
HAL Id: hal-00835010
https://inria.hal.science/hal-00835010

Submitted on 18 Jun 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Pareto-based Genetic Algorithm for Optimized
Assignment of VM Requests on a Cloud Brokering

Environment
Yacine Kessaci, Nouredine Melab, El-Ghazali Talbi

To cite this version:
Yacine Kessaci, Nouredine Melab, El-Ghazali Talbi. A Pareto-based Genetic Algorithm for Opti-
mized Assignment of VM Requests on a Cloud Brokering Environment. CEC - IEEE Congress on
Evolutionary Computation - 2013, Jun 2013, Cancun, Mexico. �hal-00835010�

https://inria.hal.science/hal-00835010
https://hal.archives-ouvertes.fr

A Pareto-based Genetic Algorithm for Optimized Assignment of VM Requests on a
Cloud Brokering Environment

Yacine Kessaci, Nouredine Melab
and El-Ghazali Talbi

INRIA Lille, CNRS/LIFL, Universit́e Lille 1.
Parc Scientifique de la Haute Borne,

6 rue H́eloise B̂at.B, Park Plaza,
59650 Villeneuve d’Ascq, France.

Email: {yacine.kessaci, nouredine.melab, talbi}@lifl.fr

Abstract—In this paper, we deal with cloud brokering for
the assignment optimization of VM requests in three-tier cloud
infrastructures. We investigate the Pareto-based meta-heuristic
approach to take into account multiple client and broker-
centric optimization criteria. We propose a new multi-objective
Genetic Algorithm (MOGA-CB) that can be integrated in a
cloud broker. Two objectives are considered in the optimization
process: minimizing both the response time and the cost of the
selected VM instances to satisfy the clients and to maximize the
profit of the broker. The approach has been experimented using
realistic data of different types of Amazon EC2 instances and
their pricing history. The reported results show that MOGA-
CB provides efficiently effective Pareto sets of solutions.

Keywords-cloud computing; cloud brokering; scheduling;
VM instances; VM requests; multi-objective optimization;
genetic algorithm; client satisfaction

I. I NTRODUCTION

Cloud computing is an emerging computer science
paradigm of distributed computing in which applications,
data and infrastructures are proposed as a service that can
be consumed in a ubiquitous, flexible and transparent way.
This facilitation helped to develop the notion of the resources
on demand with pay-as-you-go as an economic model. The
computing paradigm can be modeled in two ways. In the
first way there is a direct link between the client and the
infrastructure service provider. This type of cloud model is
a two-tier model. The other type called three-tier model,
includes another tier that plays a mediatory role between the
client and the provider. The name of this new actor is the
broker. The growth of cloud computing paradigm is mainly
caused by the trend of reducing the total cost of ownership
(TCO). Indeed, the client and/or the broker tiers aim to be
released from the infrastructures constraints and therefore
form their expenditures.

A lot of works [1], [2] have been proposed to enhance
the performances of the two-tier model in different fields.
The major issues that arise from this type of cloud models
without a broker tier are the high variability in the quality
of service proposed by the infrastructure service providers.
Indeed, in a two-tier model the provider has the full control

over the services and the prices that he/she proposes to the
clients. Therefore, since each tier tries to maximize his/her
own profits, the client, powerless, follows the market law.
Besides, another reason for this variability is due to the
existence of a multitude of infrastructure cloud providers
(Amazon, Rackspace, ...) which adds concurrency between
them taking the clients as hostage. In addition, because of
their number and the different instances features that they
propose, the client is unable to know or to choose the
good instances at the right moment. Hence, one can see
the interest of having a new tier (broker), to find a tradeoff
between the two parts. The model used in economics to
represent the needs of both the client and the provider is
called the utility model. This model depicts the relationship
between the provided resources and their needs. Some works
such as [3], [4] used this model in computer science and gave
birth to a new concept called theutility computing.

In this paper, we use this notion of utility computing
and present a new work that tackles two main parameters
that affect cloud brokering, the prices of VM instances and
their response time. The objective is to minimize those
objectives in order to give the best quality of service
(QoS) to the clients by reaching their satisfaction rate while
providing an interesting profit for the cloud broker. Indeed,
we propose a multi-objective genetic algorithm for cloud
brokering (MOGA-CB). It provides a set of Pareto optimal
assignments by dispatching the client’s virtual machines
(VM) requests over the best combination of instances with
the minimum cost and response time. This approach uses
information provided by the infrastructure service provider
(e.g. Amazon) to retrieve the prices of those instances and
their different performances to reach its objectives. MOGA-
CB makes this possible by its capacity as a metaheuristic, to
explore a wide range of potential solutions to the problem.

