of the MTG is made of the vertices that composed cv (at any
scale).

The scale of the considered father can also be specified:

Scal e (I NT): returns the vertex from scale s which either bears or precedes the
argument. The scale can be lower than the argument’s (e.g. corresponding to a
question such as “which axis bears the internode ?”) or greater (e.g. ‘“‘which
internode bears this annual shoot ?”)

RETURNED OBJECT

VTX

DESCRIPTION

2-30 AMAPmMod (28/06/02)

Part Il O The MTG module

Returns the topological father of a given vertex. And Undef if the father does not
exist. If the argument is not a valid vertex, Undef is returned and a warning message
is displayed without producing any error.

BACKGROUND
MTGs

SEE ALSO

MIG, Defi ned, Sons, EdgeType, Conplex, Components.

AMAPmMod (28/06/02) 2-31

Part Il 0 The MTG module

Feat ur e

Extracts the attributes of a vertex

USAGE

Feature(v, fname)
Feature(v, fname, date)

ARGUMENTS

v (VTX) : vertex of the active MTG.

Fname(STRI NG) : string describing the name of the attribute (as specified in the
coding file).

dat e(DATE) : (for a dynamic MTG) date at which the attribute of the vertex is
considered.

RETURNED OBJECT
| NT, STRING DATE, or REAL

DESCRIPTION

Returns the value of the attribute f nane of a vertex in a MTG. If the value of an
attribute is not defined in the coding file, the value Undef is returned.

DETAILS

If for a given attribute, several values are available (corresponding to different dates),
the date of interest must be specified as a third attribute. This date must be a valid date
appearing in the coding file for the considered vertex. Otherwise Undef is returned.

BACKGROUND
MTGs and Dynamic MTGs.

SEE ALSO

MIG, d ass, | ndex, Scal e.

2-32 AMAPMod (28/06/02)

Part Il O The MTG module

Fi r st Defi nedFeat ur e

Date of first observation of a vertex.

USAGE

Fi r st Def i nedFeat ure(v, fnane)
Fi rst DefinedFeature(v, fname, M nDate-> dl,

ARGUMENTS

v (VTX) : vertex of the active MTG.
fnane (STRI NG) : name of the considered attribute.

OPTIONAL ARGUMENTS

M nDat e (DATE) : minimum date of interest.
MaxDat e (DATE) : maximum date of interest.

RETURNED OBJECT
DATE

DESCRIPTION

MaxDat e- > d2)

Returns the date d for which the attribute f nane is defined for the first time on the
vertex v passed as an argument. This date must be greater than the option M nDat e
and/or less than the maximum MaxDat e when specified. Otherwise the returned date

is Undef .

BACKGROUND
Dynamic MTGs.

SEE ALSO

MI'G, Dat eSanpl e, Last Def i nedFeat ur e, Previ ousDat e, Next Dat e.

AMAPmMod (28/06/02)

2-33

Part Il 0 The MTG module

Hei ght
Number of components existing between two components in a tree graph

USAGE

Hei ght (v1)
Hei ght (v1, v2)

ARGUMENTS

v1 (VTX) : vertex of the active MTG
v2 (VTX) : vertex of the active MTG

RETURNED OBJECT
| NT

DESCRIPTION

The height of a vertex (v2) with respect to another vertex (v1) is the number of edges
(of either type '+' or '<') that must be crossed when going from vl to v2 in the
graph. This is thus a non negative integer. When the function only has one argument
v1, the height of v1 correspond to the height of v1 with respect to the root of the
branching system containing v1.

NOTE

When the function takes two arguments, the order of the arguments is not important
provided that one is an ancestor of the other. When the order is relevant, use function
Al gHei ght ().

BACKGROUND
MTGs

SEE ALSO
MI'G Rank, EdgeType, Al gO der, Al gRank, Al gHei ght .

2-34 AMAPMod (28/06/02)

Part Il O The MTG module

| ndex

Index of a vertex

USAGE

I ndex(v)

ARGUMENTS

v (VTX) : vertex of the active MTG

RETURNED OBJECT
| NT

DESCRIPTION

The index of a vertex is a feature always defined and independent of time (like the
class). It is represented by a non negative integer. The label of a vertex is the string
defined by the concatenation of its class and its index. The label thus provides general
information about a vertex and enables us to encode the plant components.

BACKGROUND
MTGs

SEE ALSO
MIG d ass.

AMAPMod (28/06/02) 2-35

Part Il 0 The MTG module

Last Def i nedFeat ur e

Date of last observation of a given attribute of a vertex.

USAGE

Last Def i nedFeat ure(v, fnamne)
Last Def i nedFeature(v, fname, M nDate-> di,

ARGUMENTS

v (VTX) : vertex of the active MTG.
fnane (STRI NG) : name of the considered attribute.

