
HAL Id: hal-00832102
https://inria.hal.science/hal-00832102v3

Submitted on 11 Jun 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Non-clairvoyant reduction algorithms for heterogeneous
platforms

Anne Benoit, Louis-Claude Canon, Loris Marchal

To cite this version:
Anne Benoit, Louis-Claude Canon, Loris Marchal. Non-clairvoyant reduction algorithms for hetero-
geneous platforms. [Research Report] RR-8315, INRIA. 2013. �hal-00832102v3�

https://inria.hal.science/hal-00832102v3
https://hal.archives-ouvertes.fr


IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
83

15
--

FR
+E

N
G

RESEARCH
REPORT
N° 8315
June 2013

Project-Team ROMA

Non-clairvoyant
reduction algorithms for
heterogeneous platforms
Anne Benoit, Louis-Claude Canon, Loris Marchal





RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée
655 avenue de l’Europe Montbonnot
38334 Saint Ismier Cedex

Non-clairvoyant reduction algorithms for
heterogeneous platforms

Anne Benoit∗, Louis-Claude Canon†, Loris Marchal‡

Project-Team ROMA

Research Report n° 8315 — June 2013 — 19 pages

Abstract: We revisit the classical problem of the reduction collective operation in a heteroge-
neous environment. We discuss and evaluate four algorithms that are non-clairvoyant, i.e., they do
not know in advance the computation and communication costs. On the one hand, Binomial-stat
and Fibonacci-stat are static algorithms that decide in advance which operations will be reduced,
without adapting to the environment; they were originally defined for homogeneous settings. On
the other hand, Tree-dyn and Non-Commut-Tree-dyn are fully dynamic algorithms, for com-
mutative or non-commutative reductions. With identical computation costs, we show that these
algorithms are approximation algorithms. When costs are exponentially distributed, we perform
an analysis of Tree-dyn based on Markov chains. Finally, we assess the relative performance of
all four non-clairvoyant algorithms with heterogeneous costs though a set of simulations.

Key-words: scheduling, reduction, approximation algorithms, non-clairvoyant algorithms

∗ École Normale Supérieure de Lyon and IUF, Lyon, France
† FEMTO-ST, Université de Franche-Comté, Besançon, France
‡ CNRS, École Normale Supérieure de Lyon, Lyon, France



Algorithmes de réductions non-clairvoyants pour
plates-formes hétérogènes

Résumé : Nous revisitons le problème classique de la primitive de communica-
tion collective de réduction dans le cadre d’un environnement hétérogène. Nous
présentons et analysons quatre algorithmes non-clairvoyants, c’est-à-dire qui ne
connaissent pas les coûts de calcul et de communication. D’un côté, Binomial-
stat et Fibonacci-stat sont des algorithmes statiques qui décident a priori
de l’arbre de réduction, sans pouvoir s’adapter à l’environnement au cours de
la réduction. D’un autre côté, Tree-dyn et Non-Commut-Tree-dyn sont
des algorithmes complètement dynamiques pour les réductions commutatives
ou non-commutatives. Lorsque les coûts de calcul sont constants, nous mon-
trons que les algorithmes commutatifs admettent des facteurs d’approximation.
Lorsque les coûts de calcul et/ou de communication sont distribués selon une loi
exponentielle, nous analysons Tree-dyn à l’aide des chaînes de Markov. Enfin,
nous comparons les performances des quatre algorithmes dans un environnement
hétérogène à l’aide de simulations.

Mots-clés : ordonnancement, réduction, algorithmes d’approximation, algo-
rithmes non-clairvoyants



Non-clairvoyant reduction algorithms for heterogeneous platforms 3

1 Introduction
Reduction is one of the most common collective operations, together with the
broadcast operation. Contrarily to a broadcast, it consists in gathering and
summarizing information scattered at different locations. A classical example
is when one wants to compute the sum of (integer) values distributed over a
network: each node owns a single value and can communicate with other nodes
and perform additions to compute partial sums. The goal is to compute the sum
of all values. Reductions have been used in distributed programs for years, and
standards such as MPI usually include a “reduce” function together with other
collective communications. Many algorithms have been introduced to optimize
this operation on various platforms, with homogeneous or heterogeneous com-
munication costs. We review some of them in the related work section below.

Recently, this operation has received more attention due to the success of
the MapReduce framework [13, 27], which has been popularized by Google.
The idea of MapReduce is to break large workloads into small tasks that run
in parallel on multiple machines, and scales easily to very large clusters of in-
expensive commodity computers. Hadoop [26] is the most popular open-source
implementation of the MapReduce framework, originally developed by Yahoo!
to manage jobs that produce hundreds of terabytes of data on thousands of
cores. Examples of applications implemented with Hadoop can be found at
http://wiki.apache.org/hadoop/PoweredBy. A crucial feature of MapRe-
duce is to hide the complexity of distributed computing to the programmer,
and to rely on robust dynamic algorithms to allocate jobs to computing nodes,
detect nodes that perform poorly or have failed and re-assign jobs that slow
down the process.

Our objective in this paper is to compare the performance of various al-
gorithms for the reduce operations on dynamic environments, i.e., when the
communication and computation times cannot be perfectly predicted and may
vary significantly. We would like to assess how classical static algorithms per-
form in such settings, and to quantify the advantage of dynamic algorithms (if
any). We use various techniques and models, ranging from worst-case analysis to
probabilistic methods such as Markov chains. The rest of the paper is organized
as follows. Section 2 reviews existing reductions algorithms and other related
work. Sections 3 and 4 describe four algorithms and a simple analysis of their
worst-case performance. In Section 5, we provide more involved probabilistic
analysis of their expected performance. Section 6 presents simulated executions
of the previous algorithms and compares their respective performance. Finally,
we conclude and discuss future research directions in Section 7.