The main contributions of this paper are the following:
• Using a Pareto multi-objective genetic algorithm for

cloud brokering assignment to deal at the same time
with the two main criteria that compose the broker’s
profit and the clients’ satisfaction.

• Analyzing the different behaviors of MOGA-CB
through different configurations and highlighting the
relationship between the satisfaction/profit results and
the addressed objectives.

• Simplifying through the Pareto multi-objective genetic
approach the utility theory in economics [5] that pro-
poses a client’s satisfaction modeling.

The remainder of the paper is organized as follows. In
Section II we present the related work. Section III presents
the system, satisfaction and profit models used in our prob-
lem modeling. Our approach is presented in Section IV. The
results of our experimental study are discussed in Section V.
The conclusion is drawn in Section VI.

II. RELATED WORK

Several works have been proposed in the field of the cloud
computing to deal with different issues. Those issues let the
works be classified in two categories. The first category
is derived from the grids and for which the major goal
is performance improvement. The cloud model is thus a
two-tier model, where the provider proposes directly the
services to the clients. The economic model is static, like
in [6], where two algorithms based on a pricing model
are proposed. They both use processor sharing in order to
balance between conflicting objectives (profit and resource
utilization). In [7],Burge et al.describe an allocation method
for heterogeneous machines that maximizes the profit by
affecting the requests to the machines according to their
energy cost. Other approaches based on genetic algorithms
and dealing with profit are presented in [8] and [9]. In [9] a
linear programming driven genetic algorithm is proposed. In
fact, this latter aims to provide the best meta-scheduling in
a utility grid based on the idea of minimizing the combined
costs of all users in a coordinated way. Yu and Buyya
in [8] present a genetic algorithm approach to address
scheduling optimization for workflow applications with two
QoS constraints (deadline and budget).

However, the marketing of cloud computing paradigm
raises a number of issues. Indeed, performance implies
expensiveness, mainly when dealing with cloud models
where the provider has a full economic control and where
the pricing policy is pay-as-you-go. To deal with those
issues the second category together with a new model has
been introduced. In the latter, a third tier appears and plays
the role of an intermediate to find the tradeoff between
customers’ needs and the providers’ profits. A set of works
have been conducted over this new model. The work in [10],
proposes an optimal virtual machine placement algorithm.
The objective is to minimize the costs while assigning VMs
in a multiple cloud provider environment. For that, they
use a strategy that avoids the two extreme (over and under)
assignments. The approach fits the correct resources needs
by adjusting the pricing according to the load arrival of VMs.

In [11], the authors outline usage scenarios and a set
of requirements for a federation of cloud infrastructures
based on RESERVOIR. They also propose an accounting
and billing architecture between resource consumers and
infrastructure providers to be used within RESERVOIR. The
objective is to cope with the migration of virtual machines by
managing postpaid and prepaid payment schemes according
to the users needs.

In the work presented in [12], the proposed algorithm aims
to reallocate virtual machines in a large cloud. The approach
consists in identifying only the critical instances using the
load trend behavior instead of the thresholds to be used to
take decisions.

In [13], the authors present a study in which they compare
the VM placement mechanisms over a multi-provider and
multi-site cloud. They prove how cloud brokering mecha-
nisms over a multi-provider cloud affects beneficially the
VM deployment by improving the performance while lower-
ing the costs. In [14], the authors focus on different schedul-
ing strategies for an optimal deployment across multiple
clouds. They present a modular broker architecture based on
different scheduling strategies using different optimization
criteria, constraints and environmental conditions.

All of the above surveyed works, present different bro-
kering approaches to deal with a set of objectives. However,
none of those works consider the relationship between the
charged price and the provided performance. They also do
not pay attention on how each of those criteria can affect
the others. The work presented byChen et al.in [15] deals
with those points, by proposing an utility theory based
on economics to develop a new model that integrates the
client satisfaction over a cloud. Two scheduling algorithms
are proposed to find a good tradeoff between the client
satisfaction and the provider profit. However, this approach
is an aggregation of objectives (i.e. it can only optimize one
objective at a time).

