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the Treatment of Metastatic Cancers
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Center of Cancer Systems Biology, Steward Research & Specialty Projects
Corp., St Elizabeth’s Medical Center, Tufts University School of Medicine,
Boston, 02135, USA

Abstract

Although optimal control theory has been used for the theoretical study of anti-
cancerous drugs scheduling optimization, with the aim of reducing the primary
tumor volume, the effect on metastases is often ignored. Here, we use a
previously published model for metastatic development to define an optimal
control problem at the scale of the entire organism of the patient. In silico study
of the impact of different scheduling strategies for anti-angiogenic and cytotoxic
agents (either in monotherapy or in combination) is performed to compare a
low-dose, continuous, metronomic administration scheme with a more classical
maximum tolerated dose schedule. Simulation results reveal differences between
primary tumor reduction and control of metastases but overall suggest use of the
metronomic protocol.

Introduction

In cancer treatment, scheduling of anticancer agents can impact on the overall
outcome of the therapy, even with the same total amount of administered drug.
Indeed, changing the temporal administration protocol influences the dynamics
of the system, in a nonlinear fashion. In the last decade, clinical and preclinical
efforts were engaged to develop novel therapeutic approaches for scheduling of
cytotoxic (CT) agents as proved by the growing field of metronomic
chemotherapy (1,2,3,37) - the chronic administration of chemotherapy at
relatively low, minimally toxic doses on a frequent schedule of administration, at
close regular intervals, with no prolonged drug-free breaks. This approach
opposes to the classical way of administering CT, designed here by maximum
tolerated dose schedules (MTD), which gives the largest possible amount of drug
at the beginning of the cycle and then lets the patient recover from toxicities.
Experimental and clinical studies have been performed in order to determine the
best scheduling of CT agents (3-5), but there is still no clear answer about
optimal temporal administration protocols.

Besides of well-established cytotoxic molecules, anti-angiogenic (AA) agents are
currently under investigation. These therapies are designed to target the tumor
vasculature rather than the cancerous cells themselves, based on the discovery
in the 70's of the angiogenesis importance in a tumor’s development (6). [t was
then evidenced that tumor growth is strongly dependent on development of
vascular support, which a tumor is able to impulse by emission of stimulating
molecules such as Vascular Endothelial Growth Factor (VEGF) and balance with



endogenous inhibitory agents such as endostatin, angiostatin or
thrombospondin-1 (7,8). Targeting angiogenesis appeared then as a promising
idea but up to now only few molecules could obtain approval (bevacizumab, a
monoclonal antibody targeting VEGF and sunitinib, a tyrosine kinase inhibitor
binding on VEGF endothelial cells' receptors are two examples). Appearance of
these new drugs rises the question of their optimal scheduling and oncological
literature contains studies addressing this issue (9-11), but the question is still
open.

Mathematical modeling offers a relevant theoretical framework in which
studying these concerns. Cancer modeling has a long history in the 20th century
with most of the efforts being targeted towards modeling of tumor growth (see
(39) for a review). However, metastasis is the main cause of death in a cancer
disease (12).In 2000, Iwata et al. (13) introduced a mathematical model for the
development of the population of metastases, which was then further studied in
(14,15) in particular in the intent to incorporate effect of the chemotherapy. On
the other hand, Hahnfeldt et al. (8) developed a phenomenological model for
interactions between a tumor and its vasculature, allowing to account for anti-
angiogenic therapy. We coupled these two approaches in (16,17) and obtained a
global model of temporal progression of a cancer disease, written at the
organism scale and taking into account for the main processes of the pathology:
proliferation, angiogenesis and metastatic spreading. The model incorporates
effects of systemic AA and CT treatments and illustrations of its clinical relevance
were given in (18).