2 Related work
The literature has first focused on a variation of the reduction problem, the
(global) combine problem [4, 6, 25]. Algorithmic contributions have then been
proposed to improve MPI implementations and existing methods have been em-
pirically studied in this context [2, 22]. Recent works concerning MapReduce
either exhibit the reduction problem or highlight the relations with MPI collec-
tive functions. We describe below the most significant contributions.

Bar-Noy et al. [3] propose a solution to the global combine problem: sim-

RR n° 8315



Non-clairvoyant reduction algorithms for heterogeneous platforms 4

ilarly to allreduce, all machines must know the final result of the reduction.
They consider the postal model with a constraint on the number of concurrent
transfers to the same node (multi-port model). However, the postal model does
not capture varying degree of overlapping between computations and commu-
nications.

Rabenseifner [20] introduces the butterfly algorithm for the same problem,
with arbitrary array sizes. Several vectors must be combined into a single one by
applying an element-wise reduction. Another solution has also been proposed
when the number of machines is not a power of two [21]. Those approaches are
specifically adapted for element-wise reduction of arrays. Van de Geijn [10] also
proposes a method with a similar cost. In our case, the reduction is not applied
on an array and the computation is assumed to be indivisible.

Sanders et al. [23] exploit in and out bandwidths. Although the reduction
does not require to be applied on arrays, the operation is split in at least two
parts. This improves the approach based on a binary tree by a factor of two.

Legrand et al. [16] study steady-state situations where a series of reduc-
tions are performed. As in our work, the reduction operation is assumed to be
indivisible, transfers and computations can overlap and the full-duplex 1-port
model is considered. The solution is based on a linear program and produces
asymptotically optimal schedules with heterogeneous costs.

Liu et al. [17] propose a 2-approximation algorithm for heterogeneous costs
and non-overlapping transfers and computations. Additionally, they solve the
problem when there are only two possible speeds or when any communication
time is a multiple of any shorter communication time. In the homogeneous case,
their solution builds binomial trees, which are covered in Section 3.

In the MPI context, Kielmann et al. [15] design algorithms for collective
communications, including MPI_Reduce, in hierarchical platforms. They pro-
pose three heuristics: flat tree for short messages, binomial tree for long mes-
sages and a specific procedure for associative reductions in which data are first
reduced locally on each cluster before the results are sent to the root process.
Pjesivac-Grbovic et al. [19] conduct an empirical and analytical comparison of
existing heuristics for several collective communications. The analytical costs
of those algorithms are first determined using different classical point-to-point
communication models, such as Hockney, LogP/LogGP and PLogP. The com-
pared solutions are: flat tree, pipeline, binomial tree, binary tree and k-ary tree.
Thakur et al. [24] perform a similar study for several MPI collective operations
and compare the binomial tree with the butterfly algorithm [20] for MPI_Reduce.
These works, however, do not provide any guarantee on the performance.

Finally, this problem has also been addressed for MapReduce applications.
Agarwal et al. [1] present an implementation of allreduce on top of Hadoop
based on spanning trees. Moreover, some MapReduce infrastructures, such as
MapReduce-MPI1, are based on MPI implementations and benefits from the
improvements done on MPI_Reduce.

The design and the analysis of algorithms in dynamic context has already
received some attention. The closest related work is probably [9], in which
the authors study the robustness of several task-graph scheduling heuristics for
building static schedules. The schedules are built with deterministic costs and
the performance is measured using random costs. [5] studies the problem of

1http://www.sandia.gov/~sjplimp/mapreduce.html

RR n° 8315



Non-clairvoyant reduction algorithms for heterogeneous platforms 5

computing the average performance of a given class of applications (stream-
ing applications) in a probabilistic environment. With dynamic environments
comes the need for robustness to guarantee that a given schedule will behave
well in a disturbed environment. Among others, [8] studies and compares dif-
ferent robustness metrics for makespan/reliability optimization on task-graph
scheduling. Optimizing the performance for task-graph scheduling in dynamic
environments is a natural follow-up, and has been tackled notably using the
concepts of IC and AREA-maximizing schedules [11].

3 Model and algorithms
In this section, we present the platform model and the algorithms studied
throughout the paper.

3.1 Platform model
We consider a set of n processors (or nodes) P0, . . . , Pn−1. Each processor Pi
owns a value vi. We consider an associative operation ⊕. Our goal is to compute
the value v = v0 ⊕ v2 ⊕ · · · ⊕ vn−1. We do not enforce a particular location for
the result: at the end of the reduction, it may be present on any node.

There are two versions of the problem, depending on whether the⊕ operation
is commutative or not. For example, when dealing with numbers, the reduction
operation (sum, product, etc.) is usually commutative while some operations on
matrices (such as the product) are not. The algorithms proposed and studied
below may handle only the commutative reductions or both versions.

We denote by di,j the time needed to send one value from processor Pi to
processor Pj . A value may be an initial value or a partial result. When a
processor Pi receives a value from another processor, it immediately computes
the reduction with its current value. We assume that each processor can receive
at most one result at a time. The communication costs are heterogeneous, that
is we may well have different communication costs depending on the receiver
(di,j 6= di,j′), on the sender (di,j 6= di′,j) and non-symmetric costs (di,j 6= dj,i).
Even though these costs are fixed, we consider non-clairvoyant algorithms that
make decisions without any knowledge of these costs.

The computation time of the atomic reduction on processor Pi is denoted
by ci. In the case of a non-commutative operation, we ensure that a processor
sends its value only to a processor that is able to perform a reduction with its
own value. Formally, assume that at a given time, a processor owns a value that
is the reduction of vi ⊕ · · · ⊕ vj , which we denote by [vi, vj ]. It may only send
this value to a processor owning a value [vk, vi−1] or [vj+1, vk], which is called a
neighbor value in the following.

Note that in the following, we usually assume that we do not know the values
of communication or computation costs beforehand, but only some information
on them, such as lower and upper bounds or their distribution.