Therefore, to deal with all the misses aforementioned,
we propose a scheduler using a multi-objective genetic
algorithm to optimize the two major objectives that affect
both the client’s satisfaction and the provider’s profit. Those
two objectives are, the request response time and the service
cost. In other words, our new approach provides a set
of Pareto solutions rather than a single solution (i.e. non-
dominated solutions), with the best tradeoff between the
quality of service (QoS) and the profit.

III. D ISTRIBUTED CLOUD SCHEDULING MODEL

A. System Model

In this work, an Infrastructure As A Service (IAAS) cloud
model is considered. Indeed, we use a three-tier architecture
where the tiers represent the clients, the distributed cloud
provider and the cloud broker (see Figure 1). The role of
the second tier (the broker) is to find the best configuration
among the resources proposed by the provider to fit the client

VM requests. Therefore, the broker charges the client for
this service. Indeed, in our model we define two types of
services. The first one, called the infrastructure service,is
related to the provider. The second provided by the broker
is called the business service. The prices of instances differ
according to offers and demands. The VM instances are
proposed for rental by the infrastructure service provider.
Depending on the offers that the broker makes over those
VM instances the prices may change. The broker reserves
itself according to the demands of the clients. The variation
of the prices of the VM instances is bounded by a time
duration calledscheduling roundafter which the instance’s
price does not change. As for the major economic cloud
models the reservation time of the resources is divided into
slots. Hence, the user has to pay for the whole time of
the reserved slot even if his/her effective time usage of the
resources is less than the time slot. The provider model is
inspired from the Amazon EC2 Spot [16].

Moreover, the clients in our model send VM resource
requests to the broker for their own application usage.
Indeed, this work aims to provide the best VM instances
combination to host those client’s application. This combi-
nation (assignment) targets to minimize both the price to pay
for the client and the response time for their application.
Each request is a quadruplet (size, Srate, α, β), where
sizerepresents the size of the application in terms of CPU
computation time,Srate is the satisfaction flexibility of the
client. In other words it represents the roughness of the client
(i.e. a high value means a demanding client while a small
value is for a more relax one). This value is a rate over
the best obtained solution by the broker.α andβ designate
the preference that the client has for respectively the service
price or response time.

The originality of this approach is to propose a scheduling
(assignnment) algorithm that uses a multi-objective genetic
algorithm in order to find the best choices of VM instances
among the ones proposed by the infrastructure service
provider. The objectives considered in our algorithm are
the cost and response time of the instances. Those two
objectives are the main parameters for expressing the client’s
satisfaction and to deduce the broker’s profit.

Indeed, our algorithm aims to provide the best Quality of
Service (QoS) by satisfying as much as possible the client,
while helping the provider to maximize his/her profit. The
optimization of the objectives is due to the heterogeneity of
the requests features, the fluctuations of the prices and the
difference in performance of the instances proposed by the
provider.

B. Satisfaction and Profit Model

Several state-of-the-art works deal with QoS focusing on
only one criterion which is either the response time or the
amount of satisfied requests. The work in [15] based on the
utility theory in economics [5] proposes a client’s satisfac-

Figure 1. A representation of our three-tier cloud model.

tion modeling. Equation 1 defines the client satisfaction, it
is based on the service pricep and the response timet.

Satisfaction(p, t) = Smax − αp− βt (1)

whereSmax is the maximum satisfaction value that the
broker can deliver for the client. Theα and β values are
used to give more importance to one of the criteria (the
price or the response time) while not changing the client
satisfaction. The valueα/β or β/α is known as marginal
rate of substitution in economics. Since our work is based on
a Pareto approach, the (α, β) parameters help only to make
a choice of the optimal solution that fits better the client’s
needs. We will also prove latter that thanks to the Pareto
approach we can simplify this formula by removing theα
and β values from the client’s request parameters without
changing the client’s satisfaction.