Based on mathematical models of cancer growth, optimal control theory has
been applied in numerous studies (see (38) for a review), starting with
administration of chemotherapy acting only on cancer cells (see for instance the
work of Swan (19,20)). Problems in this context arise from tumor heterogeneity
as the cancerous cells population comprises subpopulations with different drug
sensitivities, either due to their position in the cell cycle or to different degrees of
acquired resistance to the cytotoxic drug. A possible mathematical approach is to
use discrete compartments for different subpopulations, for instance quiescent
and proliferative or subpopulations having different sensitivities to the drug
(40), or both (48). Others use a continuous variable to describe progression
within the cell cycle (42,43), which allows to model action on transition rates
between phases. An optimal control problems integrating pharmacokinetics (PK)
and pharmacodynamics (PD) considerations for chemotherapy is analyzed in
(21). Toxicity on healthy cells is a major concern and often appears as a
constraint in the optimization problem. For example, the Model 1 project (23-
27) drove a clinical phase I study by a mathematical model focused on
hematotoxicity of the chemotherapies. The optimization schedule computed by
the model allowed densification of a standard protocol while dynamically
controlling the toxicities. Models developed in (41,42,43) also deal with
optimization problems focused on reduction of toxicity for healthy tissues.
Genuine use of different circadian synchronization between healthy and cancer
tissues is theoretically studied in (53) and an experimentally-validated PK/PD
model for optimization of a cytotoxic drug used for treatment of colorectal
cancer is designed in (54,55) to practically optimize circadian delivery of the



drug. For AA therapy, using the tumor growth model of Hahnfeldt et al. (8) and
its further refinements and analysis proposed in (47) optimal control problems
have also been widely investigated. Optimal schedules for AA treatments alone
perturbating tumor growth have been studied in (48) and more extensively by
Ledzewicz and Schattler in (28-31). Combination of radiotherapy and an AA
drug is studied in (32), using a simplification of the Hahnfeldt model.
Combination of CT and AA therapy has been considered in (33). However, as
expressed before, these models do not take into account the metastatic
development of a cancer disease.

In this paper, we formalize an optimal control problem for the metastases and
present numerical simulations of the effect of the scheduling strategy on the
cancer disease. They demonstrate the importance of scheduling for anticancer
agents and by comparing minimization objectives defined on the primary tumor
and on the metastases, we study the differences between primary tumor
reduction and control of the metastatic spreading. A brief mathematical analysis
of the theoretical optimal control problem is presented in the appendix.

Formulation of an optimal control problem for the metastases

Primary tumor
For primary and secondary tumor dynamics, we will assume that the growth law
is given by the Hahnfeldt (8) model, modified by the action of a therapy. We

denote by V  the volume (expressed in mm? for instance) of the primary tumor
and by K , Its carrying capacity (same unit as the volume, assumed to represent
the vasculature state of the tumor), grouped in a global variable

Xp (t)= (Vp (t),Kp (t)) for the primary tumor state. The treatment is denoted by

C(t
u(t):[ AE ; ] with C(t) and A(t) the dose rates of CT and AA drugs
t

respectively. Dynamics of the system are given by

X, =G(X ;u), G(X:u)=G(X)~B(X)u(t)

aVln 5
G(X)=G(V,K)= 14 ,
cV—dV**K—-AK

with B(X)e £(R?,R*) a matrix describing how does the treatment act on the

0 0

tumor. For example B(X) :( 0 ] for an AA drug alone. We assume in a first

eK
approximation that the input flows of the drugs are the same than the efficient
concentrations acting on the tumor, thus neglecting the role of pharmacokinetics
and pharmacodynamics. This could be dealt with by replacing u(t) by E(t,u(t))



with E being a (possibly nonlinear) function describing the effects on cancer of
the dose rates (C(t),A(t)) on the tumor and vascular compartments.

We will consider two objectives to be minimized for tumor growth : the tumor
size at a fixed end time T and the maximal tumor reduction during the time
interval [0,T]. We denote

J,@=V,(T) and J,()=minV, (t;u)

A minimization problem on the primary tumor (studied in (33) for a free end
time) then writes: find u € U, suchthat] (u)= mLi{n]m (u) with U , being the

space of admissible controls, integrating toxicity constraints (see below for its
expression). A similar problem is obtained by changing J into J_.

Metastases

Although the problem of best reduction of the primary tumor size is of great
relevance in clinical practice, the metastatic state cannot be neglected due to its
importance in a cancer disease and its implications in the possibility of relapse.
Two practical examples of clinical situations where optimization of scheduling is
relevant and metastases have to be taken into account could be the followings. In
metastatic breast cancer for instance, after primary tumor resection, the clinician
wants to control the number of metastases above a given size, for large time. He
wants to give a combined CT - AA treatment such that in the next years no visible
metastasis appears. In the context of metronomic CT that has the advantage to
induce weaker hematological toxicities and thus does not require intricate
modeling for this matter (as done in (23) for instance). The time horizon is then
of the order of one year and resistances developed by cancerous cells have to be
taken into account. Number of metastases and their sizes have to be kept under
control.

