
IS
S

N
0

2
4

9
-0

8
0

3
IS

R
N

IN
R

IA
/R

T-
-4

3
5

--
F

R
+

E
N

G

TECHNICAL

REPORT

N° 435
June 2013

Project-Team MESCAL

SoC-Trace Infrastructure

Benchmark

Generoso Pagano, Vania Marangozova-Martin





RESEARCH CENTRE

GRENOBLE – RHÔNE-ALPES

Inovallée

655 avenue de l’Europe Montbonnot

38334 Saint Ismier Cedex

SoC-Trace Infrastructure Benchmark

Generoso Pagano ∗, Vania Marangozova-Martin †

Équipe-Projet MESCAL

Rapport technique n° 435 � June 2013 � 25 pages

Résumé : Ce document présente la comparaison de performances que nous avons e�ectuée
entre deux implémentations de l'Infrastructure SoC-Trace. La première implémentation, basée sur
l'utilisation de bases de données distribuées, est décrite dans le rapport technique RT-427 [2]. La
deuxième implémentation a été réalisée dans la suite et fait usage d'une base de données centralisée.
Ce document décrit également les dernières évolutions de l'Infrastructure SoC-Trace.

Mots-clés : Traces d'exécution, gestion de traces, infrastructure, modèle de données, base de
données, format de trace, banc d'essai, évaluation de performances.

This research is supported by FUI [1]

∗ INRIA, generoso.pagano@inria.fr
† UJF, Vania.Marangozova-Martin@imag.fr



SoC-Trace Infrastructure Benchmark

Abstract: This document presents the performance benchmark performed on two di�erent im-
plementations of the SoC-Trace Infrastructure. The �rst implementation, based on a distributed
database, is described in the technical report RT-427 [2]. The second implementation has been
realized later in order to explore the alternative centralized approach. This document describes
also the latest evolutions of the SoC-Trace Infrastructure.

Key-words: Execution traces, trace management, infrastructure, data-model, database, trace
formats, benchmark, performance evaluation.



SoC-Trace Infrastructure Benchmark 3

Table of contents

1 Introduction 4

2 SoC-Trace Infrastructure Centralized Implementation 4

2.1 Multi-Trace DB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.1 Conceptual Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Database Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.3 Database Schema : Replicated versus Catalog Solution . . . . . . . . . . . 6

2.2 SoC-Trace Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 Query . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.4 Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Benchmark Plan 10

3.1 Benchmark Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Infrastructure Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Benchmark Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.5 Factors and Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.6 Workloads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Benchmark Experiments 12

4.1 Database Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Trace Import . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3 Search and Save . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 Conclusions 18

A Database performance 19

B SoC-Trace Infrastructure Current State 22

B.1 Database Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
B.2 Tool Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
B.3 Graphical User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

RT n° 435



4 G.Pagano & V.Marangozova-Martin

1 Introduction

One of the main objectives of SoC-Trace project [2] is the development of a trace management
infrastructure, storing traces and facilitating the access to trace data for analysis tools. The �rst
implementation of SoC-Trace Infrastructure deals with the storage problem using a distributed
database solution, where each trace has its own database for storing events and analysis results,
while a central database is used to store trace metadata and organize trace databases. In order
to avoid the logical replication of this distributed solution (each trace database has the same
schema) and the creation of a new database for each new trace, a centralized design seemed
to be an interesting option. We therefore designed a centralized version of the database and
implemented the corresponding version of the SoC-Trace Infrastructure software library, in order
to compare the two di�erent approaches.

This report is organized as follows. Section 2 presents the centralized implementation of
the SoC-Trace Infrastructure (referred as CDB1). Section 3 presents the de�ned performance
parameters and the benchmark plan. Section 4 gives the corresponding experimental results.
Section 5 presents the conclusion of this benchmark. Two appendices are provided at the end of
this document : Appendix A is a study of DB performance and Appendix B brie�y presents the
latest developments of SoC-Trace Infrastructure.

Note that the description presented in Section 2 is done by highlighting the di�erences bet-
ween CDB and the distributed database implementation (referred as DDB2). It is therefore
strongly recommended to read the technical report describing DDB [2] in order to have a good
understanding of the present document.

2 SoC-Trace Infrastructure Centralized Implementation

From a high level perspective, the greatest di�erence between CDB and DDB is in the way
multiple traces are managed at the database level. In the following subsections we therefore
�rst present the database di�erences before discussing the related repercussions at the software
interface level.

2.1 Multi-Trace DB

In both versions, the MySQL DBMS is used to store trace general information, raw trace data
and analysis result. The following subsections describe the di�erences among the two considered
approaches.

2.1.1 Conceptual Model

Figure 1 shows the data model of CDB. The only di�erence compared to DDB is that the
relation between TRACE and ANALYSIS_RESULT entities is many-to-many, instead of one-to-many.
Indeed, at the moment CDB allows the storage of analysis results related to more than one trace
(multi-trace analysis). This possibility is an ongoing work for DDB. In any case, this di�erence
is not relevant to the benchmark tests presented in this report, as only common features are
compared.

1CDB for Centralized DataBase implementation
2DDB for Distributed DataBase implementation

Inria



SoC-Trace Infrastructure Benchmark 5

TRACE

EVENTEVENT_PRODUCER

FILE TOOLANALYSIS_RESULT

SEARCH RESULT_FILE

Trace General Information

Raw Trace Data

Analysis Data

ANNOTATION

STATISTIC

other ...

EVENT_GROUP

EVENT_TYPE_GROUP

GROUP

EVENT_SEARCH

EVENT_PRODUCER_SEARCH

other ... other ...

