Discriminative Parameter Estimation for Random Walks Segmentation: Technical Report

Abstract : The Random Walks (RW) algorithm is one of the most e - cient and easy-to-use probabilistic segmentation methods. By combining contrast terms with prior terms, it provides accurate segmentations of medical images in a fully automated manner. However, one of the main drawbacks of using the RW algorithm is that its parameters have to be hand-tuned. we propose a novel discriminative learning framework that estimates the parameters using a training dataset. The main challenge we face is that the training samples are not fully supervised. Speci cally, they provide a hard segmentation of the images, instead of a proba-bilistic segmentation. We overcome this challenge by treating the optimal probabilistic segmentation that is compatible with the given hard segmentation as a latent variable. This allows us to employ the latent support vector machine formulation for parameter estimation. We show that our approach signi cantly outperforms the baseline methods on a challenging dataset consisting of real clinical 3D MRI volumes of skeletal muscles.
Liste complète des métadonnées

Littérature citée [9 références]  Voir  Masquer  Télécharger

Contributeur : Puneet Kumar Dokania <>
Soumis le : mercredi 5 juin 2013 - 14:47:17
Dernière modification le : vendredi 15 février 2019 - 13:58:09
Document(s) archivé(s) le : vendredi 6 septembre 2013 - 04:11:58


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-00830564, version 1
  • ARXIV : 1306.1083


Pierre-Yves Baudin, Danny Goodman, Puneet Kumar, Noura Azzabou, Pierre G. Carlier, et al.. Discriminative Parameter Estimation for Random Walks Segmentation: Technical Report. [Research Report] 2013. 〈hal-00830564〉



Consultations de la notice


Téléchargements de fichiers