In addition, to compute the broker’s profit, we deducted
Equation 2 from Equation 1. Indeed, with the parameter
Srate presented previously we can deduce the satisfaction
needed by the client. Therefore, knowing the response
time given by the provider, the (α, β) parameters and the
maximum satisfaction proposed by the brokerSmax we can
deduce the profit generated by the broker while providing
his/her business service to the clients.

profit = (Smax − Satisfaction× Srate − βt)/α (2)

C. Problem Description

In our cloud model, we deal with a three-tier architecture.
The first tier is the clients withJ VMs requests for running
their applications. The second tier is the broker which
provides business services. The third tier is infrastructure
service provider which proposesN VM instances for
rent. The broker has to find the best assignment of VM
requests by choosing the right combination of the proposed
instances based on their current price, their performance
index PI and the load in terms of client’s VM requests.
The performance indexPI is a normalization value that
helps to compare the performances of the different instances

when computing the same task. The different values ofPI
of the used instances in this work are drawn in Section
V. The problem consists then of assigning (scheduling)J
client requests onN combinations of VM instance types.
Moreover, we know that the task scheduling problem is
generally NP-hard [17]. Therefore, the brokering problem is
NP-hard as well. Thus, a metaheuristic algorithm (genetic
algorithm) appears to be an appropriate approach to deal
with the problem.

In our model, the client submits requests with QoS
requirements. Those requests are defined by two types of
parameters. The first ones are fixed by the client at the
submission of his/her requests, while the others are deduced
and used by the algorithm. The requirements of the user
as said previously, are the request size, the satisfaction rate
and theα, β values designated for a VM requestj by the
tuple (sizej , Srate,j , α, β). The other types of parameters
are defined during the scheduling process. They serve to
inform about the state of the request during the process. The
first variablecostji represents the cost of the VM requestj
when assigned to the VM instancei with the current price
of the instance for the scheduling round duration (no price
fluctuation during each scheduling round). The other variable
rptj represents the remaining processing time of the request
j on a standard instance. The initial value of this variable is
thesizej parameter. Therptj value over an instancei noted
rptji is given by Equation 3, wherePIi is the performance
index of the instancei. This value is updated only in case
where the request is assigned to another instance before the
end of its execution.

rptji = rptj/PIi (3)

The objective functions of our approach aim tominimize
the total request cost designated byMinCost and the
response time of the requests designated byMinRT in order
to provide the best client satisfaction and broker profit. Itis
formulated as follows:

MinCost =
J
∑

j

N
∑

i

costj+rptji×pricei =
J
∑

j

N
∑

i

costji

(4)
where for Equation 4,costj is the previous accumulated

cost of the requestj, rptji is the remaining processing time
of the requestj if processed on the instancei, andpricei
is the instance price during the current scheduling round of
the instancei.

MinRT =

J
∑

j

N
∑

i

currentT ime− arrivalT imej + rptji

(5)

where for Equation 5,currentT ime is the current time,
arrivalT imej is the arrival time of the requestj and
rptji, as in Equation 4, is the remaining processing time
of the requestj on the instancei, if not concerned by a
reassignment.

IV. T HE MULTI -OBJECTIVEGENETIC ALGORITHM FOR

CLOUD BROKERING

A. Problem Encoding

We propose an encoding for the MOGA-CB solutions as
illustrated in Figure 2.

Figure 2. Problem encoding.

Figure 2 represents one possible scheduling among plenty
proposed by the multi-objective genetic algorithm. In the
proposed example we identify three major specifications.
The indexes of the table depict the requests that are sched-
uled, the number in each cell identifies the instance to
which the request is allocated. In other words, the first
cell represents the first request of the pool that is currently
handled by MOGA-CB. In this case, this request is allocated
to the instance 2. The second request is allocated to the
instance 0 and so on. This encoding informs about the
number of requests currently addressed and that haverpt
value different from 0 (i.e. not finished requests), which is
10 in our example. This encoding helps us also to deal with
the characteristics of our problem. Indeed, it allows one to
schedule all the requests of the pool by assigning each one
to only one instance at a time. But an instance can be chosen
for more than one request. Note that not all the instances are
necessarily used in each solution. We also assume that the
infrastructure’s provider has always available instances. This
is realistic since our approach can be applied for a model
with several providers, we can afford then to do not deal
with the availability of the provider’s resources.

B. Population Initialization

The generation of the initial solution in a genetic algo-
rithm is an important phase. In fact, this step affects the
future results quality. In our approach, the initialization of
the population is done in two steps. The first step checks
the number of not yet finished requests from the previous
scheduling round and adds them to the initial solution by
assigning them to their previous instances. The second step
starts only when the first step is finished or when the first
step is not necessary. This can happen for example during
the first iteration of the algorithm where no request from

the previous scheduling round is being processed. The role
of the second step consists of initializing the rest of the
solutions of the population. Hence, it affects the new arrived
requests by assigning them to the instances randomly.