In a first attempt to theoretically study the involved dynamics and for
computational commodity as well as comparison with previous other theoretical
studies on the primary tumor, in particular (29), we will place ourselves in a
framework where the time span is thought as being a therapy cycle, thus of the
order of weeks.

We use the model developed in (16,17) for the metastatic development. It is
based on the combination of the model first introduced by (13) and the
Hahnfeldt model (8). Both of these mathematical descriptions were proven to be
able to describe biological data (clinical data of a patient with hepatocellular
carcinoma for the first one, Lewis lung carcinoma in mice for the second). The
overall philosophy is to think at the organism scale and to write a systemic
model for the development of the metastatic colonies. While (13) only
considered size structure and neglected angiogenesis, we take this process into
account by using as growth law for each tumor the two-dimensional model of
(8). The main variable of the model is the density of metastases p(t,X;u)

structured by the trait X =(V,K) with V being the tumor volume and K the

carrying capacity. A balance law leads to the following structured partial
differential equation (see (16) for more detailed modeling concerns):



3. p(t, Xu)+div(p(t, X;u)G(X;u)) =0 10,T[xQ
—c‘;(t,o;u).v(o)p(t,o;u)=N(a){ [ BUP(E Xou)dx + ﬂ(Xp(t;u))} 10,T[x9Q

0 p(0,X;u)= p*(X) Q

where
3/2
C o
Q= VO,(E} 'N(0)=5{6=(V0,K0]}'ﬁ(V»K)=mV

with 6 the Dirac measure, VO, K 0 the vasculature of a metastasis at birth and m

and o two parameters of metastatic emission. Mathematical analysis of the
problem (1) without therapy has been performed in (17). Theoretical analysis
with therapy as well as numerical analysis of an approximation scheme for the
simulation of (1) was performed in (16).

Toxicity is dealt by imposing constraints on u. We don't include a precise
description of hematological toxicities. Common toxicities (like renal ones for
instance) are taken into account by imposing, similarly as in (33) : a) maximal

local values for C(t) and A(t) denoted by ¢ and a__ respectively, which are
non-negative constants and b) maximal total amounts of drug delivered
(corresponding to the clinical Area Under the Curve (AUC)), €, for the CT and

A for the AA, again two non-negative constants. We consider thus the

following space of admissible controls:

oo 2 0 Cmax T Cmax
U ={ue(L(0,T))%; ) <u(t)< ) Vt and jou(t)dts )

max max

We will consider two objectives to be minimized for the metastases: the total
number of metastases and the total metastatic mass, at the end time. Their
expressions are given by

Jw= [ LTV Ku)dvdK — and -, (u)= ) JVo(T,V,K;u)dVdK
The optimal control problems that we will consider on metastatic dynamics are:
find u" e U_, such that Ju)= mlin J(u) and the equivalent with J instead of J.A

short mathematical analysis of this problem is presented in the appendix
containing proof of the existence of an optimal control and derivation of a first
order optimality system.

Numerical simulations of a simplified optimization problem.
Scheduling strategy. Metronomic versus MTD schedules

A natural biological question is to know if the solutions to the optimization
problems defined above differ between primary tumor and metastases?



The answer to this question is no, as illustrated by numerical simulations in this
section. Heuristically it makes sense since one can imagine a scenario having
different effects on the growth of each tumor and on the total number of
metastases at the end: if we let tumor growth being important during a large
time and give a large amount of drug at the end, the tumors can be largely
reduced whereas the total number of metastases is still high since during the
whole time where growth was important there was more metastases emission
and the final decrease of tumors sizes does not impact a lot on this already
important spread.

As suggested in (29), an easy-to-handle but nevertheless clinically relevant
situation is to look at optimality in a two-dimensional framework where the

problem is to administer total fixed amounts of agents (Cmax, A ) from time 0

max

_ C _ A
to times (tC, tA) at constant rates C :% and A=—"%  and then set the
Cc A

control to zero. This means that the set of admissible controls is

_ _ c A
— oo 2, —_ _ max max
U, = uel (0.1):C0)=C1,, (1), A= A1, (©) [—tc o J <(c, ,a_)

Notice that now the constraints on local maximal values become constraints on
minimal values for ¢ and ¢, that become the optimization variables. We will

refer to them as the scheduling strategies and write ](tC,tA ), ]T (tc,tA) and
J (t,..t,) instead of J(C,A), J.(C,A) and ] (C,A).Inthe monotherapy cases, we

won’t write the dependency on the other drug. The questions we consider are
the following.