3.2 Reduction algorithms
During a reduction operation, a processor sends its value at most once, but may
receive several values. It computes a partial reduction each time it receives a

RR n° 8315



Non-clairvoyant reduction algorithms for heterogeneous platforms 6

P0

P1

P2

P3

P0

P2 P1

P3

Figure 1: Schedule and communication graph for reducing four values. Blue
arrows represent communications while red springs stand for computations.

P0

P1

P2

P3

P4

P5

P6

P7

(a) Binomial-stat

P0

P1

P2

P3

P4

P5

P6

P7

(b) Fibonacci-stat

Figure 2: Schedules for Binomial-stat of order 3 and Fibonacci-stat of or-
der 4, both using 8 processors. For Fibonacci-stat, the two schedules of order
2 and 3 used in the recursive construction are highlighted in green and red.

value. Thus, the communication graph of a reduction is a tree (see Figure 1): the
vertices of the tree are the processors and its edges are the communications of
values (initial or partially reduced values). In the example, P0 receives the initial
value from P1, and then a partially reduced value from P2. In the following, we
sometimes identify a reduction algorithm with the tree it produces.

We now present the four algorithms that are studied in this paper. The
first two algorithms are static algorithms, i.e., the tree is built before the actual
reduction. Thus, they may be applied for commutative or non-commutative
reductions. The last two algorithms are dynamic: the tree is built at run-time
and depends on the durations of the operations.

The first algorithm, called Binomial-stat, is organized with dlog2 ne rounds.
Each round consists in reducing a pair of processors that own a temporary or
initial data using a communication and a computation. During round k =
1, . . . , dlog2 ne, each processor i2k+2k−1 (i = 0, . . .) sends its value to processor
i2k, which reduces it with its own value. Note that rounds are not synchronized
throughout the platform: each communication starts as soon as the involved
processors are available and have terminated the previous round. We can notice
that the communication graph induced by this strategy is a binomial tree [12,
Chapter 19], hence the name of the algorithm. This strategy is illustrated on
Figure 2(a).

The second algorithm, called Fibonacci-stat, is constructed in a way similar
to Fibonacci numbers. The schedule constructed for order k, denoted by FSk
(k > 0) first consists in two smaller order schedules FSk−1 and FSk−2 put in

RR n° 8315



Non-clairvoyant reduction algorithms for heterogeneous platforms 7

parallel. Then, during the last computation of FSk−1, the root of FSk−2 (that
is, the processor that owns its final value) sends its value to the root of FSk−1,
which then computes the last reduction. A schedule of order -1 or 0 contains
a single processor and no operation. This process is illustrated on Figure 2(b).
Obviously, the number of processors involved in such a schedule of order k is
Fk+2, the (k + 2)th Fibonacci number. When used with another number n of
processors, we compute the smallest order k such that Fk+2 ≥ n and use only
the operations corresponding to the first n processors in the schedule of order k.

The previous two schedules were proposed in [7], where their optimality is
proved for special homogeneous cases: Binomial-stat is optimal either when
the computations are negligible in front of communications (ci = 0 and di,j =
d) or either when the communications are negligible in front of computations
(ci = c and di,j = 0). Fibonacci-stat is optimal when computations and
communications are equivalent (ci = c = di,j = d). In the non-commutative
case, both algorithms build a tree such that only neighboring partial values are
reduced. In the commutative case, any permutation of processors can be chosen.

Then, we move to the design of dynamic reduction algorithms, i.e., algo-
rithms that take communication decisions at runtime. The first dynamic algo-
rithm, called Tree-dyn, is a simple greedy algorithm. It keeps a slot (initially
empty), and when a processor is idle, it looks into the slot. If the slot is empty,
the processor adds its index in the slot, otherwise it empties the slot and starts
a reduction with the processor that was in the slot (i.e., it sends its value to the
processor that was in the slot, and the latter then computes the reduced value).
It means that a reduction is started as soon as two processors are available.
Since in the obtained reduction tree, any two processors may be paired by a
communication, this can only be applied to commutative reductions.

Finally, Non-Commut-Tree-dyn, is an adaptation of the previous dy-
namic algorithm to non-commutative reductions. In this algorithm, when a
processor is idle, it looks for another idle processor with a neighbor value (as
described above). Now, we keep an array of idle processors rather than a single
slot. If there is an idle neighbor processor, a communication is started between
them, otherwise the processor waits for another processor to become idle.

4 Worst-case analysis for commutative reductions
We analyze the commutative algorithms in the worst case, and we provide some
approximation ratios, focusing on communication times. We let ∆ = D

d , where
d = mini,j di,j and D = maxi,j di,j . We consider that ci = c, i.e., all computa-
tion costs are identical.

Let us first recall results from [7], in the context of identical communication
costs (d = D) and identical computation costs (c). The duration of the schedule
built by Fibonacci-stat at order k is d+ (k− 1) max(d, c) + c, and the number
of reduced elements n is such that Fk+1 ≤ n ≤ Fk+2, where Fk is the kth
Fibonacci number.

4.1 No computation cost
First, we consider that c = 0, i.e., communications are negligible in front of
computations.

RR n° 8315



Non-clairvoyant reduction algorithms for heterogeneous platforms 8

Theorem 1. Without computation cost, Binomial-stat and Tree-dyn are
∆-approximation algorithms, and this ratio can be achieved.

Proof. The proof is in two steps: we first prove the approximation ratio by
showing an upper bound of the results of Binomial-stat and Tree-dyn and
a lower bound of the optimal solution before showing a case that achieves this
ratio.

Let us consider an algorithm that would perform reductions through dlog2(n)e
steps. At each step, all processors possessing an element group themselves in
pair for sending and reducing their elements (they perform their reductions pair-
wise). At each step, half the elements are processed. This algorithm takes at
most a time Ddlog2(n)e, because one communication at each step may be max-
imum. Binomial-stat is better than this algorithm because it has the same
structure for the reductions (the source and destination of each communication
is the same), except that no synchronization is required between each global
step. Indeed, communications happen as soon as possible. Tree-dyn is also
better than this algorithm because two available processors may start as soon
as possible without delaying the remaining steps. Therefore, the time taken by
Binomial-stat and Tree-dyn is not greater than Ddlog2(n)e.