PROCESSED_TRACE

Fig. 1 � CDB Conceptual Model

2.1.2 Database Architecture

The principal di�erence between DDB and CDB is in the database architecture, as shown
in Figure 2 and Figure 3. In DDB, the Multi-Trace DB is designed as a two-level hierarchy of
databases. The root of the hierarchy is the System DB, which contains general information about
traces and the tool registry. The leafs are the Trace DBs, each containing the information related
to a single trace (raw events, event producers, �le references and analysis results for that trace).

• Traces general information

• Tools registry

•Raw trace events

• Event producers

• Trace related files

• Analysis result

Fig. 2 � DDB Architecture Fig. 3 � CDB Architecture

The DDB solution has the following issues :
• A new Trace DB needs to be created for each new managed trace.
• There is a model replication, since all Trace DBs have the same database schema (Figure 5).
• Trace DBs always store the trace format, even if the system already contains other traces
with the same format : we have therefore some data redundancy.

These observations motivated the re�ection about the CDB solution (Figure 3). However, a
naive approach in designing a centralized database, such as putting all events of all traces are in
the same table, would lead to the following issues :

RT n° 435



6 G.Pagano & V.Marangozova-Martin

• The space overhead to store a trace identi�er in all rows of almost all tables (especially the
ones containing trace event data).

• The time overhead to perform queries in presence of the above mentioned trace identi�er.
• The presence of huge tables, which can lead to the necessity of table partitioning [3].

Therefore, we designed CDB with the aim of solving DDB issues, without introducing the pro-
blems just mentioned and trying to keep the complexity of the DB schema low. All the details
of CDB schema are given below.

2.1.3 Database Schema : Replicated versus Catalog Solution

As speci�ed in [2], in DDB System DB and Trace DB have the schemas shown in Figure 4
and Figure 5 respectively.

Fig. 4 � DDB System DB schema

To get the CDB schema, we modi�ed the DDB schemas in order to :
• merge the information of the two schemas in a single one, thus minimizing replication at
the logical level ;

• replicate only a subset of tables for each trace, adopting a catalog solution, as described in
the following.

In the catalog solution we do not replicate all the database tables for each trace. We only
replicate the tables containing trace-speci�c raw information, namely EVENT, EVENT_PARAM and
EVENT_PRODUCER. For each trace, these tables have a di�erent name, having as a su�x the
trace identi�er (e.g. EVENT_1). The TRACE table, with its list of trace IDs, becomes the catalog
identifying the set of three tables related to a single trace. With this approach, when a new
trace is imported into the infrastructure, only these three tables are created and not a whole
database. Thus it is no longer necessary to rewrite the trace format description (EVENT_TYPE and
EVENT_PARAM_TYPE table information) for each trace of a given type : it is enough to write the
format once, then all the traces of that format refer to it.

Figure 6, shows an example where three di�erent traces have been imported to the system.
There are three instances of the EVENT, EVENT_PARAM and EVENT_PRODUCER tables, one for each
trace.

Let us look at the whole CDB schema given in Figure 7. For the sake of clarity, we have
represented a single instance per replicated table.

We can highlight the following di�erences between DDB and CDB :
• The TRACE_DB_NAME �eld has been removed from the TRACE table, since in CDB there a
single DB for all traces.

• The EVENT_TYPE table contains the additional �eld TRACE_TYPE_ID, since in CDB all the
event types of all trace formats are stored in this table.

Inria



SoC-Trace Infrastructure Benchmark 7

Fig. 5 � DDB Trace DB schema

• The FILE table contains the additional �eld TRACE_ID, since in CDB �le information related
to all the traces are stored in this table.

• There is an additional TRACE_ANALYSIS_MAPPING table, necessary to implement the many-
to-many relationship between TRACE and ANALYSIS_RESULT entity of the data-model. At
the logical level this relationship is decomposed in two di�erent relationships : a one-to-
many and a many-to-one relationship.

• The PROCESSED_TRACE table contains the �eld SOURCE_ID, since the link with the source
trace is no longer implicit.

It is important to point out that in CDB, all the analysis results of all traces are stored in
the same tables, since the tables related to concrete analysis result entities are not replicated.
For example, the �le results related to trace X and trace Y are saved in the same RESULT_FILE

table. However, some of the prede�ned analysis results are currently considered only as single-
trace results (grouping, searching and processed trace results). On the other hand, annotations
and �le results can be both single-trace and multi-trace results. This constraint is enforced by
the SoC-Trace Library in CDB.

RT n° 435



8 G.Pagano & V.Marangozova-Martin

Fig. 6 � CDB Catalog Solution

2.2 SoC-Trace Library

CDB implementation of the SoC-Trace Library takes into account the DB changes, while
keeping almost the same interface for the user. The following sections brie�y describe the main
di�erences compared to DDB.

2.2.1 Model

In the CDB com.inria.soctrace.lib.model plugin we �nd only minor changes, re�ecting
the changes at the DB schema level. For example, a TraceType reference has been added to the
EventType class and a traceId �eld has been added to the File class. Also, the AnalysisResult
class contains a list of Trace objects, in order to support the possibility of having multi-trace
analysis results.

2.2.2 Storage

The com.inria.soctrace.lib.storage plugin is the one where we can �nd the most im-
portant di�erences. Given that in CDB we deal with a single database, the SystemDBObject

and TraceDBObject classes have been replaced by a single DBObject class. This point slightly
impacts the user interface : instead of creating a SystemDBObject instance and then have dif-
ferent TraceDBObject instances, the user works with a single instance of the DBObject. The list
of services o�ered by this DBObject is basically a union of the services of DDB SystemDBObject

and TraceDBObject objects.
At the implementation level, there are several other changes, but with no impact on the user

interface. The major ones are :
• The SQLConstant class has been updated with constants re�ecting the new DB schema.
• The Visitor class has been enriched with a map that links a trace ID with an instance of the
SingleTraceStatements class. This inner class is used to manage the prepared statements
related to the three trace-speci�c tables (EVENT, EVENT_PARAM, EVENT_PRODUCER). It also
manages the naming convention for these three tables (trace ID as su�x).

