J. K. Aggarwal and Q. Cai, Human Motion Analysis: A Review, Computer Vision and Image Understanding, vol.73, issue.3, pp.428-440, 1999.
DOI : 10.1006/cviu.1998.0744

M. Cuturi, J. Vert, O. Birkenes, and T. Matsui, A Kernel for Time Series Based on Global Alignments, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '07, 2006.
DOI : 10.1109/ICASSP.2007.366260

A. C. Damianou, M. K. Titsias, L. , and N. D. , Variational gaussian process dynamical systems, Neural Information Processing Systems Conference, pp.2510-2518, 2011.

D. Gong and G. Medioni, Dynamic Manifold Warping for view invariant action recognition, 2011 International Conference on Computer Vision, 2011.
DOI : 10.1109/ICCV.2011.6126290

W. Härdle and W. Simar, Applied Multivariate Statistical Analysis, 2003.

N. D. Lawrence, Gaussian process latent variable models for visualisation of high dimensional data, Neural Information Processing Systems Conference, 2003.

N. D. Lawrence, Q. Candela, and J. , Local distance preservation in the GP-LVM through back constraints, Proceedings of the 23rd international conference on Machine learning , ICML '06, pp.513-520, 2006.
DOI : 10.1145/1143844.1143909

Y. Li, C. Fermüller, Y. Aloimonos, J. , and H. , Learning shift-invariant sparse representation of actions, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.2630-2637, 2010.
DOI : 10.1109/CVPR.2010.5539977

C. Microsoft, Kinect, 2010.

T. B. Moeslund, A. Hilton, and V. Krüger, A survey of advances in vision-based human motion capture and analysis, Computer Vision and Image Understanding, vol.104, issue.2-3, pp.90-126, 2006.
DOI : 10.1016/j.cviu.2006.08.002

P. Mordohai and G. G. Medioni, Dimensionality estimation, manifold learning and function approximation using tensor voting, Journal of Machine Learning Research, vol.11, pp.411-450, 2010.

M. Müller, Information Retrieval for Music and Motion, 2007.
DOI : 10.1007/978-3-540-74048-3

M. Müller, T. Röder, and M. Clausen, Efficient content-based retrieval of motion capture data, SIG- GRAPH, pp.677-685, 2005.

M. Muller, T. Roder, M. Clausen, B. Eberhardt, B. Krüger et al., Documentation mocap database hdm05, 2007.

V. Ntouskos, P. Papadakis, and F. Pirri, A comprehensive analysis of human motion capture data for action recognition, Proceedings of the International Conference on Computer Vision Theory and Applications, pp.647-652, 2012.

T. Poggio, Early vision: From computational structure to algorithms and parallel hardware, Computer Vision, Graphics, and Image Processing, pp.31139-155, 1985.
DOI : 10.1016/S0734-189X(85)80003-7

C. Rasmussen and C. Williams, Gaussian processes for machine learning. Adaptive computation and machine learning, 2006.

S. Roweis and L. Saul, Nonlinear Dimensionality Reduction by Locally Linear Embedding, Science, vol.290, issue.5500, pp.2902323-2326, 2000.
DOI : 10.1126/science.290.5500.2323

Y. Sheikh, M. Sheikh, and M. Shah, Exploring the space of a human action, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1, pp.144-149, 2005.
DOI : 10.1109/ICCV.2005.90

H. Shimodaira, K. Noma, M. Nakai, and S. Sagayama, Dynamic Time-Alignment Kernel in Support Vector Machine, Neural Information Processing Systems Conference, pp.921-928, 2001.

G. W. Taylor, G. E. Hinton, R. , and S. T. , Modeling human motion using binary latent variables, Neural Information Processing Systems Conference, pp.1345-1352, 2006.

J. B. Tenenbaum, V. D. Silva, and J. C. Langford, A Global Geometric Framework for Nonlinear Dimensionality Reduction, Science, vol.290, issue.5500, 2000.
DOI : 10.1126/science.290.5500.2319

M. K. Titsias and N. D. Lawrence, Bayesian gaussian process latent variable model, Journal of Machine Learning Research -Proceedings Track, vol.9, pp.844-851, 2010.

P. K. Turaga, R. Chellappa, V. S. Subrahmanian, and O. Udrea, Machine Recognition of Human Activities: A Survey, IEEE Transactions on Circuits and Systems for Video Technology, vol.18, issue.11, pp.181473-1488, 2008.
DOI : 10.1109/TCSVT.2008.2005594

R. Urtasun and T. Darrell, Discriminative Gaussian process latent variable model for classification, Proceedings of the 24th international conference on Machine learning, ICML '07, pp.927-934, 2007.
DOI : 10.1145/1273496.1273613

R. Urtasun, D. J. Fleet, and P. Fua, 3D People Tracking with Gaussian Process Dynamical Models, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Volume 1 (CVPR'06), pp.238-245, 2006.
DOI : 10.1109/CVPR.2006.15

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

R. Urtasun, D. J. Fleet, A. Geiger, J. Popovic, T. Darrell et al., Topologicallyconstrained latent variable models, International Conference on Machine Learning, pp.1080-1087, 2008.

D. Waltisberg, A. Yao, J. Gall, V. Gool, and L. , Variations of a Hough-Voting Action Recognition System, International conference on Pattern Recognition, pp.306-312, 2010.
DOI : 10.1007/978-3-642-17711-8_31

J. M. Wang, D. J. Fleet, and A. Hertzmann, Gaussian process dynamical models, Neural Information Processing Systems Conference, pp.1441-1448, 2006.
DOI : 10.1109/tpami.2007.1167

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. Yao, J. Gall, G. Fanelli, and L. V. Gool, Does Human Action Recognition Benefit from Pose Estimation?, Procedings of the British Machine Vision Conference 2011, pp.67-68, 2011.
DOI : 10.5244/C.25.67

A. Yao, J. Gall, and L. J. Gool, A Hough transform-based voting framework for action recognition, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.2061-2068, 2010.
DOI : 10.1109/CVPR.2010.5539883

X. Zhang and G. Fan, Joint gait-pose manifold for video-based human motion estimation, CVPR 2011 WORKSHOPS, pp.47-54, 2011.
DOI : 10.1109/CVPRW.2011.5981795