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Center of Cancer Systems Biology, Steward Research and Specialty projects
Corp., Tufts University School of Medicine, Boston, 02142, USA

Abstract

A mathematical model for time development of metastases and their distribution
in size and carrying capacity is presented. The model is used to theoretically
investigate anti-cancer therapies such as surgery and chemical treatments
(cytotoxic or anti-angiogenic), in monotherapy or in combination. Quantification
of the effect of surgery on the size distribution of metastatic colonies is derived.
For systemic therapies, emphasis is placed on the differences between the
treatment of an isolated lesion and a population of metastases. Combination
therapy is addressed, in particular the problem of the drugs administration
sequence. Theoretical optimal schedules are derived that show the superiority of
a metronomic administration scheme (defined as a continuous administration of
a given amount of drug spread during the whole therapeutic cycle) on a classical
Maximum Tolerated Dose scheme (where the dose is given as a few concentrated
administrations at the beginning of the cycle), for the total metastatic burden in
the organism.

Introduction

Metastases are the main cause of death in a cancer disease (1): cure rate goes
from 90% all cancers combined when metastases are absent at diagnosis to 15%
when they are present (2). They represent a major therapeutic challenge as
prediction of their presence and development is limited by the resolution of
imagery modalities only able to detect them when they reach a significant size
(of the order of 108 cells, i.e. approximately 100 mm3). Clinical problems such as
when to perform surgery of a primary lesion, if and how to administer adjuvant
(i.e. after surgery) therapy or how to combine classical cytotoxic therapies with
new biotargeted agents such as anti-angiogenic drugs are still open and would
beneficiate from rationales based on theoretical studies of the metastatic
process.

Mathematical modeling offers interesting tools that could give insights into a
better understanding and control of these open clinical problems. However, most
of the cancer modeling efforts are focused on tumoral development, often in a
multi-scale framework aiming at compiling the large amount of knowledge about
cancer biology. See (3) for a review of these models. Very few models are
designed to quantify the metastatic process and development. In the 1970’s,
Liotta, Kleinerman and Saidel developed combined experimental and modeling
approaches to study and quantify the various steps of metastasis creation. In (4),
a deterministic model is proposed that describes tumor growth, interactions
with the surrounding vasculature, dislodgement of tumor cells into the



circulation, arrest in pulmonary vascular bed and formation of metastatic foci.
The model is able to accurately describe experimental data of lung metastases
spread by a fibrosarcoma and gives insights about perturbations of the system
such as tumor massage, tumor resection, lung vessel damage, inhibition of
vascularization or of tumor cell penetration of vessels. In (5) this approach is
made stochastic in order to give interesting outputs such as the probability of
metastases. More recently, Retsky and coworkers (6) developed another
stochastic model in order to give a theoretical framework for study of the
possible accelerating effect of surgery of a primary lesion on the growth of
metastases. Simulations of the model are able to describe a bimodal pattern
observed in a large data set of recurrence hazard in breast cancer, showing that
the first peak of recurrence could be associated to a surgery-associated trauma.
Another probabilistic model is proposed by Willis et al. (7) and used to study
post-surgery dormancy in breast cancer.

Iwata, Kawasaki and Shigesada introduced in (8) a very interesting model for
development of metastatic colonies, designed to describe the temporal
development of the size distribution of a population of tumors. The size structure
present in the model allows to describe for both visible metastases but also
occult micro-metastases. Confrontation of the model to clinical data of metastatic
growth in a patient with hepatocellular carcinoma showed good agreement and
assessed the ability of the model to describe metastatic development. This model
was further mathematically and numerically studied in (9,10), in particular with
the intent to develop extensions of the model for cytotoxic therapy. Based on this
approach and the model of Hahnfeldt, Panigraphy, Folkman and Hlatky (11) for
tumoral growth under angiogenic control, a global model for metastatic
development taking angiogenesis into account was developed (12-14). One of
the main interest of this last model is to be able to simulate the action of anti-
angiogenic therapy.

These modeling efforts form the ground basis of a theoretical study of the impact
of scheduling of anticancer agents on the global dynamics of the disease. Indeed,
not only the total dose of administered agent is of relevance for efficacy of a
cancer treatment. For instance, metronomic chemotherapy (15-17) that gives
cytotoxic agents at low dose but more continuously appears as a potential
competitor of the more classical, maximum tolerated dose (MTD) administration
protocols. In this context, scheduling of the drug is a critical player (18) that
should be rationally optimized. Anti-angiogenic therapy (19) is also facing the
same challenges. Impact of the administration scheme on the tumor growth has
been evidenced in monotherapy (20,21) as well as in combination with
chemotherapy (22), this last situation being the most common in the clinic.