• The format cache mechanism has been updated in order to allow the DBObject to manage
several trace formats at the same time. Basically, the DBObject contains a TraceFormatsCache

Inria



SoC-Trace Infrastructure Benchmark 9

Fig. 7 � CDB Database Schema

object, which contains the TraceType and TraceParamType objects and a map of TraceFormatCache
objects.

2.2.3 Query

The query classes provided by the com.inria.soctrace.lib.query plugin are only margi-
nally a�ected by the changes in the DB architecture in CDB. The only real di�erence with DDB
is in the instantiation of these classes. In DDB, the constructor of a query class typically takes
either the SystemDBObject or a TraceDBObject instance, depending on where the entity being
the object of the query is stored. For CDB there is a single DB, so the constructor of a query

RT n° 435



10 G.Pagano & V.Marangozova-Martin

class always uses a DBObject instance.
We note that for both EventQuery and EventProducerQuery classes, a Trace object is passed

to the constructor, in order to specify the trace we want to work with. We also note that for
EventTypeQuery class, the constructor needs a TraceType object in addition to the DBObject,
since in CDB all the EventType of all formats are stored in the same table.

Apart from these initialization di�erences, the logic of dealing with query and condition
classes is the same for CDB and DDB.

2.2.4 Search

As explained in [2], the search interface provided by the com.inria.soctrace.lib.search

plugin can be used in a database-agnostic fashion. Therefore the changes in the DB architecture
do not a�ect the provided user interface.

On the other hand, the change in the data-model regarding the possibility of having multi-
trace analysis results does have a consequence on the user interface. Indeed, in DDB, to retrieve
analysis results, it is always necessary to specify the Trace the results are related with. In CDB,
this is no more the case, since an analysis result is not necessarily related to a single trace. This
tiny di�erence is only temporary, since it will disappear when also DDB will support multi-trace
results.

3 Benchmark Plan

In order to design the benchmark for comparing the performances of the two di�erent imple-
mentations of SoC-Trace Infrastructure, we followed the guidelines described in [4]. The vocabu-
lary is also taken from the cited book.

We summarize below the basic concepts we based our benchmark on.
• Parameter : something in�uencing the behavior of the system.
• Factor : parameter you decide to variate during experiment.
• Level : value given to a factor.
• Workload : a set of service requests to the system (e.g. a program executing queries).
We performed a benchmark based on actual measurements of the real system implementa-

tions, namely DDB and CDB.

3.1 Benchmark Goals

Our goal is to compare the DDB and CDB implementations in order to chose the one with
better performances for the SoC-Trace project.

The architecture of the considered system is the one presented in Figure 8. The system is
composed of a DBMS and a software library to access the DB. As the SoC-Trace Library is
implemented in Java, the interaction with the MySQL DBMS is performed through its JDBC
driver.

In this layered architecture, only the library implementation layer changes between DDB and
CDB.

3.2 Infrastructure Services

The main services provided by the system under test are the following :
• Import a trace into the system
• Perform searches on traces

Inria



SoC-Trace Infrastructure Benchmark 11

SoC-Trace Library Implementation

JDBC MySQL driver

MySQL DBMS

local network connection

Fig. 8 � System Layers

◦ Search for traces respecting some criteria
◦ Search in a trace for events or event producers respecting some criteria

• Save and retrieve analysis results

3.3 Benchmark Metrics

The metrics chosen for our experiments are the following :
• Speed of execution : the time needed to perform a given operation.
• Disk space usage : the size of the database on the disk.
• Memory usage : the maximum size of the used Java Virtual Machine heap during the
execution of a given operation.

Depending on the speci�c experiment, the principal metrics will be pointed out and analyzed.

3.4 Parameters

We make the distinction between the system parameters which are related to the hardware
and software con�guration of the system, and workload parameters which characterize users'
requests. The main system and workload parameters identi�ed for this study are reported below.

The system parameters are :
• Type and speed of the disk
• Processor
• RAM
• OS
• Kernel
• MySQL version and engine
• MySQL JDBC driver version
• SoC-Trace Library type
The workload parameters are :
• Number of managed trace formats
• Number of managed traces
• Size of a trace
• Request type
• Number of saved results

RT n° 435



12 G.Pagano & V.Marangozova-Martin

• Size of saved result
All these parameters, if varied, may alter the behavior of the system in performing given

operations. Among these parameters, we chose to vary only a subset, thus identifying benchmark
factors.

3.5 Factors and Levels

The only system parameter varied during the experiments is the SoC-Trace Library type :
DDB or CDB. All the other system parameters are �xed as follows :

• Type and speed of the disk
◦ SSD disk model MTFDDAK256MAM-1K1
◦ device size : 256GB
◦ Measured timing bu�ered disk reads (avg) : 461.86MB/s
◦ Measured timing write (avg) : 92.1MB/s

• Processor : Intel® Xeon(R) CPU E5-1660 0 @ 3.30GHz x 12
• RAM : 16GB DDR3
• OS : Fedora Release 17 (BeefyMiracle) 64-bit
• Kernel : Kernel Linux 3.6.2-4.fc17.x86_64
• MySQL : server version 5.5.28, InnoDB engine
• MySQL driver version : 5.1.22
Regarding workload parameters, only a subset of them has been chosen as factors.
• The number of di�erent formats managed : 1, 5, 30 (depending on the experiment)
• The number of traces managed : 1, 5, 30 (depending on the experiment)
• The size of the trace : small (1 MB), large (100 MB) (all experiments)
Note that all the di�erent formats are actually �ctitious, meaning that the same format

(KPTrace) is stored several times with di�erent names. From the SoC-Trace Infrastructure point
of view, the formats are di�erent, so stored separately. Furthermore, in our experiments all the
traces having the same size are actually identical, in order to ensure that exactly the same events
and event producers are managed by the system. Note also that the experiments described below
are designed so that there are dependencies between di�erent parameters : this way we can keep
the number of factors small. In fact, as it will be clearer later, in Section 4.3 the number of results
is a function of the number of managed traces and the size of the results is a function of the size
of the trace.