[s the best anti-cancer efficacy achieved by the lowest values of t. and t,
(intense MTD protocol) or rather by the highest values of t. and t, (continuous
low dose metronomic protocol)? Is there a non-trivial optimum between these

two situations? Is there a difference in the optimal strategy for the four
considered objectives?

In (29), the situation of AA monotherapy (i.e.c =0 ) was investigated on the
primary tumor. Our aim here is to extend this approach by looking at the
behavior on the metastases and also combination of CT and AA therapy. The
values of the parameters that we use for the tumor growth are the same as (29)

and mostly come from (8) where they were fitted to growth curves of Lewis lung
carcinoma in mice

a=0.0084 day™, 1=0.02day™", c¢=5.85day’, d=0.00873day 'mm™
For the effect of the treatments we take

w@-vy) 0
s =" S(K — Vo)

For the metastatic emission parameters we use m = 0.001 mm2and oc=2/3.

), y=0.15day™t, ¢ =0.1day™?!

Concerning the initial conditions, we take the ones corresponding to the
simulation of the model after 40 days starting with an initial tumor of size

10°mm’® (= 1 cell) and carrying capacity 625 mm3 (value taken from (8)). This



gives for the primary tumor (VO,p'KO,p) =(1015,6142) and some non-zero initial

condition p° for metastases. The newly created metastases enter the system
with (VK )= (107°,625). We run the simulations during a total time T =10 days

and take A =300 (consistently with the order of the total doses administrated
in (8)) and € =30.For the maximal local values we arbitrarily take ¢ =7.5

and a_ =75 so that the minimal administration duration for both drugs will be

4 days. Although this number is not clinically relevant as chemotherapy in MTD
schedules could be administered all in one day (see for instance (34)), the actual
value is not of strong importance since we are interested in studying the effect of
condensed doses of agents versus protracted doses. All the results that we
present here are qualitatively the same if the minimal scheduling strategy is set

to 1 day. We will refer to the most condensed strategy (¢, or ¢, equal to 4) as the
Maximum Tolerated Dose (MTD) strategy and the most protracted (¢.or t,

equal to 10) as the metronomic strategy.

The numerical simulations were performed using an approximation scheme
developed in (16). It is a Lagrangian scheme based on a change of variable used
to straighten the characteristics.

In all the presented Figures, the scale is only valid for one objective (most of the
time J ) and the other curves have been rescaled to fit in the same plot.

AA monotherapy

We first investigate the case of AA monotherapy and so takec =0. Looking at
the two extreme situations on the tumor evolution of giving the whole dose
during a small time (¢, =4 ) or rather during a large time (¢, =10) (see Figure 1),

we already observe that the two strategies have a complete different result
concerning the tumor size at the end of the simulation, with a better effect of the
second one. This fact had already been observed in (35).

80 . . i ; 1800
70 | —1=4
| ====1=10 | 1600
60 E
-
o 0 € 1400}
® E
40
= g
> L
S 5 3 1200
>
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1000 f
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0 i , 800
0 2 4 6 8 10 0
Days Days
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Figure 1: Two extreme examples of delivery of the AA drug on the tumor evolution. A. Drug profile. B. Tumor size



In Figure 2 are plotted simulation results showing the four objectives J ,J ]

and ], over the therapeutic strategy ¢, .

The first observation is that all the objectives are non-constant. This shows that
changing the scheduling strategy of the drug has an impact on its efficacy :
different scheduling give different efficacies, for all the objectives.

Let us focus first on the two tumor objectives J and J . They have opposite

behaviors. Figure 2.A shows that what minimizes ] (black squares curve) is the
MTD strategy which gives the therapy in a strong dose/short time way. Then, as
t, becomes larger tumor reduction is worse, reaching eventually a plateau due
to the fact that the tumor was not reduced on[0,T], the minimal value on this

interval being then the initial one. In clinical practice, the physician is often
looking for the most immediate results on tumor reduction, as being tangible
elements of the response of the patient to the treatment. Moreover, having the
sharpest decrease of tumor mass is believed to minimize development of