Optimal control theory applied to cancer treatment has been developed since the
pioneering work of Swan in the late 70’s (23,24), first intended to optimize
chemotherapy delivery under toxicity constraints. Various studies on
chemotherapy were further conducted, for instance in the Model 1 project (25-
29) that drove a phase I study for safe densification of a chemotherapeutic
treatment in breast cancer. This model is focused on hematotoxicities due to the
aggressive cytotoxic regimen. Using the Hahnfeldt model for AA treatment,



Ledzewicz and Schattler (30-32) studied optimal delivery of anti-vascular
agents, revealing a singular structure in the optimal control. Scheduling
implications of the Hahnfeldt model for AA monotherapy were also investigated
by d’Onofrio and Gandolfi (33,34). Combination therapy involving AA agents was
the subject of other works, either with radiotherapy (35) or chemotherapy (36).
However, these models only deal with the primary tumor growth and don’t take
into account for the metastatic state of the disease.

Modeling of the metastatic development

We developed a mathematical model for description of the metastatic
development integrating three major processes of the disease progression:
proliferation, angiogenesis and metastatic spreading. The global philosophy is to
place ourselves at the organism scale and to consider a growing population of
secondary tumors (metastases). This approach was first initiated by Iwata et al.
(8) that proposed a model for development of metastatic colonies structured by
size, based on a gompertzian tumor growth rate. This model was further studied
in (9,10) in order to establish well-posedness and efficient numerical methods
for simulation of the model. This model was shown to accurately describe
individual clinical data of hepatic metastases temporal evolution (8) and could
yield an interesting prognostic tool to predict recurrence of the disease for
breast cancer patients with unifocal lesion at diagnosis (37). Thanks to the size
structure, effects of a systemic cytotoxic therapy can be added to the model and
in silico simulations could help to determine the number of chemotherapeutic
cycles to perform in order to avoid recurrence of the disease in a clinical setting,
depending on the patient’s cancer specific metastatic potential. However, this
setting did not take angiogenesis into account and hence could not allow for
simulation of anti-angiogenic therapy. The model that we present now, which
was first developed in (14,38) merges the original model of (8) and the tumoral
growth model under angiogenic control of Hahnfeldt et al. (11) in order to obtain
a more general model for metastatic development taking angiogenesis into
account.

We consider that tumors are biological entities with two phenotypical traits:
volume (denoted by V, also referred as their size, expressed in mm3) and
carrying capacity (denoted by K, expressed also in mm?3). Primary tumor volume

and carrying capacity are respectively denoted by Vp and Kp . We assume that
tumors have size and carrying capacity bigger than the size of one cell V, and
smaller than a maximal reachable size V. Hence the physiological domain
where metastases live is the square Q=[V,V_ X[V ,V ], whose boundary is
denoted by 0Q2 with external normal vector v(o). The metastatic population is

mathematically represented by a density function p(t,V,K)eL'(Q2), Vt€[0,T],
where T is the end time. This means that metastases live in a continuum of sizes
and carrying capacities and that the number of tumors between sizes V and V,

and carrying capacities between K, and K, attime ¢ is given by



V, rK
IVZ JKZ p(t,V,K)dVdK . We assume that each tumor grows with the same growth

rate denoted by G(V,K) without therapy and by G(V,K) when growth is
perturbed by the action of a treatment, that spreading of new metastases is
governed by an emission rate (V) and that distribution of metastases at birth is
given by a function N(o) for o €9dQ . Precise expressions of these functions will

be described in the following. We also assume that there is no extinction: once
created, a metastasis cannot exit the domain.

Overall, the model is a linear partial differential equation of renewal type, i.e. a
transport equation endowed with a nonlocal boundary condition and an initial
condition.

d,p+div(pG)=0 10, T[xQ
(1.1)] —G(t,0)-v(c)p(t,0)= N(o){jg BV)p(t,V,K)dVAK + ﬁ(Vp(t))} 10,T[x0Q
p(0,V,K)=p°(V,K) Q

As a general modeling principle, we want to keep the number of parameters as
low as possible.