3.6 Workloads

The workloads used to carry out our experiments are generated with the KPTrace parser
tool and an ad hoc test application. The KPTrace parser tool is used to import traces into the
system. As anticipated above, di�erent trace type names are used to produce �ctitious di�erent
formats. The ad hoc application is a simple program that performs search queries and saves the
results. More details about this last program are given in Section 4.3.

4 Benchmark Experiments

In this section we present the experiments we designed and implemented, discussing the
results obtained.

Inria



SoC-Trace Infrastructure Benchmark 13

4.1 Database Storage

In this experiment we import traces into the system using the KPTrace parser tool in order
to gather information about disk space usage.

The factors considered in this experiment are the trace size and the number of traces. The
number of formats is not relevant, so no explicit scenario will be described on this topic and only
analytic considerations will be done. In fact, regarding the number of trace formats, the greatest
expected gain of CDB over DDB is when only a single format is considered, since CDB does not
replicate format storage : all the scenarios will therefore deal with a single format.

We consider two scenarios, where we import into the system 5 traces with the same format.
In the �rst scenario we import small traces (1 MB) while in the second we import large traces
(100 MB). In each scenario, after importing each trace, we measure the whole disk space used
for the DB storage. In the CDB case, we consider the single DB size. In the DDB case, we take
the sum of the sizes of the System DB and the various Trace DBs.

 0

 5000

 10000

 15000

 20000

 25000

    0     1     2     3     4     5

DB
 s

iz
e 

(k
B)

Number of traces

DDB
CDB

Fig. 9 � Storage size for small traces having the same format (lower is better)

Figure 9 shows the result for small traces. When in the system there is more than 1 trace,
the CDB solution produces a slightly smaller disk occupation (space gain ranges from 3% to
5%). The di�erence is due to the presence of empty tables in each DDB Trace DB prepared for
analysis results 3.

This result is conservative (though to a lesser extent) even when analysis result related tables
are not empty, since CDB uses the same set of tables for all traces, while each DDB Trace DB has
its own set of tables. A similar argument applies to the case of traces having di�erent formats :
if exactly the same set of formats is used in both DDB and CDB case, CDB size on disk will
be always smaller or equal, since all the formats are stored in the same couple of EVENT_TYPE /
EVENT_PARAM_TYPE tables.

Figure 10 shows the result for large traces. The same logic applies here but the gain obtained
by CDB is so small that is completely negligible (the space gain here ranges from 0.04% to
0.07%).

In our experiments, we actually observed that if exactly the same number of traces of the
same formats is imported in the system, the space gain of CDB over DDB is not dependent on

3The MySQL InnoDB engine uses 16 kB of disk space for empty tables

RT n° 435



14 G.Pagano & V.Marangozova-Martin

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

    0     1     2     3     4     5

DB
 s

iz
e 

(M
B)

Number of traces

DDB
CDB

Fig. 10 � DB size for large traces having the same format (lower is better)

the size of the traces, but only on their number. This gain is less than 300 kB for each imported
trace. It is for this reason that, especially in the case of large traces, the gain is negligible.

4.2 Trace Import

In this experiment we measure the time needed to import a trace into the system using the
KPTrace parser tool. We measure the average time needed to import a KPTrace trace in DDB
and CDB, varying the trace size and the number of managed formats. For this purpose, we have
explored two groups of scenarios : in the �rst we consider small traces (1 MB) and in the second
large traces (100 MB). For each group, we consider the cases described below.

• CDB :
◦ Import 1 trace of a given format, being the format already stored in the DB (30 repeti-
tions).

◦ Import 30 traces of 30 di�erent formats, being these formats not stored yet in the DB.
This case can be seen as �importing 1 trace whose format is still not stored in the DB,
with 30 repetitions�.

• DDB :
◦ Import 1 trace of a given format (30 repetitions).
◦ The import of 30 traces of 30 di�erent formats is not necessary for DDB, since even
in the above case (single format) at each repetition the format is saved anyway in the
speci�c Trace DB. The result obtained would be exactly the same.

The idea of this experiment is to evaluate if and how much we gain in CDB avoiding the creation
of a Trace DB for each trace import and, in the single format case, avoiding the replication of
the format done in DDB.

Figure 11 shows the result obtained for small traces. Considering only CDB (�rst two bars)
we observe that managing di�erent formats increases the import time of only 0.7%. This con�rm
that the format replication is not really a performance issue in DDB. Considering DDB results
(third bar) we distinguish between the time needed for the actual trace import and the time
needed to create, in the �rst place, the Trace DB. We observe that the di�erence in time between
CDB results and DDB ones is actually due to the time spent in creating the DB. This time is

Inria



SoC-Trace Infrastructure Benchmark 15

less than 700ms and is independent from the trace size. We can summarize our observations
saying that for small traces the maximum gain of CDB over DDB is obtained dealing with a
single format and is about 12.6% in time.