1050 : : ; : : 1.86,

=4=J
—G—‘JM
1000+ 1.84} |
2 950 2182 ¢
k3] ks
] Koh
Q0 o)
O 900 O 18
850+ 1.78
}.
x
1.76
a0 5 6 7 8 9 10 4 5 6 7 8 9 10
1 1
A B

Figure 2: Anti-angiogenic monotherapy. A. Two criteria on the primary tumor : tumor size at the end Jr and minimal tumor size Jm
(scale only valid for Jm). B. Two criteria on metastases : total number of metastases J, the metastatic mass Jum (scale only valid for J).

resistances. These rationales lead to try to minimize objective J and this first

finding which shows that J is best minimized by the MTD strategy is in

accordance with the classical use of chemotherapeutic agents (although the
results shown here are for AA therapy, we obtain the same behavior when
simulating CT monotherapy, see below). However, this result is not robust when

varying the initial condition and for some values of V. andK_k , J isbest
0,p 0,p m

minimized by a scheduling strategy t; different from the MTD (see (29) for an

example). This is due to an intricate structure of the solution to the function-
valued optimal control problem, studied in (30) where it is shown to exhibit
singular portions for some values of initial conditions and parameters.



Objective ], the size of the tumor at time T represented by the red circles curve
in Figure 2.A, exhibits the complete opposite behavior. It is a decreasing function
of t, (except for the last point, which is an artefact coming from the endpoint of
the simulation being the same as t, in this last simulation). This suggests that

the best strategy for this objective would be the metronomic one which gives the
therapy in a low dose/large time way. Hence, according to the dynamics of the

primary tumor given by the Hahnfeldt model, minimizing J or ] yield to two

opposite scheduling strategies, MTD for J , metronomic for J, .

The metastatic objectives give also two different answers. First, the total number
of metastases ] (blue stars curve) suggests a different strategy than the tumor

objectives. It is a convex function of ¢, that has a non-trivial minimal value at

t; =6.5 days. This means that the best strategy in order to limit metastatic

spread would be neither the MTD nor the metronomic one, but some optimal
value of t, between the two extremes. This result underlines the importance of

taking into account for metastases in the clinic, as the best way to cure the
primary tumor differs from the best way to reduce the number of metastases.
However, the metastatic mass

J,, curve (purple crosses curve) is almost the same as the ] curve. This could
be surprising since we could expect the overall behavior of ], to result froma

mix between the one of ] and /.. To understand better what happens here, we

have to think about the metastatic mass as the product of the mean metastatic
size and the number of metastases, namely

jQVp(T,V,K;tA)dVdK
jg p(T,X;t )dX

Mean size V(t,)

2)/,(¢t,)= jQVp(T,V,K;tA)dVdK: : jﬂ p(T,X;t,)dX
o AT

Jt,)

Then the variations in J, due to changes in the scheduling are the product of

variations of the mean size V(tA) and J(t,). From studying the effects on the
primary tumor, we obtained (results not shown) that for the size at the end,
whatever the initial size is, the optimal strategy is always the metronomic one.
Hence the mean size V(tA) is also best reduced by this strategy. Let us now
expose an heuristic argument which explains why the mean size wins the
competition with the number of metastases in expression (2). On the interval
where | is decreasing, both functions V and ] are decreasing and the minimum
is reached at the right end of the interval, thus we can restrict ourselves to some
interval [7,10] where ] is increasing and V is decreasing (in Figure 2.B,7=7.5).

In first approximation of both functions being linear on this interval, simple
calculations show that the product of the two would be a concave function, hence



reaching its minimal value at one of the endpoints of the interval, i.e.
min J, (t,)= min(V(T)](T),V(lO)](lO)) . What determines then which endpoint
tA

has the smallest value is the relative ratios of increase for J and decrease for V
on the interval[7,10], and not their absolute value. Here this writes
J,(8) _ V(@) J@)
J,,(10) V(10) j(10)

and this explains why the minimum value is reached for ¢, =10 , because the

=1.1650%x0.9747=1.1355>1

relative reduction due to scheduling was more important for the mean size than
for the number of metastases. This argument is only valid when / and V are

linear on t, =10, which is not exactly the case in the Figure 2, but seems to be

valid as first approximation.