OPTIONAL ARGUMENTS

M nDat e (DATE) : minimum date of interest.
MaxDat e (DATE) : maximum date of interest.

RETURNED OBJECT
DATE

DESCRIPTION

MaxDat e- > d2)

Returns the date d for which the attribute f nanme is defined for the last time on the
vertex v passed as an argument. This date must be greater than the option M nDat e
and/or less than the maximum MaxDat e when specified. Otherwise the returned date

is Undef .

BACKGROUND
Dynamic MTGs.

BACKGROUND

MTGs dynamiques.

SEE ALSO

MI'G, Dat eSanpl e, Fi r st Def i nedFeat ur e, Pr evi ousDat e, Next Dat e.

2-36

AMAPmMod (28/06/02)

Part Il O The MTG module

Lengt h
Length of the geometric model of a vertex

USAGE
Lengt h(p, V)

ARGUMENTS

p (PLANTFRAME) : plantframe containing the geometric representation of v.
v (VTX) : vertex of the active MTG

RETURNED OBJECT
REAL

DESCRIPTION

This function returns the length of the geometric model of a vertex. Note that this
length might note be defined in the MTG coding file since it may result from an
inference process in the PlantFrame function.

BACKGROUND
MTGs

SEE ALSO
MIG TopDi aneter, BottonDi ameter, Al pha, Beta.

AMAPmMod (28/06/02) 2-37

Part Il 0 The MTG module

Locati on

Vertex defining the father of a vertex with maximum scale.

USAGE

Locati on(v)
Location(v, Scale-> s)
Location(v, Containedln-> cv)

ARGUMENTS
v (VTX) : vertex of the active MTG

OPTIONAL ARGUMENTS

Scal e(l NT): scale at which the location is required
Cont ai nedl n(VTX): cf. Fat her

RETURNED OBJECT
VTX

DESCRIPTION

If no options are supplied, this function returns the vertex defining the father of a
vertex with maximum scale (cf. Fat her). If it does not exit, Undef is returned. If a
scale is specified, the function is equivalent to Fat her (v, Scal e-> s).

BACKGROUND
MTGs
SEE ALSO
MI'G Fat her .
EXAMPLES
AML> Fat her (v, EdgeType-> "+)
<VTX> 7
AML> Conpl ex(v)
<VTX> 4

AML> Conponent s(7)
<ARRAY(VTX)> [9, 19, 23, 34, 77, 89]

AML> Location(v)
<VTX> 23

AML> Location(v, Scal e-> Scal e(v)+1)
<VTX> 23

AML> Location(v, Scal e-> Scal e(v))
<VTX> 7

AML> Location(v, Scal e-> Scale(v)-1)
<VTX> 4

2-38 AMAPmMod (28/06/02)

Part Il O The MTG module

Mat chi ngExt r act

Extract the results of a matching between two branching systems

USAGE

Mat chi ngExtract (tm
Mat chi ngExtract (tm Vi ewPoi nt-> Text)
Mat chi ngExtract (tm Vi ewPoi nt-> Di stanceMatri x)
Mat chi ngExtract (tm Vi ewPoi nt-> List,
| nput Tree-> i, ReferenceTree->r)

ARGUMENTS

t m(TREEMATCHI NG) : Tree Matching obtained after comparison.

OPTIONAL ARGUMENTS

Vi ewPoi nt (STRING) : type of view point which can be extract from the tree
matching.

Text: A matrix of distances between tree graphs is returned giving also some
statistics results.

Di stanceMatri x: A normalised distance matrix is returned. The distance
obtained after comparison is normalised by the size of tree graphs. The returned
object can be analysed as an object of type DI STANCE_NATRI X.

Li st : This option provides a detailed analysis of the comparison between two tree
graphs. A vertex array of matching air is thus returned.

| nput Tr ee (I NT) : Index of the test tree graph
Ref er enceTr ee(l NT) : Index of the reference tree graph.

RETURNED OBJECT
DI STANCE_MATRI X, ARRAY(ARRAY(VTX))

DESCRIPTION

On sets of plants, the comparison algorithm produces a distance matrix that can be
analysed with classical clustering algorithm. For pairs of plants, the algorithm output
is a list of matched entities which makes it possible to carry out a detailed analysis of
the matched subparts of plants.

BACKGROUND

Method for comparing unordered rooted tree graphs [51]

SEE ALSO

MIG, Pl ot, TreeMat chi ng, Di stance _natri x.