On the other hand, consider the minimum time taken to perform those
reductions: because there are n elements to reduce, there are at least dlog2(n)e
successive reductions. If we assume that the duration of each communication
is minimum (equal to d), we obtain the lower bound ddlog2(n)e to complete all
reductions.

Finally, the approximation ratio is Ddlog2(n)e
ddlog2(n)e = ∆.

Let us exhibit an instance on which the ratio is achieved. Let di,j = d for
1 ≤ i < j ≤ n and di,j = D for all remaining 1 ≤ j < i ≤ n. With both
Binomial-stat and Tree-dyn, we consider that any processor Pi sends its
element to a processor Pj such that i > j, which takes a time Ddlog2(n)e. The
optimal solution, however, consists in avoiding any communication of size D
(with total time of ddlog2(n)e).

However, this result does not hold for Fibonacci-stat and Non-Commut-
Tree-dyn:

• For Fibonacci-stat, consider the schedule in Figure 2(b). Even without
computation costs, the number of communication steps is 4 because P0 has
to receive four messages and these communications must be sequential. If
these four communications take a time D (and all other di,j are d), the
optimal solution may complete in a time 3d, hence a ratio of 4

3∆. We
prove below (see Theorem 2) that Fibonacci-stat is in fact a (∆/ log2 ϕ+

∆/dlog2 ne)-approximation algorithm, where ϕ = 1+
√

5
2 is the golden ratio.

• For Non-Commut-Tree-dyn, the number of steps may well exceed dlog2(n)e
as well. Consider for instance that for a reduction on 8 processors, in the
first step neighboring processors communicate together two by two (as
depicted on Figure 3). However, P4 and P2 terminate slightly before P6

and P0, and initiate a communication. Then P6 and P0 must wait until
completion of this partial reduction, and then two more steps are required
to complete the reduction. Here again, the worst-case ratio is 4

3∆ (with
di,j = D if i > j, and di,j = d otherwise). We do not prove any ap-
proximation ratio for this algorithm, because it does not seem very fair

RR n° 8315



Non-clairvoyant reduction algorithms for heterogeneous platforms 9

P0

P1

P2

P3

P4

P5

P6

P7

Figure 3: Schedule of a worst-case scenario for Non-Commut-Tree-dyn.

to compare a non-commutative version of the algorithm with the optimal
commutative solution.

Theorem 2. Without computation cost, Fibonacci-stat is a (∆/ log2 ϕ +

∆/dlog2 ne)-approximation algorithm, where ϕ = 1+
√

5
2 is the golden ratio (1/ log2 ϕ ≈

1.44).

Proof. Since computation costs are negligible, the makespan of Fibonacci-stat
schedule in the worst case is kD, with k the order of the Fibonacci schedule [7].
We know that n > Fk+1 and, by definition of the Fibonacci numbers, we have
Fk+1 = 1√

5
(ϕk+1−(1−ϕ)k+1). Since −1 < 1−ϕ < 0, it follows that n > Fk+1 ≥

1√
5
(ϕk+1−(1−ϕ)2) (as soon as k ≥ 1). We therefore have ϕk+1 ≤

√
5n+(1−ϕ)2,

and

(k + 1) log2 ϕ ≤ log2 n+ log2

(√
5 +

(1− ϕ)2

n

)
.

Thus

k ≤ log2 n

log2 ϕ
+

log2

(√
5 + (1−ϕ)2

n

)
log2 ϕ

− 1︸ ︷︷ ︸
≤1 when n≥1

Thus, k ≤ log2 n
log2 ϕ

+ 1 ≤ dlog2 ne
log2 ϕ

+ 1. Recall that the lower bound is ddlog2 ne,
hence the approximation ratio of ∆

log2 ϕ
+ ∆
dlog2 ne

.

4.2 Identical computation costs
Next, we consider arbitrary c and we derive approximation ratios with hetero-
geneous communication costs.

Theorem 3. With identical computation costs c, Binomial-stat and Tree-
dyn are (∆ + 1)-approximation algorithms.

Proof. Similarly to the proof of Theorem 1, it is easy to see that Binomial-stat
and Tree-dyn are not slower than an algorithm with dlog2(n)e synchronized
steps, each of duration (c + D) (they work with this number of steps but with
communication times di,j ≤ D and without synchronization between steps).
Thus, their execution time is upper bounded by (c+D)× dlog2(n)e.

The minimum time taken to perform the reductions can also bounded by
max(c, d)×dlog2(n)e, because there are at least dlog2(n)e steps, and even though
communication and computation times may overlap, each step takes at least a

RR n° 8315



Non-clairvoyant reduction algorithms for heterogeneous platforms 10

time max(c, d). Using this bound, we can derive an upper bound on the ratio,
R = c+D

max(c,d) . If c ≤ d, then R = c+D
d ≤ d+D

d = ∆ + 1. Otherwise, d ≤ c

and R = c+D
c = c+d∆

c ≤ c+c∆
c = ∆ + 1, hence the (∆ + 1)-approximation for

Binomial-stat and Tree-dyn.

We did not succeed to achieve the previous ratios. Indeed, strong assump-
tions are made on the optimal solution, and unless c = 0, the number of steps
of an optimal solution is in fact strictly greater than dlog2(n)e, that we used for
comparison. We prove below a better approximation ratio in the case c = d.