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

CDB 1 format   

CDB 30 formats 

DDB            

AV
G 

tim
e 

to
 im

po
rt

 a
 tr

ac
e 

(s
)

trace import
trace db creation

Fig. 11 � Import of Small Traces

These considerations are basically con�rmed in Figure 12, which shows the results obtained
with large traces. Considering CDB we observe that managing several formats increases import
times only by 1.3%. Considering DDB, we con�rm that the Trace DB creation time does not
change comparing with previous scenario and stays around 700ms. Dealing with large traces the
weight of this operation is therefore clearly negligible : the �gure shows only the last portion of
the y axis (from 200 s) and it is still hard to appreciate the green part of the third bar. We can
conclude that for large traces the maximum gain of CDB over DDB is obtained dealing with a
single format and is about 2.1% in time, so negligible.

4.3 Search and Save

In this experiment we measure the execution time and some memory metrics for an ad hoc

application performing searches and saving results, working with multiple traces. Namely, the
application searches for the events of a given type within all the traces satisfying some given
criteria, and saves the corresponding results.

The application is multithreaded with one thread per search. Note that multithreading is only
at the application level, while SoC-Trace Library is sequential. The only portion of the library
(both for CDB and DDB) being concurrency aware is the one dealing with DB write operations
and transactions : the storage part of the library ensures that save operations as well as commits
on a given connection are done in mutual exclusion. Considering DB read operations, when using
a single connection concurrent queries on that connection are sequentialized by MySQL ; on the
contrary, with di�erent connections, di�erent MySQL threads serve concurrent requests. In both
cases concurrency is managed at DBMS level. In this experiment the single connection case is
signi�cant only for CDB, since DDB has di�erent DBs for di�erent traces, so there are always
di�erent connections.

The application is run for both DDB and CDB in two distinct scenarios : one for small traces
(1MB) and one for big traces (100MB). For each scenario we have two di�erent con�gurations

RT n° 435



16 G.Pagano & V.Marangozova-Martin

 200

 220

 240

 260

 280

 300

 320

 340

 360

CDB 1 format   

CDB 30 formats 

DDB            

AV
G 

tim
e 

to
 im

po
rt

 a
 tr

ac
e 

(s
)

trace import
trace db creation

Fig. 12 � Import of Large Traces

considering respectively 5 traces having 5 di�erent formats and 5 traces having the same format.
For all con�gurations, we have used trace selection criteria that result in returning all the 5

traces. As the traces are actually identical, the event searches return the same set of events.
Considering CDB, actually we tested all the con�gurations both using a single DB connection

for all threads and opening a distinct DB connection for each thread. Strictly speaking, we are
introducing here a new factor, the number of DB connections, for CDB. As explained before,
for DDB there is always a distinct DB connection for each thread, since each thread works on a
di�erent trace, and each trace has its distinct DB. For each con�guration we performed 60 runs.

In the �gures presenting the results we will use the following naming conventions :
• sf/mf to distinguish the case with a single format and the case with 5 di�erent formats.
• sc/mc to distinguish in CDB tests the case with a single DB connection and the case with
one connection per thread.

In Figure 13 we have the aggregated results for small traces : for each con�guration, the red
bar is the average time while the green bar is the maximum amount of memory used. The two
metrics are presented together in order to have a better overall vision of the system behavior.

For CDB, when we use a single DB connection shared by all threads (�rst two con�gurations),
the average time spent to run the application is about the double comparing with all the other
con�gurations. This is explained by the fact that MySQL manages each connection with a single
thread, so the requests coming from the application threads are sequentialized by the DBMS.

Still considering the CDB single-connection con�gurations, when dealing with several formats
the time is 7.3% higher and the memory used is 5.3% higher because of the overhead of managing
more format data. Coming to the CDB multi-connection con�gurations (third and fourth bars),
we can see that from the time point of view we gain a lot (about 43%) since we removed the
sequentialization, but the memory used is more (about 5%) since we have to manage di�erent
connections with the DB. Anyway, CDB results are always worse than DDB ones, regarding both
memory and time : even in the multi-connection con�guration, CDB is slower (7.6% and 13%
slower for single and multiple format respectively) and it takes more memory (5.7% and 10.6%
more memory for single and multiple formats respectively).

These considerations are con�rmed by the study on large traces (Figure 14). In the CDB
single-connection con�gurations the application is up to 158% slower than in DDB cases, even if

Inria



SoC-Trace Infrastructure Benchmark 17

 0

 0.5

 1

 1.5

 2

CDB sc sf

CDB sc mf

CDB mc sf

CDB mc mf

DDB sf

DDB mf

 0

 10

 20

 30

 40

 50

AV
G 

tim
e 

(s
)

M
AX

 m
em

or
y 

(M
B)

time
memory

Fig. 13 � Average time and maximum amount of memory used to run the ad hoc application for
small traces (lower is better)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

CDB sc sf

CDB sc mf

CDB mc sf

CDB mc mf

DDB sf

DDB mf

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

AV
G 

tim
e 

(s
)

M
AX

 m
em

or
y 

(M
B)

time
memory

Fig. 14 � Average time and maximum amount of memory used to run the ad hoc application for
large traces (lower is better)

it takes less memory (about 15% less). Considering then the CDB multi-connection con�gurations
both time and memory are still larger than DDB results : for the single format con�guration
time is 25% longer and memory is 4% higher, for the multi format con�guration time is 23.5%
longer and memory is 4.2% higher.

We conclude from the analysis of this experiment that that DDB outperforms CDB in all
con�gurations on almost all metrics. The CDB single-connection con�guration is always a lot
slower than DDB. Considering the CDB multi-connection con�guration, it is less slower, but it
takes more memory. Considering the average time metric, this kind of behavior is signi�cantly
more visible when dealing with larger traces.