Tumor growth model

For parsimony reasons, the growth rate of the tumors is supposed to be the same
for the primary and for all the secondary tumors. We use the Hahnfeldt model
(11) where sigmoidal tumor growth emerges from the interplay between a
tumor and its carrying capacity, assumed to be representative of the vascular
support provided to the neoplasm. The tumor compartment dynamics is
gompertzian with a dynamical carrying capacity. The carrying capacity dynamics
results from the balance between pro- and anti-tumor-induced angiogenic
signaling. A study of diffusion-consumption equations for the concentration of
angiogenic inhibitors and stimulators led Hahnfeldt et al. to the following
expression

K
GV, K)= aVln[V]

bV —dV**K

with a being a parameter controlling the cancer cells proliferation kinetics, b a
parameter for production and effect of angiogenic stimulators and d a
parameter for production and effect of angiogenesis inhibitors. The main
assumption underlying their model is that clearance rate of inhibitors (such as
endostatin, angiostatin, thrombospondin-1,...) is much smaller than the
clearance rate of stimulators (such as vascular endothelial growth factor, basic
fibroblast growth factor,...). Analysis of the diffusion dynamics then implies that
the concentration of inhibitors should be proportional to the surface of the
tumor, hence explaining the 2/3 power in the inhibition term, while
concentration of stimulators should be independent of tumor volume.



One of the main feature of this model is that, by taking angiogenesis into account
via the interplay between the tumor and its vascular support, it is an appropriate
framework to model the effect of an anti-angiogenic (AA) treatment, by an action
on the carrying capacity. Following (11) we assume a linear killing term for the
effect of an AA drug. Cytotoxic (CT) therapy is modeled using the log-kill
assumption (39), which means that a cytotoxic drug kills a constant fraction of
the cancer cells population. However, to satisfy the “no extinction” assumption
that we made, we slightly modify these linear terms to ensure non-negativity of
the entering flux —G(t,0)-v(o) for all time. Denoting by C(t) the concentration
of CT agent, f its efficacy parameter, by A(t) the concentration of AA agent and

e its efficacy parameter, the expression of the growth rate under action of a
combined treatment is given by

K
5K aVln[Vj—fC(t)(V—Vo)

bV —dV* K —eA(t)(K-K,)

Expressing the conservation of number of metastases when they are growing in
size yields to the first equation of (1.1).

Metastatic emission

In the literature, there is no clear consensus about metastases being themselves
able to metastasize or not. Here, we argue that there is no reason that cancer
cells who acquired the ability to metastasize would loose it when establishing in
a new site. Moreover, since metastasis is a long process before being detectable
(in particular because tumors could remain dormant during possibly large time
periods), the absence of clear proof in favor of metastases from metastases could
be due to the short duration of the experiments compared to the time required
for a secondary generation of tumors to reach a visible size. Here we are
interested in long time behaviors and, although metastases from metastases
could be neglected in first approximation, we think this second order term is
relevant in our setting and chose to include it in our modeling, following clinical
evidences of second-generation metastases (40).

Creation of new metastases is represented by the entering flux in the boundary
condition of (1.1). It is the sum of two terms. Considering an emission rate (V)

for a tumor with size V, the term B(Vp (t)) is the number of metastases emitted

by the primary tumor, whereas the integral term jﬂﬁ(V)p(t,V,K)dVdK is the

number of metastases created by the metastases themselves.

The global metastatic process is complex and still not yet fully understood.
Multiple steps are involved that include: detachment from the tumor,
intravasation in blood or lymphatic vessels, survival in the circulation, escape
from immune surveillance, extravasation, survival and settling in a new
environment (41). For simplicity and parsimony, we don'’t give a detailed
modeling of all these steps but rather consider, as done by Iwata et al. (8), a
global emission rate that considers only the cells that succeeded in all the steps.



We take the same size-dependent expression as (8), and the amount of

metastases emitted by a tumor with volume V' per unit of time is given by
B(V)=mV*

It depends on two parameters: the metastatic aggressiveness m and o that is

the third of the fractal dimension of the vasculature. The latter is assumed to be

an intrinsic feature of the cancer and common to the development of all the

tumors. It reflects that vasculature can be only superficial (¢ =2/3) or fully

penetrating the tumor (o =1) or even having any fractal dimension between 2
and 3.