Indeed, when c = d, if Fibonacci-stat uses only communications of size d,
then it is optimal and it reduces n elements in time (k+1)d [7]. By definition of
the Fibonacci numbers, we have Fk+1 ≤ n ≤ Fk+2 with Fk = 1√

5
(ϕk+(1−ϕ)k),

where ϕ = 1+
√

5
2 is the golden ratio (log2 ϕ ≈ 0.69). Therefore, asymptotically,

k = log2 n
log2 ϕ

+O(1). The design of Fibonacci-stat is such that communications
and computations overlap, hence the good performance with identical costs.

Theorem 4. With identical computation costs c = d, Binomial-stat and
Tree-dyn are (∆ + 1)(1 + 1/ log2 n) log2 ϕ-approximation algorithms, and this
ratio can be achieved (log2 ϕ ≈ 0.69).

Proof. If c = d, Fibonacci-stat takes at least a time (k + 1)d, assuming that
it uses only communications of cost d. Because it is optimal in that case, the
optimal time is at least (k + 1)d. We have

n ≤ Fk+2 =
1√
5

(ϕk+2 − (1− ϕ)k+2) ≤ 1√
5

(ϕk+2 − (1− ϕ)3)

as soon as k ≥ 1. We easily derive the following inequalities:

ϕk+2 ≥
√

5n+ (1− ϕ)3

(k + 2) log2 ϕ ≥ log2 n+ log2

(√
5 +

(1− ϕ)3

n

)

k ≥ log2 n

log2 ϕ
+

log2

(√
5 + (1−ϕ)3

n

)
log2 ϕ

− 2︸ ︷︷ ︸
≥−1 when n≥1

Thus k+1 ≥ log2 n/ log2 ϕ. We still have an execution time for Binomial-stat
and Tree-dyn upper bounded by (c + D)dlog2 ne (see proof of Theorem 3),
and therefore the ratio writes R ≤ (D+c)dlog2 ne

d log2 n/ log2 ϕ
≤ (D+d

d log2 ϕ)(1 + 1
log2 n

) =

(∆ + 1)(1 + 1
log2 n

) log2 ϕ.
Finally, we exhibit an example where an asymptotic ratio of log2 ϕ(∆ + 1)

is achieved. Consider that di,j = d and dj,i = D, for all i < j. The optimal
solution performs only communications of size d (from Pi to Pj , with j > i),
and in this case with c = d, a solution with a Fibonacci tree using only small
communications is optimal; furthermore, it completes in time (k + 1)d.

On the other hand, Binomial-stat and Tree-dyn perform only commu-
nications of size D (from Pj to Pi, with j > i), and complete in exactly a
time dlog2 ne(D + c). Because asymptotically, k = log2 n

log2 ϕ
+ O(1), the ratio is

D+c
d/ log2 ϕ

+O(1) = log2 ϕ(∆ + 1) +O(1).

RR n° 8315



Non-clairvoyant reduction algorithms for heterogeneous platforms 11

c = 0 c c = d

Binomial-stat ∆ (Th. 1) ∆ + 1 (Th. 3) (∆ + 1)(1 +
1

log2 n
) log2 ϕ (Th. 4)

Tree-dyn ∆ (Th. 1) ∆ + 1 (Th. 3) (∆ + 1)(1 +
1

log2 n
) log2 ϕ (Th. 4)

Fibonacci-stat
∆

log2 ϕ
+

∆

dlog2 ne
(Th. 2)

∆

log2 ϕ
+

2∆

dlog2 ne
(Th. 5) ∆ (Th. 5)

Table 1: Approximation ratios for commutative algorithms with corresponding
theorems.

Now consider Fibonacci-stat in the case of arbitrary c. We have the fol-
lowing theorem:

Theorem 5. With identical computation costs c, Fibonacci-stat is a (∆/ log2 ϕ+
2∆/dlog2 ne)-approximation algorithm (1/ log2 ϕ ≈ 1.44). When we further
have c = d, the ratio becomes ∆.

Proof. The length of the Fibonacci-stat schedule in the worst case is bounded
by D + (k − 1) max(D, c) + c, with k the order of the Fibonacci schedule. We
know that n > Fk+1 and, by definition of the Fibonacci numbers, we have
Fk+1 = 1√

5
(ϕk+1 − (1 − ϕ)k+1). Since −1 < 1 − ϕ < 0, it follows that n >

Fk+1 ≥ 1√
5
(ϕk+1 − (1− ϕ)2) (as soon as k ≥ 1).

We therefore have ϕk+1 ≤
√

5n+ (1− ϕ)2, and

(k + 1) log2 ϕ ≤ log2 n+ log2

(√
5 +

(1− ϕ)2

n

)
Thus

k ≤ log2 n

log2 ϕ
+

log2

(√
5 + (1−ϕ)2

n

)
log2 ϕ

− 1︸ ︷︷ ︸
≤1 when n≥1

Thus, k + 1 ≤ log2 n
log2 ϕ

+ 2 ≤ dlog2 ne
log2 ϕ

+ 2.
Recall that the lower bound is max(c, d)dlog2 ne ≥ ddlog2 ne. If c < D, the

length of the schedule is bounded by (k+ 1)D, hence a ratio of ∆
log2 ϕ

+ 2∆
dlog2 ne

.
If c ≥ D, the lower bound is cdlog2 ne and the length of the schedule is upper
bounded by (k + 1)c, hence an even better approximation ratio of 1

log2 ϕ
+

2
dlog2 ne

. In the particular case where c = d, the optimal cannot be better than
Fibonacci-stat using only communications of size d, because Fibonacci-stat
is optimal when c = d = D. The length of the schedule is bounded by kD + c,
and the optimal is at least kd+ c, hence a ratio of ∆.

Results are summarized in Table 1.

5 Markov chain analysis
In this section, we assume that communication and computation costs are ex-
ponentially distributed (i.e., each di,j for 1 ≤ i, j ≤ n follows an exponential law
with rate λd and each ci for 1 ≤ i ≤ n follows an exponential law with rate λc).