RT n° 435



18 G.Pagano & V.Marangozova-Martin

5 Conclusions

In this report we have compared two alternative implementations of the trace management
infrastructure developed for the SoC-Trace project. The �rst one, referred as DDB, features
distributed databases, having a distinct database for each trace and a central system database.
The second one, referred as CDB, has a centralized implementation of the database, where all
traces are stored in the same database.

The goal of our benchmark is to see which implementation is the best, considering as metric
execution time, disk usage and memory usage for three di�erent use-cases. The �rst experiment
is focused on disk usage, the second on trace import time and the third on time and memory
usage with multi-trace analysis result production and saving.

We conclude this study saying that the overall performance of the two implementations is
not so di�erent in the �rst two experiments, while in the last one DDB outperforms CDB. For
trace storage size and trace import CDB is actually slightly better than DDB, because it does
not replicate the format and does not create a DB for each trace, but these kind of optimization
produce a gain which is basically constant : for large traces and long import times it becomes
absolutely negligible. Considering the large traces results, in the �rst experiment CDB is less then
0.1% better and in the second experiment is about 2% better. Coming to the third experiment, we
notice here that DDB performs better than CDB and the gain is not independent from trace size :
on the contrary, dealing with larger traces makes the di�erence between the two implementation
bigger. Summarizing, with single-connection, CDB memory usage is comparable but time values
are up to 160% worse ; with multi-connection, time results are still worse (about 25% slower)
and memory usage is worse too (about 5% more memory).

With these results, we conclude that DDB is globally a better solution than CDB from a
performance point of view. The added complexity in the DB schema and the software library
introduced to support the catalog solution is therefore not justi�ed. In addition to this, we can do
some non-functional considerations about CDB solution. First of all, given that all the possible
applications working on top of SoC-Trace Infrastructure deal with the same database instance,
preserving the DB consistency becomes more di�cult. Furthermore, direct DB interaction is
less straightforward because of the catalog solution itself. Finally, with the separation of trace
databases, DDB leaves the place for the usage of embedded DB solutions (like SQLite) that have
the limitation of one �le for one DB, as an alternative to MySQL. DDB is therefore the solution
of choice for SoC-Trace Infrastructure.

Inria



SoC-Trace Infrastructure Benchmark 19

A Database performance

The benchmark described in this document is mainly focused on comparing two di�erent
implementations of SoC-Trace Infrastructure. Anyway, from the results obtained we can do some
observations also regarding absolute performance with whatever implementation of the system
(CDB and DDB). Basically we observe that the time spent to perform an import (parsing a trace
and putting it in the DB) is always quite long : almost 6 minutes to import 100MB of raw trace
data. In the technical report [2] we observed that most of import time (about 98%) was spent in
writing into the DB. As observed in Figure 8, both implementations work on the same software
environment where, at the bottom, we have the MySQL DBMS and the connection with the Java
code through the network and the JDBC driver. In this appendix we point out some preliminary
analysis on this DB write performance issues.

In the �rst place, we consider again the system software layers (Figure 8) and we try to isolate
the problem. The writing issue in fact can be due to a problem in the SoC-Trace Library, in the
JDBC driver, in the latency of the network connection or at the DBMS level.

To start, we exclude all the Java part of the system (SoC-Trace Library and JDBC driver) to
see if there are issues at the DBMS level. For this purpose we simply dump a trace database to
an SQL �le using the mysqldump tool and then we re-execute this SQL script to re-import the
database, measuring the time to re-import it.

The commands used are :
• make the dump : mysqldump -u root database > database_dump.sql

• re-import the database : mysql -u root database < database_dump.sql

The trace considered is the 100MB one, for which the import time was around 350 s using the
KPTrace parser. We observe that restoring the DB from the dump takes a lot less time : only 43
seconds on the average (computed over 30 repetitions). Figure 15 clearly makes the point. The
KPTrace parser is more than 8 times slower than the dump restore, so apparently the writing
issues is in the Java part of the system. Furthermore, from now on, we can consider the time
taken by a direct dump restore as a reference (a minimum) for our following tests.

 0

 50

 100

 150

 200

 250

 300

 350

 400

KPTrace Importer (DDB) MySQL dump restore

AV
G 

tim
e 

to
 im

po
rt

 a
 tr

ac
e 

(s
)

Fig. 15 � Comparison between KPTrace importer and MySQL dump restore

Considering only the Java layers of the system, we are interested in understanding if the
problem is in the SoC-Trace Library or below it, in the JDBC part. To exclude that the Library
(or even the application - the parser - above it) has issues, we wrote a very simple test program,
that simply stores event values in EVENT and EVENT_PARAM tables, using directly JDBC
prepared statements with batch execution (the storage part of the Library is not used at all). For

RT n° 435



20 G.Pagano & V.Marangozova-Martin

this test we consider a synthetic trace composed by 4000000 of events, each having 2 parameters.
The events (all identical) are generated dynamically and no actual trace �le is considered.

For all the following experiments, we performed 30 repetitions.
To initialize the system we run a �rst time the test program to have a trace database and

dump it, in order to be able to re-import it using MySQL command line client. Then we run
both the dump restore and the program. The results are shown in Figure 16.

 0

 100

 200

 300

 400

 500

 600

Java program MySQL dump restore

AV
G 

tim
e 

to
 im

po
rt

 a
 s

yn
th

et
ic

 tr
ac

e 
(s

)

Fig. 16 � Average import time for a synthetic trace of 4000000 of events (lower is better)

Even the simple Java program directly using JDBC prepared statements without any (pos-
sible) SoC-Trace Library overhead is more than 8 times slower than the MySQL dump res-
tore. Being the ratio between the Java program and dump restore basically unchanged, we may
conclude that the write issue, though being in the Java part, is not in the SoC-Trace Library.

We investigated further in order to understand whether the problem is at the JDBC driver
level or at the network connection level.