In the Table 1 are indicated the amplitude of variation rates of the four
objectives. They are defined as follows: for each value oft, , we compute the
relative difference between the value of the objective with strategy ¢, and the

value of the underlying quantity at the beginning of the simulation, before the
treatment. For instance, for ] the formulais

]m(tA)_I/O,p

0.p
The amplitudes indicated are then the minimal and maximal values of these

(3)I(t,)=

relative differences (min/(t,) and maxI(t,) ). This is a measure of how effective
3 t,

A

the treatment has been relatively to this objective and what is the difference
between the worst and best therapeutic strategy. For example the variation rates

for J show that the best tumor reduction was 19% with the MTD strategy and

no reduction with the metronomic one. Notice that, in the construction of the
model the number of metastases | will always be increasing, as metastases

don't go out of the system. However, the therapy impacts on how much it will
increase. Notice also that the values of these variation rates depend on the

parameters used for the simulations. For instance as seen in the Table 1 for J ,
for this value of the total administered dose A there was never reduction of
the tumor at the end time comparing to the start time. With a stronger A we

would obtain negative variation rates, but we used A =300 since we think

about the AA drug as a cytostatic drug, willing to stabilize the growth of the
tumor rather than reduce it, at least on small time scales. It is more interesting to

look at the amplitudes. For instance for J, we go from a 33% augmentation to a

154% augmentation between the best and worse strategies, emphasizing the
importance of the scheduling of the drug in the treatment.



Variation -0.19/0.00 0.10/0.70 1.32/1.38 0.33/1.54
rates

Table 1: Variation rates of the objectives

In conclusion, the metastatic mass index as well as ], suggest that the best

strategy for AA drug is to deliver it at low doses during a long time, consistently
with preclinical results obtained in (9,10,36) and other simulation study of AA

scheduling for the primary tumor in (35). Objective ] is best minimized by the
opposite, MTD strategy and the number of metastases J exhibits a nontrivial
minimum. The fact that the best strategy is the same for J, and for J andis

different from the best strategy for / means that what best reduces the

metastatic mass is a situation with a lot but small metastases, which is preferred
to the reverse situation with few but bigger metastases.

CT monotherapy

Scheduling

Results from simulations of cytotoxic monotherapy (a_=0) are represented in
max

Figure 3.

The tumor objectives J and J_ give both similar answers as in the AA
monotherapy case of Figure 2. However, the total number of metastases |
exhibits a different qualitative behavior than previously. While ¢, - J(t,) was a
non-monotonous convex curve for AA monotherapy, here ¢t J(¢,.) is an
increasing map. This fact was robust when varying the total amount of given

agentC . Hence, the best scheduling strategy for ] is different for AA

monotherapy (nontrivial optimal value t; ) than for CT monotherapy (MTD

350; 1 1.6
1.55¢ —*—Number of metastases J
300} 15 —+Metastatic mass J,,
5 250+ IS
5 5
S 200! e

150 /Z/‘ —g-Minimal tumor size J
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s e 7 8 9 10 4 5 6 7 8 9 10
' '
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Figure 3: Cytotoxic monotherapy. A. Two criteria on the primary tumor : tumor size at the end Jr and minimal tumor size Jm (scale on
valid for Jm). B. Two criteria on metastases : total number of metastases J, the metastatic mass Ju (scale only valid for J)



strategy). On the opposite, the metastatic mass objective behaves the same as for
AA monotherapy, it is best minimized with the metronomic strategy. The same
argument as above explains this fact, i.e. relative variation in the mean size is
more important than relative variation in the number of metastases.

Influence of the parameter m on the metastatic objectives

With the value of m chosen before and such a small end time, almost all the
metastases were emitted by the primary tumor, this amount being given by

0 [ B ©)de=m| v () dt
OIN G EINAGR?
Hence, reducing the number of metastases was equivalent to reducing this last

expression and we could think that this would always be the case: regarding to
scheduling optimization, the best strategy for J could always be the same as the

best strategy for the integral expression (4) and we wouldn't need to simulate
the whole model given by (1) to study the effect of scheduling on the number of
metastases. However, as shown in Figure 4, this is not the case anymore for large
values of m.

For these simulations, we did not consider any initial condition for the
metastases and took p0 =0.In Figure 4.A, we observe that the curves for J and

.[OT ﬂ(Vp (t))dt are almost identical and could conclude that the scheduling

T
reducing the best the metastases is the one reducing the best mjo Vp (t)*dt . But

for large values of m this is not the case anymore since the metastases curve has
a non extremal minimizer, as illustrated in the Figure 4.B, while of course the
integral expression has the same shape since it is linear inm.