RR n° 8315



Non-clairvoyant reduction algorithms for heterogeneous platforms 12

With this model, both dynamic approaches, Tree-dyn and Non-Commut-
Tree-dyn, may be analysed using memoryless stochastic processes. Intuitively,
each state of those processes is characterized by the number of concurrent com-
munications and computations. A state in which there is neither communication
nor computation is an absorbing state that corresponds to the termination of
a reduction algorithm. In the initial state, there are bn2 c concurrent communi-
cations (and one idle machine that is ready to send its value if n is odd). The
completion time of an algorithm is then the time to reach the final state. To
determine this duration, we use the first-step analysis.

Formally, let P be the transition rate matrix of a continuous-time Markov
chain and s ∈ S be each state. Let φ(s) be a function on S taking real values
(it will be the expected duration spent in state s or its variance). Let wi be
the sum of the application of φ to each state taken by the process until the
final state is reached starting from state si. Then, wi is determined using the
first-state analysis:

wi =

{
φ(si) if si is an absorbing state
φ(si) +

∑n
j=1 pi,jwj otherwise

We apply this analysis to determine the expected duration and the variance
of Tree-dyn with λc = 0. For clarity, n is assumed to be even (the following
analysis can be performed to the cases where n is odd by adapting the initial
state).

In this case, each state si,j is characterized by the number of concurrent
communications i and whether the slot containing a ready processor is empty
(j = 0) or not (j = 1). The initial state is sn

2 ,0
and the final state is s0,1.

There are two kinds of transitions: from state si,0 to state si−1,1 (a commu-
nication terminates and the intermediate result of the local reduction is ready
to be sent to the next available processor) and from state si,1 to state si,0 (a
communication terminates and a new one is initiated with the available proces-
sor identified by the slot) for 1 ≤ i ≤ n

2 . In both cases, the rate of the transition
is determined by the number of concurrent communications, that is iλd.

In order to determine the expected completion time of Tree-dyn (noted
CTree−dyn), we define φ(si,j) as 1

iλd
, the expected time spent is state si,j (zero

for state s0,1). Therefore,

CTree−dyn = wn
2 ,0

=

n
2∑
i=1

φ(si,0) + φ(si−1,1)

=

n
2∑
i=1

1

iλd
+

n
2−1∑
i=1

1

iλd
=

1

λd

(
2H
(n

2
− 1
)

+
2

n

)
where H(n) is the nth harmonic number.

Similarly, we compute the variance of the completion time (noted VTree−dyn)
by defining φ(si,j) as zero for state s0,1 and 1

i2λ2
d
otherwise:

VTree−dyn =
1

λ2
d

2

n
2−1∑
i=1

1

i2
+

4

n2



RR n° 8315



Non-clairvoyant reduction algorithms for heterogeneous platforms 13

6 Simulation results
In this section, we consider that the dij and ci costs are distributed according
to a gamma distribution, which is a generalization of exponential and Erlang
distributions. This distribution has advocated for modeling job runtimes [18,
14]. It is positive and it is possible to specify its expected value (µd or µc) and
standard deviation (σd or σc) by adjusting its parameters.

When comparing several methods, the same seed is used for each of them
such that the same costs are obtained in the same order (e.g., the kth started
communication will have the same cost for all methods). This preserves the
average behavior, which is our primary study object, but allows for a more
stable comparison of the methods especially when the distribution variance (or
the platform heterogeneity) is high.

6.1 Cost dispersion effect
In this first simulation, we are interested in characterizing how the dispersion
of the communication costs affects the performance of all methods. In order to
simplify this study, no computation cost is considered (µc = 0). The dispersion
is defined through the coefficient of variation (CV), which is defined as the ratio
of the standard deviation over the expected value (this latter is set to 1). The
number of processors is n = 64 and the time taken by each method is measured
over 1 000 000 Monte Carlo (MC) simulations.

On a global level, Figure 4 shows the expected performance with distinct CVs.
When the heterogeneity is noticeable (CV greater than 1), the performance de-
creases significantly. In those cases, schedules are mostly affected by a few
extreme costs whose importance depends on the CV (even though the average
cost remains the same, extreme values tend to increase with the CV). Addition-
ally, the variability in the schedule durations is also impacted by the CV (i.e.,
two successive executions with the same settings may lead to radically different
performance depending on the schedule).

Several observations can be made relatively to each method. As expected,
Binomial-stat is similar to Tree-dyn for CV lower than 10%. In this case, the
improvement offered by Tree-dyn may not outweigh the advantage of following
a static plan in terms of synchronization. For CV greater than 1, both static
approaches (Binomial-stat and Fibonacci-stat) perform equally with a sim-
ilar dispersion. For all CV, Tree-dyn has the best expected performance while
Fibonacci-stat has the worst, and Non-Commut-Tree-dyn has the second
best expected performance when the CV is greater than 30%. Finally, when the
CV is close to 10, all methods are equivalent as a single communication with
a large cost may impact the entire schedule duration. In terms of robustness,
we can see that Fibonacci-stat and Non-Commut-Tree-dyn are the two
best methods for absorbing variations as their expected durations remains sta-
ble longer (until the CV reaches 30%). This is due the presence of idleness in
their schedules that can be used when required. Finally, the ribbons for Non-
Commut-Tree-dyn are large even for low CV values due to its multi-modal
behavior (an additional step is sometimes required depending on the scheduling
decisions).

Note that by reusing the same seed, we can check that all methods behave
extremely similarly with the same costs when the dispersion is high. Given

RR n° 8315



Non-clairvoyant reduction algorithms for heterogeneous platforms 14

10

20

50

0.10 1.00 10.000.01
Coefficient of variation

S
ch

ed
ul

e 
le

ng
th

Method Binomial−stat Fibonacci−stat Tree−dyn Non−Commut−Tree−dyn

Effect of the CV on the performances

Figure 4: Average schedule length for each method over 1 000 000 MC simula-
tions with n = 64, µd = 1, µc = 0 and varying coefficients of variation for the
communication costs. The lower part of the ribbons corresponds to the 10%
quantile while the upper part corresponds to the 90% quantile for each method.

the large dispersion, a much larger number of MC simulations would have been
required to reach this conclusion without reusing the same seed (the right-most
part of the curves shows indeed greater variations than the rest).