Metastases are assumed to be born with the size of one cell in view of the
following remarks. Vascular holes by which a detaching cancer cell has to escape
from the tumor have diameter of the order of 100 nanometers while the
diameter of a cell is of the order of a micrometer. If a cell detaches from the
tumor, it means that the cadherin (transmembrane proteins responsible for cell-
cell adhesion) level falls down. Thus it seems unlikely that the cell that lost
cadherins would still keep some to form a cluster. Even in the assumption of the
detachment of a cluster of cells, it would be composed of at most a dozen of cells
and the hypothesis of size 1 cell for the neo-metastasis would stay in a
convenient approximation. All the metastases are assumed to be born with the

same carrying capacity K .Indeed, data on the distribution of carrying capacity

for metastatic newborns is not available in the literature and it was shown (42)
that this assumptions represents the asymptotic limit of a concentrating
distribution of metastases at birth N(o). Hence we take

N(o)=0

where 6 stands for the Dirac mass.

o=(V,.K,)

Simulations of metastatic development with and without systemic therapy

Parameter values

Growth parameters of the Hahnfeldt model for Lewis Lung Carcinoma (LLC)
implanted subcutaneously in C57BL/6 mice were estimated in (11) by fitting the
model to average growth curves, using a Monte Carlo algorithm. We use these
parameters for the growth of both the primary and the metastases. Metastatic
parameters were arbitrarily fixed in order to give relevant biological values of
the number and total burden of metastases. Parameter values are reported in the
Table 1

Parameter Value Unit Meaning Origin
a 0.192 day! Proliferation (11)
kinetics
b 5.85 day-1 Angiogenic (11)
stimulation
d 0.00873 day'mm-2 Angiogenic (11)
inhibition
m 0.001 day ! mm™* Colonization AF
rate




o 2/3 Fractal AF
dimension of
vascularization

Ko 1 mm3 Initial carrying AF
capacity

Table 1: Parameter values. AF = Arbitrarily Fixed

Simulations of the model (1.1) were performed using to the numerical method
developed in (12). It is a Lagrangian scheme based on the straightening of the
characteristics. Euler or order 4 Runge-Kutta schemes were used for
discretization of the characteristics and to solve ordinary differential equations
when required.

Cancer history and surgery

We used the model to simulate the development of the metastatic population
with the mice parameters described above, starting from the first cancer cell at
time 0, and during 60 days (corresponding to approximately 17 years in human).
The results are shown in Figure 1. Since the LLC is a fast growing tumor, the total
metastatic burden is not very important compared to the volume of the primary
tumor (Figure 1.A). At the end of the simulation, the metastases represent 1433
mm3. An interesting feature of the model is the size structure that allows us to
compute the number of visible metastases, i.e. the tumors with size bigger than a
visibility threshold here taken to be 1 mm3. This number can then be
quantitatively compared to the total number of metastases that includes the
occult micro-metastases (Figure 1.B). With the parameters that we used there is
approximately three times more metastases in total than the mere visible ones.
Our model allows a precise description of the size distribution of metastases at
any given time. Figure 1.C shows this distribution at the end time. Knowledge of
this distribution in a clinical setting could be of precious help in determining a
precise diagnosis of a patient’s metastatic state. However, this would of course
require identification of its tumor growth and metastatic emission parameters, a
process that is still under investigation.
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Figure 1: Simulation of the cancer history from the first cancer cell. A. Primary tumor (PT) size and carrying
capacity and metastatic burden B. Total and visible numbers of metastases. C. Size distribution of metastases at
the end of the simulation

In Figure 2 we present some simulations were in silico surgery of the primary
lesion was performed when it reached 1500 mm?3 (31.6 days after the first cancer
cell). As expected, resection stops the spreading process and results in a
significant reduction of the number of metastases when compared to the
situation without resection (Figure 2.A). Interestingly, our model reveals that
this stop in the spreading would have almost no impact in the future
development of the metastatic burden and would result in almost the same total
secondary volume 60 days after cancer initiation, whether or not surgery is
performed. Indeed, most of the metastatic burden comes from metastases that
were created before the primary tumor reached 1500 mm3 and continued
growing after the resection. This result emphasizes the importance of adjuvant
chemotherapy after surgery in order to treat the burden of invisible metastases.
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Figure 2: Simulation of surgery of the primary tumor when it reached 1500 mm3 and comparison with the case
without surgery. A. Number of metastases. B. Metastatic burden