Changing the value of m affected the shape of the curve for J, causing the

4\\
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Figure 4: Dependency on parameter m. For m=0.001, the curves for ] and the metastases emitted by the primary tumor are identica
m=0.001 B. m=100

optimal strategy to move to the right. But it did not affect the metastatic mass,
which could be surprising. Indeed, since metastatic mass results from a balance



between size and number of metastases, we could expect that increasing the
number of metastases by increasing the strength of the spreading (parameterm )

would influence the behavior of the metastatic mass J, towards the one of the

number of metastases /. We could then think that the optimal strategy for ],
would become closer to the optimal strategy for J . As shown in Figure 4, the
qualitative behavior of J, and optimal strategy remain the same (metronomic)

whatever m being small or large (and also for the intermediate values, not
shown here). Indeed, as heuristically explained above, the global outcome for the
metastatic mass depends on the balance between the reduction ratios of the
mean size V and the number of metastases J . In our simulations, when m
ranged from 0.001 to 100, these ratios ranged respectively from 0.38 to 0.53 and
0.68 to 0.89. Hence, the mean size always wins the competition. In clinical terms,
whatever would be the intrinsic metastatic aggressiveness of a patient's
pathology, the strategy reducing the best the metastatic mass is the metronomic
one.

The change in the optimal strategy for the objective /| when varying m seems to

be specific to the CT monotherapy case and to the parameter m. We performed
the same simulations in the AA monotherapy case and did not observe significant

qualitative change in J, nor in J, . Similarly, we did not obtain qualitative changes

when varying the parameter ¢, neither in the AA nor CT monotherapy case.
CT-AA combination
We turn now our interest on combination of an AA and a CT drug. The

optimization problem is two-dimensional and the four objectives are now
represented by surfaces shown in Figure 5.
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Figure 5: Combination of a CT and an AA drug

The optimal minimizer (t_,t,) as well as the optimal values for the various

objectives are given in the Table 2 and variation rates (see formula (3)) can be
found in the Table 3.

\ Objective Jm Jr Jr Jm
(t:,,t;) (9.50,9.50) (4.00,4.00) (4.00,6.50) (9.50,9.50)
Optimal 63.09 42.27 1.03 0.07
value

Table 2: Combination therapy. Minimizer (t*c, t'a) and optimal values

Objective Jm
Variation -0.96/-0.87 -0.94/-0.86 0.34/0.60 -0.93/-0.83
rates

Table 3: Variation rates for combination CT/AA

We observe again that depending on the objective, different strategies appear as
optimal: metronomic for both drugs for the metastatic mass J,, and the size at

the end ]T, MTD for both drugs for the minimal size ]m, MTD for the CT and



t; =6.5 days for the number of metastases J . For all the objectives, the optimal

strategy for both the CT and the AA is the same as in the monotherapy cases. This
could suggest that there is no interplay between the actions of the two drugs,
since adding another drug had no effect on the overall global strategy.

However, looking more precisely at what happens shows variability in the
optimal solutions, as can already be seen on the J surface of Figure 5. While |
has the shape of a surface representing the product of two functions
J(¢t..t,)=f(t.)g(t,), itis not the case for J . To investigate this fact closer, we

studied the following situation: we fixed the way of administering one drug, for
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Figure 6: Projections of the surface in the Figure 5 on the extremal planes

example imposed by the clinician, and looked at the effect on the optimal
strategy for the other drug. This corresponds to look at projections of the

surfaces from Figure 5 on the planes ¢, = constant or ¢, = constant. The

extremal cases are shown in Figure 6.

In Figures 6.A and B, we fix the way of giving the CT drug and observe then what
is the best strategy for the AA agent. The qualitative shape of objectives J, J and



J,, are almost identical in the two opposite cases for ¢. and the same as Figure 2,

although optimal value for ] slightly moved to the right. Hence, adjunction of the

chemotherapy did not change much the effects of the AA drug on these
objectives, and varying the CT strategy does not impact. On the opposite,

objective ] drastically changes, going from an increasing function to a

decreasing one (notice that the curves for ] and J are identical in Figure 6.B,

indicating that the minimal size on [0,T] is reached at the end time). With a MTD

CT, it recommends MTD AA whereas with metronomic CT preference is given to
metronomic AA.