6.2 Non-negligible computation
When considering nonzero computation costs, we reduce the number of param-
eters by applying the same CV to the computation and to the communication
costs (i.e., σc

µc
= σd

µd
). As Fibonacci-stat is designed for overlapping com-

putations and communications, we characterize the cases when this approach
outperforms Tree-dyn (i.e., the cases for which exploiting this overlapping com-
pensates for ignoring the cost dispersion). The ratio µc

µd
controls the amount of

possible overlapping between the computation and the communication costs.
Figure 5 shows the improvement of Tree-dyn over Fibonacci-stat when

varying the CV and the ratio µc

µd
(the overlapping degree between computations

and communications). The contour line with value 1 delimits the area for which
Fibonacci-stat is better than Tree-dyn on average. This occurs when the

RR n° 8315



Non-clairvoyant reduction algorithms for heterogeneous platforms 15

10%

20%

50%

100%

200%

500%

1,000%

0.01 0.10 1.00 10.00
Coefficient of variation

P
ro

po
rt

io
n 

of
 c

om
pu

ta
tio

n 
co

st
s

0.9 1.0 1.1 1.2
Performance ratio

Effect of the CV and computation costs on the Fibonacci−stat performance

Figure 5: Ratio of the average performance of Fibonacci-stat and Tree-dyn
over 1 000 MC simulations for each square with n = 64, µd = 1, σc

µc
= σd

µd
,

varying coefficients of variation for the costs and varying µc

µd
. Fibonacci-stat

outperforms Tree-dyn when the ratio is lower than 1 (on the center left side).

computation cost is greater than around half the communication cost and when
the variability is limited. When the computation costs are low (µc

µd
= 0.1), the

ratio decreases when the CV increases until this later reaches 0.2. Then, the
ratio increases until the CV is around 1, and decreases again for larger CV. This
is consistent with the previous observations.

Note that this figure only shows the average performance ratio. When the
variability increases, Fibonacci-stat may outperform Tree-dyn depending on
the actual costs (as seen on Figure 4) even though the later is expected to be
better on average.

Figure 5 is horizontally symmetrical as any case such that µc

µd
> 1 is equiv-

alent to the situation where the communication and the computation costs are
swapped (and for which µc

µd
< 1). These costs can be exchanged because a

communication is always followed by a reduction operation.

RR n° 8315



Non-clairvoyant reduction algorithms for heterogeneous platforms 16

6.3 Non-commutative reduction
Finally, we assess the performance of Non-Commut-Tree-dyn by compar-
ing it to all other methods that support a non-commutative operation (i.e.,
Binomial-stat and Tree-dyn) when varying the dispersion and the overlap-
ping degree as in the previous study.

10%

20%

50%

100%

200%

500%

1,000%

0.01 0.10 1.00 10.00
Coefficient of variation

P
ro

po
rt

io
n 

of
 c

om
pu

ta
tio

n 
co

st
s

Method Binomial−stat Fibonacci−stat Non−Commut−Tree−dyn

Expected best method with varying overlapping and variability

Figure 6: Method with the best average performance over 1 000 MC simulations
for each square with n = 64, µd = 1, σc

µc
= σd

µd
, varying coefficients of variation

for the costs and varying µc

µd
.

Figure 6 shows the expected best method (the method with the best aver-
age performance) when varying the CV and the ratio µc

µd
. We see that Non-

Commut-Tree-dyn has the best performance when the cost dispersion is large.
Additionally, the transition from Binomial-stat to Fibonacci-stat is when the
computation cost reaches half the communication cost. Lastly, Fibonacci-stat
is more robust to cost dispersion when µc = µd than Binomial-stat when
µc

µd
= 0.1 even though the corresponding schedules have no idleness. This can

be explained by the fact that in Fibonacci-stat, operations are pipelined on
processors and thus, the costs on the same processor may counterbalance them-
selves (a higher cost for a reduction may be absorbed by a subsequent lower
cost).

Again, with low computation costs (µc

µd
= 0.1), the results are consistent with

RR n° 8315



Non-clairvoyant reduction algorithms for heterogeneous platforms 17

Figure 4. Moreover, with low CV (lower than 0.1), the transition between the
best method among Binomial-stat and Fibonacci-stat occurs when µc

µd
= 0.5

as on Figure 5 (with Tree-dyn and Fibonacci-stat, but with low CV, Tree-
dyn and Binomial-stat are equivalent).

Note that Figure 6 has the same symmetry as Figure 5 and that the vari-
ability also increases with the CV (as before).

7 Conclusion
In this paper, we have studied the problem of performing a non-clairvoyant re-
duction on a distributed heterogeneous platform. Specifically, we have compared
the performance of traditional static algorithms, which build an optimized re-
duction tree beforehand, against dynamic algorithms, which organize the reduc-
tion at runtime. Our study includes both commutative and non-commutative
reductions. We have first proposed approximation ratios for all commutative
algorithms using a worst-case analysis. Then, we have proposed a Markov
chain analysis for dynamic algorithms. Finally, we have evaluated all algorithms
through extensive simulations to show when dynamic algorithms become more
interesting than static ones. We have outlined that dynamic algorithms gener-
ally achieve better makespan, except when the heterogeneity is limited and for
specific communication costs (no communication cost for Binomial-stat, com-
munication costs equivalent to computation costs for Fibonacci-stat). The
worst-case analysis has also confirmed this last observation.

As future work, we plan to investigate more complex communication models,
such as specific network topologies. It would also be interesting to design a
better dynamic algorithm for non-commutative reductions, which avoids the
situation when many processors are idle but cannot initiate a communication
since no neighboring processors are free.