C. Scheduling Steps

Before each scheduling, MOGA-CB waits for a fixed
period of time called scheduling round as previously said.
This period helps to gather a pool of VM requests in order to
have a larger choice in the assignment and thus to optimize
the future scheduling. In addition, this scheduling round
is used by the algorithm to retrieve the current instances’
prices.

Once these phases done the pool of requests is managed
by MOGA-CB to find the best possible assignments over
the different instances. The result of the initialization and the
execution is stored as a Pareto archive. Once the set of Pareto
solutions (assignments) is proposed, the algorithm chooses
one scheduling among this set according to the user’s
parameters to fit at best his/her satisfaction. The chosen
solution from the Pareto set is also used as a state to update
the algorithm parameters and to inject the not yet finished
requests again to follow their execution during the next
scheduling round. This solution will be a basis for the next
iteration of the following pool of requests. The algorithm
will make another execution on this pool in addition to the
new pool of arrived requests. The algorithm keeps iterating
until no more requests arrive and no more requests still
processing. All the scheduling steps are drawn in Figure 3.
The evolutionary core of the MOGA-CB algorithm is based
on the NSGAII multi-objective genetic algorithm. Indeed,
the method used in the MOGA-CB to rank the individuals of
the population, because of the multi-objective context, isthe
dominance depth fitness assignment. This archive contains
the different non-dominated solutions generated through the
generations. Besides, the selection process of our genetic
algorithm is based on two major mechanisms: elitism and
crowding. They allow respectively the convergence of the
evolution process to the best Pareto front and maintaining
some diversity of the potential solutions.

D. Solution Selection Mechanism

The results obtained using MOGA-CB are stored in a
Pareto set. Hence, skipping from processing a pool of
requests to a new pool, becomes difficult because of the
number of solutions. Therefore, in our scheduling algorithm
there is a selection step which comes right after the end of
the genetic algorithm execution. This step aims to pick up a
solution among the Pareto set in order to update the variables
of the remaining processing requests from the last schedul-
ing round. This state will be the starting point from which
the next execution of MOGA-CB will schedule a new pool
of requests. The idea behind choosing a Pareto approach in
our work is to propose to the broker as more non-dominated

Figure 3. The Flowchart of the MOGA-CB algorithm.

solutions as possible. Each one of these solutions is better
than the other regarding a certain objective. The mechanism
of the solution selection is based on Equation 1. Indeed a
solution in our algorithm is defined with its pricep and
response timet. The solution that is chosen from the Pareto
set is the one that gives the best satisfaction based onα
andβ parameters in Equation 1. Furthermore, the MOGA-
CB algorithm proposes a parameter to promote either the
broker’s profit or the client satisfaction. Indeed, based on
the selected Pareto solution the algorithm can even satisfy
the broker requirements by providing him/her for example
a certain benefit rate based on the Pareto optimum solution
cost, or increases the client satisfaction by providing him/her
the requested satisfaction rate. The default setting of the
parameter always satisfies the clients. This is due to the
fact that this default setting does not lead to a lack in the
optimization quality of the broker’s profit. Furthermore, the
interest of disabling the default setting parameter can be
found for example in the case where the broker is in deficit.
He/She can then temporary choose the profit option despite
the unsatisfied client to recover a correct budget level.

V. EXPERIMENTS AND RESULTS

This section presents the results obtained from our ex-
perimental study. The experiments aim to demonstrate and
evaluate the contribution of the multi-objective evolutionary
approach over theα β tradeoff and the different behaviors
that can have the MOGA-CB algorithm according to the
variations of the input parameters, the performance indexes
and the prices of the instances.

A. Experimental settings

The experimental settings concern both the client and the
infrastructure provider sides of our three-tier model. The
client side with the VMs requests and the provider side with
the rented instances.

• VM requests’ settings: concerning the inputs of the
broker’s scheduler we generated VM requests arrivals

according to a Poisson process. Each request arrives
in a certain slot of the scheduling round to which it
belongs. The scheduling round slot equals 1/10 of the
scheduling round. In other words, a request’s submis-
sion time equals the time of its time arrival (i.e. the time
value of the scheduling round to which it belongs) plus
the waited slots in this scheduling round. Moreover, the
VM request features in our experiments vary according
to four parameters. Indeed, as said in Section III-C
with the tuple(sizej , Srate,j , α, β), the requests differ
by their size (execution time), the client satisfaction
rate and finally the(α, β) parameters. Therefore, we
generated the elements of this quadruplet, where the
execution timesizej is a value from [2,50] (this value
represents the duration of the request in terms of
number of scheduling rounds), the client satisfaction
rateSrate,j varies in the interval [0.1,1] where on one
hand, the value 0.1 represents the less demanding client
(10% of the best obtained satisfaction is enough to
gratify him/her) and on the other hand the value 1 is
the most demanding client (he/she needs 100% of the
best obtained solution). Theα parameter varies in the
set{9, 3, 2, 1} andβ in {8, 4, 2, 1}.