EXAMPLES

AML> g = M "un_ntg”)
AML> pl ant s= Vit xLi st (Scal e->1)
AML> roots= Foreach p In plants: Conponents(p, Scal e->2) @

AMAPmMod (28/06/02) 2-39

Part Il 0 The MTG module

AML> mat ch = Tr eeMat chi ng(roots)

<AM_.> # Di stance between plants

<AM_> Mat chi ngExtract (mat ch, Vi ewPoi nt - >" Text ")

<AM_.> # Extraction of a distance matrix between plants
AML> matri x = Mat chi ngExt ract (mat ch, Vi ewPoi nt - >"Di st ance")
<DI STANCE_MATRI X>

<AM_L> # Detailled view point of matching between plant 2 and 4
<AML> |ist= MatchingExtract (match, Vi ewPoi nt->"List",\

<AML> | nput Tr ee- >2, Ref er enceTr ee- >4)

<ARRAY(ARRAY) > : [[206, 207, 210, .}, [827, 830, 831, ..]]

<AML> i nput _vtx=list@

<AML> ref _vtx=list@

<AML> # Functions which return for any vertex it matched vertex
<AML> M _v) = If (Pos(input_vtx, v) != Undef) Then \

<AML> ref vtx@ Pos(input_vtx, v)) Else \

<AML> i nput _vtx@ Pos(ref _vtx, v))

<FUNCTI ON>

<AML> I (_v) = If (Pos(input_vtx,_v) !'= Undef) Then \
<AML> _v El se input_vtx@Pos(ref_vtx, _v))

<FUNCTI ON>

<AM_.> # Col or functions

<AM_.> position_color(_v) = Switch Rank(_v) Case 0 : Blue \
<AM_> Case 1 : Red \
<AM_> Case 2 : Green\
<AM_> Case 3: Yellow\
<AM_> Case 4 : Violet \
<AM_> Default : LightBlue
<FUNCTI ON>

<AM_.> slice_color(_v)=If(Oder(_v)==0) Then position_color(_v)\
<AM_> El se slice_col or(Father(_v))

<FUNCTI ON>

<AML> axis_color(_v)=If(lI((Complex(_v)))!=Undef) Then \

<AM.> slice_color(l(Conplex(_v))) Else Wite

<FUNCTI ON>

<AML> # Pl ant Frame conputation

<AM.> pf =Pl ant Franme([pl ants@, pl ants@], Scal e->2)

<AML> # Display the detailed view point: Each vertex of the
<AM_L> # input plant which appear in a matching pair is colored
<AM_.> # depending on it rank and it matching pair in reference
<AML> # plant is colored with sanme color. Qther vertices are
<AML> # colored in Wite.

<AM_L> Pl ot (pf,LineFile->"w jick-order", Col or->axis_col or)

2-20 AMAPMod (28/06/02)

Part Il O The MTG module

MIG

MTG constructor

USAGE

MIG fil ename, ErrorNb-> 10)
MIG fil ename, VtxNumber-> 10000)

ARGUMENTS
fil ename (STRI NG) : name of the coding file describing the MTG

OPTIONAL ARGUMENTS

ErrorNo (I NT): Defines the maximum number of errors before exiting the MTG
parsing.

Vt xNunber (I NT) : A priori estimated number of vertices described in the MTG
coding file. This number is necessary to guess a memory space for the MTG data in
order to optimize the parsing process. This number enables us to override the
default estimation in places where it is not accurate.

RETURNED OBJECT

If the parsing process succeeds, the constructor return an object of type MIG
Otherwise, an error is generated and the formerly active MTG remains active.

DESCRIPTION

Builds a MTG from a coding file (text file) containing the description of one or several
plants.

SIDEEFFECT

If the MTG is built, the new MTG becomes the active MTG (i.e. the MTG implicitly
used by other functions such as Fat her (), Sons(), Vt xLi st (), etc.).

DETAILS

The parsing process is approximately proportional to the number of components
defined in the coding file.

NOTE

It can be the case that the estimated size of the MTG is too small. In such a case, the
parsing process is dramatically slowed down because the machine incrementally
allocates new memory blocks as necessary. To avoid this, it is possible to modify the
estimation of the MTG size by giving an overestimate of the total number of vertices
contained in the MTG. This is done by using option Vt xNunber .

BACKGROUND

MTG is an acronyme for Multiscale Tree Graph.

AMAPmMod (28/06/02) 2-41

Part Il 0 The MTG module

SEE ALSO

Sons, Fat her, ...

42 AMAPMod (28/06/02)

Part Il O The MTG module

MTI'GRoot
Root vertex of the MTG

USAGE
MTI'GRoot ()

ARGUMENTS

None

RETURNED OBJECT
VTX

DESCRIPTION

Returns the root vertex of the MTG. It is the only vertex at scale 0 (the coarsest scale).

DETAILS

This vertex is the complex of all vertices from scale 1. It is a mean to refer to the entire
database.

BACKGROUND
MTGs

SEE ALSO

MI'G, Conpl ex, Conponent s, Scal e.

AMAPmMod (28/06/02) 2-43

Part Il 0 The MTG module

Next Dat e

Next date at which a vertex has been observed after a specified date

USAGE
Next Dat e(v, d)

ARGUMENTS

v (VTX) : vertex of the active MTG.
d (DATE) : departure da