References
[1] A. Agarwal, O. Chapelle, M. Dudík, and J. Langford. A Reliable Effective

Terascale Linear Learning System. CoRR, abs/1110.4198, 2011.

[2] Q. Ali, V. S. Pai, and S. P. Midkiff. Advanced collective communication
in Aspen. In International Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’08, pages 83–93, New York, NY,
USA, 2008.

[3] A. Bar-Noy, J. Bruck, C.-T. Ho, S. Kipnis, and B. Schieber. Computing
global combine operations in the multiport postal model. IEEE Transac-
tions on Parallel and Distributed Systems, 6(8):896–900, Aug. 1995.

[4] A. Bar-Noy, S. Kipnis, and B. Schieber. An optimal algorithm for com-
puting census functions in message-passing systems. Parallel Processing
Letters, 3(1):19–23, 1993.

[5] A. Benoit, F. Dufossé, M. Gallet, Y. Robert, and B. Gaujal. Computing the
throughput of probabilistic and replicated streaming applications. In Proc.

RR n° 8315



Non-clairvoyant reduction algorithms for heterogeneous platforms 18

of SPAA, Symp. on Parallelism in Algorithms and Architectures, pages
166–175, 2010.

[6] J. Bruck and C.-T. Ho. Efficient global combine operations in multi-port
message-passing systems. Parallel Processing Letters, 3(4):335–346, 1993.

[7] L.-C. Canon and G. Antoniu. Scheduling Associative Reductions with Ho-
mogeneous Costs when Overlapping Communications and Computations.
Rapport de recherche RR-7898, INRIA, Mar. 2012.

[8] L.-C. Canon and E. Jeannot. Evaluation and optimization of the robustness
of dag schedules in heterogeneous environments. IEEE Trans. Parallel
Distrib. Syst., 21(4):532–546, 2010.

[9] L.-C. Canon, E. Jeannot, R. Sakellariou, and W. Zheng. Comparative
Evaluation of the Robustness of DAG Scheduling Heuristics. In Proceedings
of CoreGRID Integration Workshop, Heraklion-Crete, Greece, Apr. 2008.

[10] E. W. Chan, M. F. Heimlich, A. Purkayastha, and R. A. van de Geijn.
Collective communication: theory, practice, and experience. Concurrency
and Computation: Practice and Experience, 19(13):1749–1783, 2007.

[11] G. Cordasco, R. D. Chiara, and A. L. Rosenberg. On scheduling dags
for volatile computing platforms: Area-maximizing schedules. J. Parallel
Distrib. Comput., 72(10):1347–1360, 2012.

[12] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. The MIT Press, 3rd edition, 2009.

[13] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large
clusters. Communications of the ACM, 51(1):107–113, 2008.

[14] D. Feitelson. Workload modeling for computer systems performance eval-
uation. Book Draft, Version 0.38, 2013.

[15] T. Kielmann, R. F. H. Hofman, H. E. Bal, A. Plaat, and R. A. F. Bhoed-
jang. MPI’s reduction operations in clustered wide area systems, 1999.

[16] A. Legrand, L. Marchal, and Y. Robert. Optimizing the steady-state
throughput of scatter and reduce operations on heterogeneous platforms.
Journal of Parallel and Distributed Computing, 65(12):1497–1514, 2005.

[17] P. Liu, M.-C. Kuo, and D.-W. Wang. An Approximation Algorithm and
Dynamic Programming for Reduction in Heterogeneous Environments. Al-
gorithmica, 53(3):425–453, Feb. 2009.

[18] U. Lublin and D. G. Feitelson. The workload on parallel supercomput-
ers: modeling the characteristics of rigid jobs. J. Parallel Distrib. Comp.,
63(11):1105–1122, 2003.

[19] J. Pjesivac-Grbovic, T. Angskun, G. Bosilca, G. Fagg, E. Gabriel, and
J. Dongarra. Performance analysis of MPI collective operations. In IEEE
International Parallel and Distributed Processing Symposium, IPDPS, Apr.
2005.

RR n° 8315



Non-clairvoyant reduction algorithms for heterogeneous platforms 19

[20] R. Rabenseifner. Optimization of Collective Reduction Operations. In
M. Bubak, G. van Albada, P. Sloot, and J. Dongarra, editors, Computa-
tional Science - ICCS 2004, volume 3036 of Lecture Notes in Computer
Science, pages 1–9. 2004.

[21] R. Rabenseifner and J. L. Träff. More Efficient Reduction Algorithms
for Non-Power-of-Two Number of Processors in Message-Passing Parallel
Systems. In Recent Advances in Parallel Virtual Machine and Message
Passing Interface, Lecture Notes in Computer Science. Springer Berlin,
2004.

[22] H. Ritzdorf and J. L. Träff. Collective operations in NEC’s high-
performance MPI libraries. In IEEE International Parallel and Distributed
Processing Symposium, IPDPS, Apr. 2006.

[23] P. Sanders, J. Speck, and J. L. Träff. Two-tree algorithms for full bandwidth
broadcast, reduction and scan. Parallel Computing, 35(12):581–594, 2009.

[24] R. Thakur, R. Rabenseifner, and W. Gropp. Optimization of Collective
communication operations in MPICH. International Journal of High Per-
formance Computing Applications, 19:49–66, 2005.

[25] R. A. van de Geijn. On global combine operations. Journal of Parallel and
Distributed Computing, 22(2):324–328, 1994.

[26] T. White. Hadoop: The definitive guide. Yahoo Press, 2010.

[27] M. Zaharia, A. Konwinski, A. Joseph, R. Katz, and I. Stoica. Improving
mapreduce performance in heterogeneous environments. In Proc. of the
8th USENIX conf. on Operating systems design and implementation, pages
29–42, 2008.

RR n° 8315



RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée
655 avenue de l’Europe Montbonnot
38334 Saint Ismier Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399