• Instances settings:for the infrastructure service pro-
vided instances, we used the instances proposed by
Amazon EC2 [16]. We used three types of instances
the small one, thelarge one andextra largeone. We
deduced the performancePI indexes of these instances
from the work proposed in [15]. All the parameters’
values are drawn in Table I. Regarding the fluctuation
of the prices of instances, we downloaded them from
the Amazon pricing history [18]. The price fluctuations
of all the previously cited types of instance extends over
a period of one month on the US California site.

B. Algorithm parameters

In our experimentations, we used some parameters such
as the satisfaction/profit selection parameter, the arrival
rate of the requests, the request execution time, etc. The
satisfaction/profit selection parameter is used in order to
promote at a certain time the profit of the broker in case
of budget difficulties. Once this option activated, another
parameter is added to the algorithm to inform it about the
profit rate needed by the broker. We performed experiments
with the two state options (enabled and disabled). Regarding
the variation of the request arrival rate we used a Poisson
process with aλ rate of 15 per scheduling rounds. The
number of requests is 10000. In addition, because of the
stochasticity of the MOGA-CB approach we performed 30
runs for each configuration. The parameters of the MOGA-
CB algorithm are 2000 for the number of generation, 30
for the population size, 1 crossover rate 0.35 mutation rate
and 2 for the tournament group size. Table I summarizes the
other parameters used in our experiments.

Table I
EXPERIMENTAL PARAMETERS.

Parameter Value
Number of runs per configuration 30

Number of requests 10000
Request submission time 0.1 to 1 of the scheduling round

Request arrival rateλ 15 per scheduling round
Request execution time 2 to 50 scheduling rounds

Satisfaction rate 0.1 to 1 of the best solution value
Profit rate 0.1 to 1 of the best solution cost

α/β 9, 3, 2, 1, 1/2, 1/4, 1/8, random
Instance types small, large, extra large

Instance performance indexes(PI) 1, 3.98, 7.12
Instance prices Amazon EC2 pricing history

C. Performance evaluation

To the best of our knowledge, there does not exist any
research work tackling the cloud brokering problem using a
Pareto approach. Thus, we perform a bench of experiments
with different parameters and configurations. In addition to
optimizing the costs and the response times of the VM
requests, the approach has to return according to the Pareto
solutions proposed by MOGA-CB the solution that meets at
best the client’s satisfaction. To evaluate our contribution we
conducted different experiments to study the behavior of our
approach according to different parameters. We conducted
experiments in average over all the scheduling rounds to
study the general algorithm behavior. Moreover, we also
did a real time analysis of the results through evolution of
the criteria. We carried out our experiments on 5 different
configurations of VM requests. The obtained results were
very nearly equivalent. Thus, we discuss only the following
configuration.

The results for each configuration of VM requests with
its 10000 requests, for eachα, β combination and for each
profit/satisfaction orientation of the MOGA-CB have been
obtained using 30 independent runs. Therefore, the reported
results are averaged over these runs. The detailed analysis
of our approach is presented in Figure 5 and Figure 4.

The analysis of our approach will be depicted in three
parts:

• MOGA-CB average behavior: Figure 4.Left shows
that the obtained results over the parameters (profit
and satisfaction) do not vary when using our Pareto
approach. In other words, the algorithm gives roughly
the same results over all the (α,β) settings thanks to the
Pareto front. The only parameter that varies a little bit
is the computation time of MOGA-CB because of the
different complexities which may result from a different
solution selection in the Pareto set. In addition, Fig-
ure 4.Middle shows that the cost and the time response
objective complement each other according the client
choice trough theα and β parameters. Indeed, when
the priority goes to the cost (α bigger thanβ) the cost

is more minimized therefore the time response suffers
from that, same goes for a high time response priority
(α lower thanβ) with opposite behavior. Moreover,
we notice that the average results for a randomα
β configuration gives the same results as a random
configuration this is due to our Pareto approach. We can
deduce then from the invariability of the satisfaction
and the profit results and the similarity of the cost
and response time values for the randomα β and
α = β = 1 configurations that our Pareto MOGA-
CB helps to dispense the client from providing those
parameters. The satisfaction model will be as follow:
MaxSatisfaction(p, t) = Min