Considering only the network connection between a MySQL client and the server, on a Unix
system we can have two di�erent situations :

• TCP/IP connection to local or remote server.
• Unix socket �le connection to local server (more e�cient).

Being the MySQL JDBC driver a JDBC Type 4 driver, it does not use any native code to access
the database. Therefore, given that Java has no method to access Unix sockets, the driver can
not use them either, thus not being able to take advantage of local server optimization. To �x
this issue, we used the junixsocket library [5] together with the provided socket factory for
MySQL driver. This way we can compare the di�erence in the execution time of our simple test
program with or without using the Unix socket optimization. Results are in Figure 17.

We notice that using Unix sockets performance gets better of about 10%, but the result is
still far from the command line dump restore. The write speed issue is therefore not mainly due
to the connection latency, but is to be found in MySQL JDBC driver implementation.

To further analyze the MySQL JDBC driver implementation behavior we perform the import
of the synthetic trace using the following approaches :

• JDBC prepared statements with batch execution (PS batch)
• JDBC prepared statements without batch execution (PS no batch)
• JDBC simple statements with batch execution (SS batch)
• JDBC simple statements without batch execution (SS no batch)
• JDBC simple statements with manual batch execution (Manual)

Inria



SoC-Trace Infrastructure Benchmark 21

 0

 100

 200

 300

 400

 500

 600

JDBC TCP connection JDBC Unix Socket MySQL dump restore

AV
G 

tim
e 

to
 im

po
rt

 a
 s

yn
th

et
ic

 tr
ac

e 
(s

)

Fig. 17 � Average import time for a synthetic trace with and without using Unix sockets (lower
is better)

In all MySQL con�gurations we use the Unix socket connection analyzed above to remove this
cause of speed loss. By manual batch execution we simply mean that we manually implemented
in Java the batched execution of several inserts, without passing through JDBC batch functiona-
lities, but simply using simple statement with several rows passed to a single INSERT command.
For the �rst four con�gurations (PS batch, PS no batch, SS batch and SS no batch) we run the
test program also using another DBMS (SQLite) and therefore another JDBC driver implemen-
tation for comparison purposes. The results are shown in Figure 18, where the last red bar is, as
always, the average time obtained restoring the dump, which is our reference.

Considering only MySQL (red bars) we notice that all standard JDBC modes are pretty
much similar and way slower than our reference (the dump restore). On the contrary the manual
implementation of batch execution is extremely similar to the reference (only 5% slower, because
of the overhead introduced by Java). This is a strong argument to conclude that the MySQL
JDBC driver implementation has a critical issue in managing bu�ered inserts. Another argument
is that, considering only the �rst four con�gurations, for both prepared statement (PS) and
simple statements (SS), the bu�ered execution is slower than the non bu�ered one, which is very
couterintuitive and unexpected. Furthermore, using prepared statements or not does not a�ect
a lot the performance. On the other side, considering SQLite implementation of JDBC driver,
we observe a more intuitive behavior :

• batched execution is faster than non batched one (from 5% to 2% using or not using
prepared statements respectively)

• using prepared statements is faster than non using them (more than 200% faster)
Finally, comparing the best MySQL result (the manual one) with the best SQLite result

(prepared statements with batched execution) we observe that the SQLite solution is almost 3
times faster than MySQL. This is most likely due to the fact that SQLite is an embedded DB
solution, while MySQL introduces some overhead because of its client-server architecture.

This conclusion, in addition to the fact that the DDB implementation of SoC-Trace Library
proved to be preferable, is a strong argument in choosing SQLite as DBMS for SoC-Trace Infra-
structure : the distributed architecture, in fact, having a single trace in each Trace DB, is not
really a�ected by the single-�le constraint imposed by SQLite (DB size is upper-bounded by the
�le system limits on the �le size). On the contrary, with CDB, putting all the information ma-
naged by the system in a single �le (single SQLite DB) won't scale. This database performance
appendix �nally enforces the choice of DDB.

RT n° 435



22 G.Pagano & V.Marangozova-Martin

 0

 100

 200

 300

 400

 500

 600

PS batch PS no batch SS batch SS no batch Manual MySQL restore

AV
G 

tim
e 

to
 im

po
rt

 a
 s

yn
th

et
ic

 tr
ac

e 
(s

)
mysql
sqlite

Fig. 18 � Average import time for a synthetic trace with di�erent JDBC con�gurations (lower
is better)

B SoC-Trace Infrastructure Current State

After the analyses reported in this document, SoC-Trace Infrastructure has evolved keeping
the DDB solution. In this appendix we brie�y summarize the principal improvements to our
infrastructure, which now is simply referred to as FrameSoC4. More details about FrameSoC
and some concrete use-cases showing its current possibilities are given in the research report
RR-8304 [6].

In the bibliographic study conducted in [6] about database solutions for trace management,
we found that most of such solutions ( [7], [8] and [9]) use a distributed approach, basically for
scalability or simplicity of implementation. This corroborate our choice of DDB as the reference
implementation of our infrastructure.

The principal improvements to FrameSoC can be grouped in three categories : database
management, tool management, graphical user interface. Each category is detailed below.

B.1 Database Management

The performance analysis conducted in Appendix A shows the interest of experimenting
di�erent DBMS with the infrastructure. For this reason, we designed and implemented the pos-
sibility to work with di�erent DBMS, provided that a simple adaptation module is provided for
a speci�c DBMS technology.

