A. Bergamo and L. Torresani, Meta-class features for large-scale object categorization on a budget Training with noise is equivalent to tikhonov regularization, In: Neural computation, 1995.

L. Bo and C. Sminchisescu, Efficient match kernels between sets of features for visual recognition, 2009.

L. Bo, X. Ren, D. Fox, O. Boiman, E. Shechtman et al., Multipath Sparse Coding Using Hierarchical Matching Pursuit, 2013 IEEE Conference on Computer Vision and Pattern Recognition, 2008.
DOI : 10.1109/CVPR.2013.91

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

L. Bottou, Stochastic gradient descent, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00750911

L. Bottou, O. Bousquet, Y. Boureau, F. Bach, Y. Lecun et al., The tradeoffs of large scale learning Learning mid-level features for recognition Ask the locals: multi-way local pooling for image recognition A norm selection criterion for the generalized delta rule, In: ICCV Burrascano P IEEE Trans Neural Netw, vol.2, issue.1, pp.125-155, 1991.

K. Chatfield, V. Lempitsky, A. Vedaldi, A. Zisserman, G. Bmvc-cinbis et al., The devil is in the details: an evaluation of recent feature encoding methods Image categorization using Fisher kernels of non-iid image models XRCEs participation to imageval Visual categorization with bags of keypoints, 2004.

J. Deng, W. Dong, R. Socher, L. Li, K. Li et al., Imagenet: A large-scale hierarchical image database, 2009.

J. Deng, A. Berg, K. Li, L. Fei-fei, M. Eccv-everingham et al., What does classifying more than 10,000 image categories tell us? The PASCAL Visual Object Classes Challenge, 2007.

M. Everingham, L. Gool, C. Williams, J. Winn, and A. Zisserman, The Pascal Visual Object Classes (VOC) Challenge, International Journal of Computer Vision, vol.73, issue.2, 2008.
DOI : 10.1007/s11263-009-0275-4

M. Everingham, L. Van-gool, C. Williams, J. Winn, and A. Zisserman, The Pascal Visual Object Classes (VOC) Challenge, International Journal of Computer Vision, vol.73, issue.2, pp.303-338, 2010.
DOI : 10.1007/s11263-009-0275-4

J. Farquhar, S. Szedmak, H. Meng, and J. Shawe-taylor, Improving " bag-of-keypoints " image categorisation, 2005.

J. Feng, B. Ni, Q. Tian, and S. Yan, Geometric p -norm feature pooling for image classification, 2011.

P. Gehler and S. Nowozin, On feature combination for multiclass object classification, 2009 IEEE 12th International Conference on Computer Vision, 2009.
DOI : 10.1109/ICCV.2009.5459169

G. Griffin, A. Holub, and P. Perona, Caltech-256 object category dataset, p.7694, 2007.

M. Guillaumin, J. Verbeek, C. Schmid, H. Harzallah, F. Jurie et al., Multimodal semisupervised learning for image classification Combining efficient object localization and image classification, 1999.

T. Jaakkola and D. Haussler, Exploiting generative models in discriminative classifiers, 1998.

H. Jégou, M. Douze, C. Schmid, H. Jégou, M. Douze et al., On the burstiness of visual elements Aggregating local descriptors into a compact image representation, 2009.

H. Jégou, M. Douze, and C. Schmid, Product Quantization for Nearest Neighbor Search, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.33, issue.1, 2011.
DOI : 10.1109/TPAMI.2010.57

H. Jégou, F. Perronnin, M. Douze, J. Sánchez, P. Pérez et al., Aggregating Local Image Descriptors into Compact Codes, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.34, issue.9, 2012.
DOI : 10.1109/TPAMI.2011.235

J. Krapac, J. Verbeek, and F. Jurie, Modeling spatial layout with fisher vectors for image categorization Image classification with deep convolutional neural networks, 2011.

N. Kulkarni, B. Li, S. Lazebnik, C. Schmid, and J. Ponce, Discriminative affine sparse codes for image classification Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories, 2006.

Q. Le, M. Ranzato, R. Monga, D. M. Chen, K. Corrado et al., Building high-level features using large scale unsupervised learning, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, 2012.
DOI : 10.1109/ICASSP.2013.6639343

Y. Lin, F. Lv, S. Zhu, K. Yu, M. Yang et al., Large-scale image classification: fast feature extraction and svm training A similarity measure between unordered vector sets with application to image categorization, 2008.