√

p2 + t2. Besides, in
the experiments for an enabled profit broker option,
the clients’ satisfaction is highly affected and the dis-
appointment increases along with the increase of the
margin of the broker. This proves that there is no
interest to use this option except in emergency cases,
especially because of the good obtained profit results
when disabling this option.

• MOGA-CB real time behavior: in Figure 5.Left we
observe the interest of using a Pareto approach to
tackle the brokering problem. Indeed, MOGA-CB com-
pensates the instances (spots) cost increasing by a
reduction in the instances’s response time. The two
graphics are complementary when the first increases the
second deceases andvice versa. In addition, as expected
the broker’s profit decreases when the instances cost
increases (less profit margin). Figure 5.Right (Log-
arithmic scale) shows that there is a tight relation
between the number of unfinished VM requests and
the instance response time. Conversely, the number
of unfinished VM requests is inversely related to the
instances cost. This can be explained by the fact that
increasing the price of VM instances means in general
better instance performances and thus, a better response
time and less waiting requests. In Figure 5.Middle ,
the graphics indicate that the client’s disappointment
and therefore his/her satisfaction is much more affected
by the response time of the instances than by their
prices. This is explained by the fact that the variation
of the instances response time is more significant than
their cost. Indeed, the response time depends on the
type of instances chosen by the algorithm and on the
requests load as well. It also should be noted the general
decrease in all the curves of the presented graphics
during the course of the interval times. This is mainly
due to the decrease in the number of unfinished requests
as the algorithm proceeds.

• MOGA-CB computation time: in this last part rep-
resented by the graphic in Figure 4.Right. We prove
that our MOGA-CB never exceeds 30 seconds in its
solution computation time whatever is the load in terms
of requests over all the scheduling rounds. This result

is interesting since we know that the schedulers waiting
time called scheduling cycleor scheduling roundis
about 30 seconds. Hence, the computation time of our
algorithm is covered by the latter.

VI. CONCLUSION

In this paper, we presented a new approach for the cloud
brokering using a multi-objective genetic algorithm MOGA-
CB to minimize the instances’ response time, and their cost
in order to satisfy the clients and to provide an interesting
profit to the broker. This is made possible by exploiting the
instances’ cost fluctuation and their performances’ hetero-
geneity.

Our new approach has been evaluated using a Poisson
process for VM requests arrival. The number of requests
was 10000. The experiments stretch over 5 VM requests
configuration with 8α/β configurations and 3 types of
instances (spots). The results show that our Pareto-based
approach helps to dispose of theα andβ parameters while
providing a Pareto optimal solution allowing a tradeoff
between the response time of the instances and their cost.
Moreover, we proved that using a broker profit orientation in
our algorithm gives bad results and decreases significantly
the client’s satisfaction. We also showed that the satisfaction
is more related to the instances’ response time than to the
instances’ cost. Furthermore, MOGA-CB assigns efficiently
the received requests. It provides effective VM requests
assignments before the scheduling round is elapsed.

Besides, the major perspectives of this work is to min-
imize with more impact the instances’ response time and
cost by using a better economic model since we proved
that theα/β parameters are useless. In addition, we are
planning to deploy our broker approach MOGA-CB over a
real infrastructure with real Amazon instances for exampleto
validate our contributions over a bigger number of instances
with real client satisfaction constraints.

REFERENCES

[1] Y. Kessaci, N. Melab, and E.-G. Talbi, “A pareto-based meta-
heuristic for scheduling hpc applications on a geographically
distributed cloud federation,”Cluster Computing, pp. 1–18,
10.1007/s10586-012-0210-2.

[2] N. B. Rizvandi, J. Taheri, A. Y. Zomaya, and Y. C. Lee,
“Linear combinations of dvfs-enabled processor frequencies
to modify the energy-aware scheduling algorithms,”Cluster
Computing and the Grid, IEEE International Symposium on,
vol. 0, pp. 388–397, 2010.