More in details, inside the DBObject there is a DBManager that encapsulates all the DBMS-
speci�c operations. The DBManager is actually an abstract class : concrete subclasses are provided
for real DBMS. At the moment being concrete DB managers have been implemented for MySQL

4By FrameSoC we mean our Framework for System-on-Chip execution-trace management

Inria



SoC-Trace Infrastructure Benchmark 23

and SQLite.
This multi-DB feature on one hand allows easy experimentation with di�erent DBMS and on

the other hand makes FrameSoC independent from a speci�c DBMS technology.
Still at the database interaction level, new Visitor classes have been implemented in order

to support also update and delete operations on the object of the data-model.

B.2 Tool Management

A great improvement in tool management is the support of the Eclipse [10] plugin mechanism
to add tools to FrameSoC. In fact, we de�ned an extension point for FrameSoC tools, de�ning
the interface for FrameSoC compliant tools developed as Eclipse plugin. The extension point has
the following �elds :

class a class extending the abstract FramesocTool, containing a the launching method.

type the tool type, which is one of ANALYSIS, IMPORT and EXPORT 5.

name the tool name, as presented to the user.

doc the tool launching documentation, to be presented to the user.

A user wanting to develop a FrameSoC tool in the form of an Eclipse plugin, has simply to
extend our extension point, providing the necessary �elds. FrameSoC is then able to interrogate
the Eclipse plugin registry in order to be aware of the FrameSoC tools actually present, thus
facilitating the installation and the launching of such tools. Note that, even with the plugin
mechanism, the user keep the control on the tools actually registered into the FrameSoC DB,
since such registration is done explicitly using the GUI described below. Of course, the possibility
to manage black-box (non-plugin) tools is still present, and all kind of tools (plugin or not) are
registered or launched with the same user interface.

B.3 Graphical User Interface

Fig. 19 � FrameSoC GUI

5Note that now, in addition to ANALYSIS and IMPORT tools, also EXPORT tools are explicitly supported
by the framework.

RT n° 435



24 G.Pagano & V.Marangozova-Martin

Fig. 20 � FrameSoC Management Menu Fig. 21 � FrameSoC Trace Analysis Menu

A signi�cant improvement to our infrastructure is the development of a powerful GUI based
on Eclipse, facilitating both management and analysis tasks for the framework user. Figure 19
shows an overview of FrameSoC GUI, with some framework tools, enabling basic analyses : a
structured trace explorer with details on trace metadata, an event-density chart to easily identify
trace hot spots, a pie-chart showing some statistics about the trace and a form for event querying
using regular expressions.

Using the SoC-Trace menu on the top of the GUI, the user may access to Management
(Figure 20) and Trace Analysis (Figure 21) menus.
The management functionalities include :

• Initialize the system, choosing the DBMS and specifying its parameters.
• Manage tools : add, remove, edit tools. The possibility to look for FrameSoC compliant
plugin-tools is also provided.

The analysis functionalities include :
• Import a trace to the framework, using a registered importer tool.
• Perform an analysis, launching a registered analysis tool.
• Export trace data, using a registered exported tool.

Inria



SoC-Trace Infrastructure Benchmark 25

References

[1] FUI (Fonds Unique Interministériel). http://competitivite.gouv.fr.

[2] Generoso Pagano and Vania Marangonzova-Martin. SoC-Trace Infrastructure. Rapport
Technique RT-0427, INRIA, November 2012.

[3] MySQL Table Partitioning. http://dev.mysql.com/doc/refman/5.6/en/partitioning.
html.

[4] R. K. Jain. The Art of Computer Systems Performance Analysis : Techniques for Experi-

mental Design, Measurement, Simulation, and Modeling. Wiley, 1 edition, April 1991.

[5] junixsocket. http://code.google.com/p/junixsocket/.

[6] Generoso Pagano, Damien Dosimont, Guillaume Huard, Vania Marangozova-Martin, and
Jean-Marc Vincent. Trace Management and Analysis for Embedded Systems. Rapport de
recherche RR-8304, INRIA, May 2013.

[7] Rolf Borgeest and Christian Rodel. Trace Analysis with a Relational Database System. In
Parallel and Distributed Processing, 1996. PDP'96. Proceedings of the Fourth Euromicro

Workshop on, page 243�250, 1996.

[8] Guillaume Pothier and Éric Tanter. Back to the Future : Omniscient Debugging. Software,
IEEE, 26(6) :78�85, 2009.

[9] Carlos Prada-Rojas, Miguel Santana, Serge De-Paoli, and Xavier Raynaud. Summarizing
Embedded Execution Traces through a Compact View. In Conference on System Software,

SoC and Silicon Debug S4D, 2010.

[10] Eclipse. http://www.eclipse.org.

RT n° 435

http://competitivite.gouv.fr
http://dev.mysql.com/doc/refman/5.6/en/partitioning.html
http://dev.mysql.com/doc/refman/5.6/en/partitioning.html
http://code.google.com/p/junixsocket/
http://www.eclipse.org


RESEARCH CENTRE

GRENOBLE – RHÔNE-ALPES

Inovallée

655 avenue de l’Europe Montbonnot

38334 Saint Ismier Cedex

Publisher

Inria

Domaine de Voluceau - Rocquencourt

BP 105 - 78153 Le Chesnay Cedex

inria.fr

ISSN 0249-0803


	Introduction
	SoC-Trace Infrastructure Centralized Implementation
	Multi-Trace DB
	Conceptual Model
	Database Architecture
	Database Schema: Replicated versus Catalog Solution

	SoC-Trace Library
	Model
	Storage
	Query
	Search


	Benchmark Plan
	Benchmark Goals
	Infrastructure Services
	Benchmark Metrics
	Parameters
	Factors and Levels
	Workloads

	Benchmark Experiments
	Database Storage
	Trace Import
	Search and Save

	Conclusions
	Database performance
	SoC-Trace Infrastructure Current State
	Database Management
	Tool Management
	Graphical User Interface