Therapy

By taking interactions of each tumor with its surrounding vasculature into
account, the model is able to simulate the effect of AA drugs, both on the primary
tumor and on the metastases. In (11) the effect of three AA agents were modeled
via a linear first order pharmacokinetic elimination rate denoted clr and an
efficacy parameter e. The agent concentration is given by

N
A(t)= Dzexp(—clr(t—ti))lm where D is the administered dose, the t 's are the
i=1 !
administration times and 1 is a Heaviside function having value one if and
only if ¢ >t . Efficacy and clearance parameters for three different agents,

endostatin, angiostatin and TNP-470 were estimated in (11) from mice data and
are reported in Table 2 for completeness.

Agent clr (day?) e (day“conc™) Protocol
Endostatin 1.7 0.66 20mg/day
Angiostatin 0.38 0.15 20mg/day

TNP-470 1.3 10.1 30mg/q.0.d

Table 2: AA treatment parameters for three agents from (11)

Simulation results on the primary tumor growth and the number of metastases
are shown in Figure 3. All three agents have different impacts on primary tumor
growth and on metastatic spreading. Interestingly, the AA drug showing the best
reduction of primary tumor growth when considering the size at the end of the
simulation, namely angiostatin, is not the one provoking the best reduction in the
number of metastases, which is endostatin. These two agents are given with the
same scheduling but endostatin, having a more than four-fold larger efficacy
parameter, implies better reduction of the primary tumor size during the
treatment. This results in less emission of new metastases and thus less of them
at the end of the simulation. However, due to its more than four-fold larger
clearance rate compared to angiostatin, elimination is faster and regrowth after
treatment cessation is more important.



This result suggests that different drug properties could result in different
dynamical effects on the primary tumor and the metastases. The best drug could
be different whether concern is focused on primary tumor reduction or control
of the number of metastases.
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Figure 3: Effect of three anti-angiogenic treatments: endostatin 20mg/day, angiostatin 20mg/day,
TNP-470 30mg/q.0.d. A. Primary tumor growth. B. Number of metastases
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Figure 4: Combination therapy CT (etoposide) + AA (bevacizumab). Comparison of the order of administration:
AA first on day 0 then CT on day 8 versus CT first on day 0 and then AA on day 8. Growth parameters taken to
represent human tumor growth: a=0.0042, b=1, d=5.73x10-4. Metastatic parameters: m=1, a=2/3, Ko=2630.
Pharmacokinetic models and parameters for the drugs are from the literature. A. Primary tumor volume. B.
Number of metastases.

We investigated then the combination of an AA drug and a CT one. To do so, we
placed ourselves in a more clinical setting and considered growth parameters
corresponding to the reported growth of an hepatocellular carcinoma (8) as well
as more sophisticated pharmacokinetics models for the drugs. We focused on
Etoposide for the cytotoxic agent, which is used in a wide variety of cancers
(lung, testicle, lymphoma, leukemia,...) and Bevacizumab as our AA drug
(monoclonal antibody targeting vascular endothelial growth factor, mainly used
in colorectal and breast cancers). A few recent clinical trials have been evaluating
this combination in lung cancers and glioblastoma, with mixed results

(43-46). The pharmacokinetic models and parameters were taken from the
literature: reference (25) for Etoposide and reference (47) for Bevacizumab.



Efficacy parameters e and f as well as metastatic emission parameters m and

o were arbitrarily fixed.

An important question in combining these two drugs is the order of
administration: should the CT be given first and then the AA or reverse? Figure
Figure 4 gives insight on this problem. We performed in silico simulations of both
situations and compare the effects on the primary tumor development as well as
on the number of metastases. On the primary tumor (Figure 4.A), our results
suggest that it would be better to give first the AA drug, which has a stabilizing
action and then the CT agent. Interestingly, this is in conjunction with the
normalization theory (45) that proposes a pruning effect of AA drugs, which
could potentiate the delivery of the chemotherapy. However, this feature is not
explicitly included in the model (see (48,49) for modeling approaches of this
phenomenon). On the other hand, effect on the metastatic spreading and total
number of them is qualitatively more important when CT drug is administered
first, which is the opposite strategy than found for the primary tumor.

These results suggest that order of administration of two drugs in a CT-AA
combination setting could yield to different situations on the primary tumor and
on the metastases.