[3] D. Irwin, L. Grit, and J. Chase, “Balancing risk and reward
in a market-based task service,” inHigh performance Dis-
tributed Computing, 2004. Proceedings. 13th IEEE Interna-
tional Symposium on, june 2004, pp. 160 – 169.

[4] B. Chun and D. Culler, “User-centric performance analysis of
market-based cluster batch schedulers,” inCluster Computing
and the Grid, 2002. 2nd IEEE/ACM International Symposium
on, may 2002, p. 30.

Figure 4. (Left) : The none impact of theα,β parameters on the results of the Pareto based MOGA-CB algorithm. (Middle) : The tradeoff relationship
between the cost and the response time objectives according to theα,β parameters.(Right): The computation time duration of the MOGA-CB algorithm
over each scheduling round.

Figure 5. The relationship between the average instances (spots) cost, their average response time:(Left) : and the broker profit.(Middle) : and the real
time client’s satisfaction (disappointment) for a disabled broker profit option.(Right): The relationship between the number of unfinished VM requests,
the average instances (spots) response time and the average instances (spots) cost.

[5] G. Mankiw, Principles of economics. Sourth-Western Pub,
2008.

[6] Y. C. Lee, C. Wang, A. Y. Zomaya, and B. B. Zhou, “Profit-
driven service request scheduling in clouds,” inCluster,
Cloud and Grid Computing (CCGrid), 2010 10th IEEE/ACM
International Conference on, May 2010, pp. 15 –24.

[7] J. Burge, P. Ranganathan, and J. Wiener, “Cost-aware schedul-
ing for heterogeneous enterprise machines (cash em),” in
Cluster Computing, 2007 IEEE International Conference on,
2007, pp. 481 –487.

[8] J. Yu and R. Buyya, “Scheduling scientific workflow appli-
cations with deadline and budget constraints using genetic
algorithms,” Scientific Programming, vol. 14, no. 3-4, pp.
217–230, 2006.

[9] S. Garg, P. Konugurthi, and R. Buyya, “A linear programming
driven genetic algorithm for meta-scheduling on utility grids,”
in Advanced Computing and Communications, 2008. ADCOM
2008. 16th International Conference on, 2008, pp. 19 –26.

[10] S. Chaisiri, B.-S. Lee, and D. Niyato, “Optimal virtual ma-
chine placement across multiple cloud providers,” inServices
Computing Conference, 2009. APSCC 2009. IEEE Asia-
Pacific, dec. 2009, pp. 103 –110.

[11] E. Elmroth, F. Marquez, D. Henriksson, and D. Ferrera,
“Accounting and billing for federated cloud infrastructures,”
in Grid and Cooperative Computing, 2009. GCC ’09. Eighth
International Conference on, aug. 2009, pp. 268 –275.

[12] M. Andreolini, S. Casolari, M. Colajanni, and M. Messori,
“Dynamic load management of virtual machines in cloud
architectures,” inCloud Computing, ser. LNICST, D. Avresky,
M. Diaz, A. Bode, B. Ciciani, and E. Dekel, Eds. Springer
Berlin Heidelberg, 2010, vol. 34, pp. 201–214.

[13] J. Tordsson, R. S. Montero, R. Moreno-Vozmediano, and
I. M. Llorente, “Cloud brokering mechanisms for optimized
placement of virtual machines across multiple providers,”
Future Generation Computer Systems, vol. 28, no. 2, pp. 358
– 367, 2012.

[14] J. L. Lucas-Simarro, R. Moreno-Vozmediano, R. S. Montero,
and I. M. Llorente, “Scheduling strategies for optimal ser-
vice deployment across multiple clouds,”Future Generation
Computer Systems, no. 0, pp. –, 2012.

[15] J. Chen, C. Wang, B. B. Zhou, L. Sun, Y. C. Lee, and A. Y.
Zomaya, “Tradeoffs between profit and customer satisfaction
for service provisioning in the cloud,” ser. HPDC ’11. New
York, NY, USA: ACM, 2011, pp. 229–238.

[16] (2012) Amazon elastic compute cloud (Amazon EC2).
http://aws.amazon.com/fr/ec2/.

[17] M. R. Garey and D. S. Johnson,Computers and Intractability:
A Guide to the Theory of NP-Completeness. New York, NY,
USA: W. H. Freeman & Co., 1979.

[18] (2012) Amazon ec2 pricing.
http://aws.amazon.com/fr/ec2/pricing/.