D. Lowe, Distinctive Image Features from Scale-Invariant Keypoints, International Journal of Computer Vision, vol.60, issue.2, 2004.
DOI : 10.1023/B:VISI.0000029664.99615.94

S. Lyu, Mercer kernels for object recognition with local features, 2005.

S. Maji and A. Berg, Max-margin additive classifiers for detection, 2009 IEEE 12th International Conference on Computer Vision, 2009.
DOI : 10.1109/ICCV.2009.5459203

S. Maji, A. Berg, and J. Malik, Classification using intersection kernel support vector machines is efficient, 2008 IEEE Conference on Computer Vision and Pattern Recognition, 2008.
DOI : 10.1109/CVPR.2008.4587630

T. Mensink, J. Verbeek, G. Csurka, F. Perronnin, F. Cvpr-perronnin et al., Metric learning for large scale image classification: Generalizing to new classes at near-zero cost Fisher kernels on visual vocabularies for image categorization Adapted vocabularies for generic visual categorization Large-scale image retrieval with compressed Fisher vectors (2010b) Large-scale image categorization with explicit data embedding (2010c) Improving the Fisher kernel for large-scale image classification Towards good practice in large-scale learning for image classification Product code vector quantizers for waveform and voice coding, IEEE Transactions on Acoustics, Speech and Signal Processing, vol.32, issue.3, 1984.

J. Sánchez and F. Perronnin, High-dimensional signature compression for large-scale image classification, CVPR 2011, 2011.
DOI : 10.1109/CVPR.2011.5995504

J. Sánchez, F. Perronnin, and T. De-campos, Modeling the spatial layout of images beyond spatial pyramids, Pattern Recognition Letters, vol.33, issue.16, pp.2216-2223, 2012.
DOI : 10.1016/j.patrec.2012.07.019

K. Van-de-sande, T. Gevers, and C. Snoek, Evaluating Color Descriptors for Object and Scene Recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.32, issue.9, 2010.
DOI : 10.1109/TPAMI.2009.154

S. Shalev-shwartz, Y. Singer, and N. Srebro, Pegasos, Proceedings of the 24th international conference on Machine learning, ICML '07, 2007.
DOI : 10.1145/1273496.1273598

J. Sivic and A. Zisserman, Video Google: A text retrieval approach to object matching in videos Speech recognition using SVMs Lp-norm uniform distribution, Proc, pp.595-601, 1997.

M. Spruill, Asymptotic Distribution of Coordinates on High Dimensional Spheres, Electronic Communications in Probability, vol.12, issue.0, 2007.
DOI : 10.1214/ECP.v12-1294

V. Sreekanth, A. Vedaldi, C. Jawahar, A. Zisserman, D. Bmvc-titterington et al., Generalized rbf feature maps for efficient detection Statistical Analysis of Finite Mixture Distributions Unbiased look at dataset bias What is the spatial extent of an object? Efficient additive kernels via explicit feature maps Sparse kernel approximations for efficient classification and detection, In: CVPR Uijlings J, Smeulders A, Scha R, 1985.

C. Wallraven, B. Caputo, and A. Graf, Recognition with local features: the kernel recipe, Proceedings Ninth IEEE International Conference on Computer Vision, 2003.
DOI : 10.1109/ICCV.2003.1238351

G. Wang, D. Hoiem, D. Forsyth, J. Wang, Y. J. Yu et al., Learning image similarity from flickr groups using stochastic intersection kernel machines Localityconstrained linear coding for image classification, 2009.

J. Winn, A. Criminisi, and T. Minka, Object categorization by learned universal visual dictionary, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1, 2005.
DOI : 10.1109/ICCV.2005.171

J. Xiao, J. Hays, K. Ehinger, A. Oliva, A. Torralba et al., SUN database: Large-scale scene recognition from abbey to zoo Regression from patch-kernel, 2008.

J. Yang, Y. Li, Y. Tian, L. Duan, and W. Gao, Group sensitive multiple kernel learning for object categorization, 2009.

J. Yang, K. Yu, Y. Gong, T. Huang, S. Young et al., Linear spatial pyramid matching using sparse coding for image classification, 2002.

J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid, Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study, International Journal of Computer Vision, vol.36, issue.1, 2007.
DOI : 10.1007/s11263-006-9794-4

URL : https://hal.archives-ouvertes.fr/inria-00548574

Z. Zhou, K. Yu, T. Zhang, and T. Huang, Image Classification Using Super-Vector Coding of Local Image Descriptors, 2010.
DOI : 10.1007/978-3-642-15555-0_11