Scheduling optimization

Formulation of an optimization problem

As seen in the previous examples, the same drug or combination of drugs can
show different efficacy on primary tumor reduction and metastatic limitation. In
order to perform a rational theoretical study of these differences, we define now
an optimization problem for the metastases.

We focus here on the AA monotherapy situation and consider that a total amount
A hasto be used at a constant rate during some administration duration 7

followed by a rest period from 7 to an arbitrary end time T, i.e. A(t;7)= %15
, in the same way as (31). We are then looking at optimizing the treatment
duration 7 - that we will also refer to as the scheduling strategy - regarding to
various objectives. The two extreme strategies correspond to the clinical
situations of a Maximum Tolerated Dose (MTD) administration scheme, where
most of the drug is given at a strong dose during a short time, followed by a
recovery period until start of the next cycle, and the metronomic administration
scheme, where dose is spread out on the whole cycle, in a low-dose/large
duration fashion. See Figure 5 for illustration. We will theoretically compare these
two extreme scheduling strategies as well as all possible intermediate situations.

T

For the primary tumor dynamics, we use the Hahnfeldt model and define two
objectives subject to be minimized under the action of one drug in monotherapy,
or two drugs in combination. These two criteria are the size of the tumor at a

fixed end time T, denoted by ], that takes into account possible regrowth of the

tumor after cessation of the treatment, and the minimal size reached during the



simulation interval [0,T], denoted by ] .We denote by Vp(t;T) the primary

tumor volume at time t when therapy is administered with rate u. Mathematical
definitions of the two tumoral objectives are given by

](T)=Vp(T;T) and J (7)=minV (t;7)

te[0,T] P
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Figure 5: The two extreme strategies for duration of the treatment: MTD or metronomic. A. AA drug rate for the
two extreme values of ta. B. The two corresponding curves for primary tumor growth under AA treatment. The
ta=4 curve is used to illustrate the two objectives Jm and Jt used in the text for evaluation of treatment efficacy on
the primary tumor.

For a given treatment strategy 7, we define two additional objectives on the
metastases: the total number of metastases / and the total metastatic burden J, ,

by
J(1)= jQp(T,V,K,)dVdK, and ]M(r)szVp(T,V,K)dVdK

For the simulations we used the following values of the parameters:
A =300, a=0.084, b=5.85 d=0.00873, m=0.001, a=2/3

m
for consistency with (31). The initial conditions for the primary tumor and the
metastases were

V. =1015, K. =6142, V.=10°(Llcell), K =625
D 0,p 0 0

0

Simulations

Although the total amount of drug is kept constant, changing the administration
strategy has an important impact on all of the four objectives defined above. The
effect of varying the scheduling strategy on the growth of the primary tumor is
represented in Figure 6 where we observe different behaviors interpolating
between the two extreme cases shown in Figure 5.B. The MTD strategy shows a
sharp decrease of tumor size during the treatment period, but then a fast
regrowth. On the opposite, the metronomic strategy has a more stabilizing effect
that results in an overall end volume smaller than with the MTD strategy. It

appears clearly on Figure 6 that the best strategy for the objective J_ (tumor size

at the end) is then the metronomic strategy whereas the best strategy for



objective J (minimal reached size during [0,T]) is the MTD one. These results
are confirmed when plotting the objective values for different values of the
scheduling strategy 7 (see Figure 7.A). The result for J was observed not to
depend on parameter values neither initial conditions in a large range of
simulations, whereas the result for ]m did.

Results for the metastatic objectives are plotted in Figure 7.B. While the total
metastatic burden ], exhibits the same qualitative behavior as the end tumor

size ], the number of metastases | suggests a nontrivial optimal scheduling

administration 7 =6.5 days. This is a strategy different from the MTD or the
metronomic one. It confirms the previous results showing possible differences in
the optimal treatment of the primary tumor and the metastases. Indeed, it is now
numerically proven that the best strategy for minimizing metastatic emission is
different from the best strategy for reduction of the primary tumor volume.
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A model for low dose anti-angiogenic chemotherapy

So far the model that we used for tumor growth did not take development of
resistances to the treatment into account, although it is a major limitation in the
efficacy of chemotherapy, especially in the case of MTD schedules. The



genetically instable population of cancer cells rapidly evolves to form resistant
clones that are insensitive to cytotoxic treatment, allowing the tumor to escape
therapeutic control. However, when administered continuously at low dose,
cytotoxic agent are shown to have an anti-angiogenic action (18,50). For example
low dose Vinblastine has been shown (15) to induce more important reduced
proliferation of endothelial cells than for cancer cells. This switch in the target to
the more genetically stable endothelium was hence proposed to avoid the
development of resistances and provoke better long term anti-tumoral effect.

To test these hypotheses on the dynamical behavior of a tumor in interaction
with its surrounding vasculature, we integrated the resistance phenomenon in
the Hahnfeldt model as well as a pharmacokinetic (PK)/pharmacodynamics (PD)
model first intended for hematological toxicities (51). The main assumptions are:
a) the CT drug has an anti-angiogenic effect by Kkilling proliferative endothelial
cells, b) cancer cells develop resistances whereas endothelial cells don’t and c)
the killing action of the drug is stronger on the endothelial compartment than on
the tumoral one. The tumor growth rate is given by

K +
aVln(VJ—Cl(t)(V—me)

bV -dV*K-C,(t)K-K,, )

G(t,V,K)=

where €, and C, are the exposures of the CT drug respectively on the tumor

cells and on the endothelial cells and me and Kmm are minimal values of the

tumor volume and carrying capacity for the drug to be active. Exposures are
defined from the output C(t) of the PK/PD model, whose equations and
parameters can be found in (13) (the drug we consider here is Docetaxel, used in
the treatment of breast cancer). They take into account assumptions b) and c)
and their expressions are given by

C,(t)= ale”"ﬂ“”‘“C(t), C,(t)=0.,C(t).



with R being the resistance parameter (each cancer cell has a probability RC(t)
per unit of time of becoming resistant when exposed to an amount C(t) of drug)

and o,>a,.
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Figure 8: Simulations of a maximum tolerated dose (MTD) and a metronomic protocol for chemotherapy. A
Effect on tumor volume. B Effect on the carrying capacity. C Effect on the total number of metastases

We used the model to test in silico the dynamical differences of two temporal
administration schemes. The MTD protocol is composed of 21 days cycles with
administration of 100 mg of Docetaxel on day 0 (51). The metronomic protocol
gives 10 mg/day every day, without resting periods. Notice that the metronomic
schedule has a higher total dose over one cycle (210 mg versus 100 mg for the
MTD) but this is consistent with clinical practice, such as in (52). Simulations
comparing the effect of these two protocols are shown in Figure 8. During the
first cycles of the therapy, MTD scheduling exhibits a better tumor reduction
(Figure 8.A), being able to significantly reduce the size of the tumor.
Unfortunately, after the third cycle, regrowth of the tumor is observed, due to the
development of resistances. On the other hand, the metronomic protocol shows
very mixed results during the same period with even tumoral progression.
However, on the long term (after about 150 days), the metronomic schedule
shows its superiority, provoking a more pronounced and sustained tumor
decrease. The differences between the two situations can be understood by
looking at the dynamics of the carrying capacity in Figure 8.B (which represents



the vasculature in the model). Both schedules have an impact on the
endothelium however, in the MTD case, rapid regrowth of vascular support is
observed after cessation of the treatment, for each cycle. Indeed, presence of the
tumor stimulates this vascular recovery. In the metronomic situation, although
the vascular injury has a lower amplitude, the effect is more sustained and
induces a continuous decrease of the vascular support that eventually suffocates
the tumor. Moreover, this effect does not induce resistances and continues for
large times. Effect on the metastatic emission (Figure 8.C) is comparable for both
protocols, although the MTD schedule is qualitatively better, resulting in slightly
less total number of metastases than the metronomic.

These results support the hypothesis of a better effect of metronomic schedules
over MTD due to differences in the dynamical recovery of the vasculature.

Conclusion

A mathematical model for metastatic growth was developed that describes the
development of a population of metastases at the organism scale. Fundamental
aspects of a cancer disease are in the model: cellular proliferation, vascular
development and metastatic spreading, as well as three of the four major anti-
cancer therapeutic tools: surgery, chemotherapy and anti-angiogenic therapy
(but not radiotherapy). The model appears as a theoretical and numerical tool
describing global temporal development of a cancer disease and its control. It
gives an interesting framework for the study of scheduling strategies for
chemical treatments, in particular for the differences between treatment of an
isolated primary lesion and a generalized metastatic disease.
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