Surprisingly, things are different when we fix the AA strategy and look at the
impact on the CT one (Figures 6.C and D). While ] and ], suggested the

metronomic strategy in the CT monotherapy case, they recommend now the
opposite one. When the AA strategy is changed from MTD to metronomic, then

J, and ], are again minimized by the metronomic strategy.

To illustrate further these concerns, we plot in Figure 7 the optimal AA strategy
t; as a function of the CT strategy t,. and conversely, that is, graphs of the maps

t. argtmin W(¢,,t.) ontheleftand ¢, — argtmin‘P(tA,tC) on the right, for

A (4

¥=J,] 0],

We observe an absence of symmetry between the two plots. This indicates that
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Figure 7: Dependency of the optimal strategy for one drug on the strategy for the other one. A. Optimal AA strategy versus CT strategy.
B. Optimal CT strategy versus AA strategy



in the model AA and CT therapies have different dynamical effects, since varying
the scheduling strategy does not impact the same. Focusing on the left curves,

while J, J and ] 's optimal AA strategies are not affected by varying the CT

scheduling, the ] curve is almost the identity line. This interesting fact suggests

that both drugs should be “synchronised" in the sense that they should be given
in the same way, with the same scheduling strategy. On the right plot, we also

observe this synchronisation effect, but now for objectives J, and ], .

Conclusion and discussion

The problem of optimizing the scheduling of the drugs in an anti-cancer therapy
is of fundamental importance in the clinic. While reduction of the primary tumor
size is often the first main target of therapy, number and size of the metastases
have to be taken into account, especially in an adjuvant setting (after surgery).
Using our previously developed phenomenological model for development of the
metastatic population, we have defined an optimal control problem for the
metastases. We then numerically studied the problem in a simplified case which
is two-dimensional, but still clinically relevant and allowing to compare
scheduling strategies ranging from condensed MTD to spread out metronomics
temporal administration protocols.

We compared two objectives on the primary tumor size, the size of the tumor at
the end of the simulation J and the minimal size reached during the simulation

time interval ]m, and two objectives on the metastases, their total number J and

the metastatic mass J, , in the AA and CT monotherapy cases, as well as in

combination. We obtained differences of the qualitative behavior of the
objectives, with three possibilities : increasing function, suggesting the MTD
strategy, decreasing function, suggesting the metronomic strategy or non-
monotonous convex function with nontrivial value of the optimal strategy. In the

monotherapy cases, the objective ]/ was never found to correlate with J norj ,

thus emphasizing the relevance of adding a metastatic component in the optimal
control problem of the drugs scheduling, since it says that the optimal strategy
for reducing metastatic spreading is different from the primary tumor ones.
Since all the objectives have different (and sometimes even opposite) behaviors,
the natural question that arises is: which one has to be chosen? Maybe some
suitable weighting of the objectives could be used. Another way of integrating

both tumor size and number of metastases is to consider the metastatic mass J,, .

For most of the cases, this objective has the same minimizer than ]T which was

heuristically explained because the relative reduction in the tumor size at the
end between the worst and best scheduling strategy was higher than reduction
of the number of metastases. For both the AA and the CT drug, it suggests
delivering the drug at low rate for a large time. This finding corroborates with
the metronomic approach for CT drugs that proved to give interesting results, in



preclinical (37) and clinical (3-5) settings. This result was robust when varying
the parameter m of intrinsic metastatic aggressiveness of the patient's disease
and suggests that regarding to the total metastatic burden, the optimal
scheduling strategy leads to a situation with a lot but small metastases, which is
preferred to a situation with fewer but bigger metastases.

In the combined therapy case, the qualitative behaviors of the objectives were all
different again. Looking at the situation where the scheduling strategy is fixed for
one drug and decision has to be made for the other drug, we observed an
interesting synchronization effect suggesting that the best strategy for the
second agent is the same as the fixed strategy used for the first one. This

happened only for objective J when fixing the CT strategy and for objectives J

and /. when fixing the AA strategy.

Overall, our results underline the importance of scheduling of anticancer agents
and the necessity to take into account for the metastatic process in the design of
treatment protocols. The objective to be optimized by the therapy should be
precisely defined. In particular, there are differences in the optimal scheduling
strategy between primary tumor objectives and metastatic ones. However, our
results suggest superiority of the metronomic schedule on the classical MTD
since it was observed in simulations to perform better for reduction of end
tumor size and metastatic burden. These could be considered as desired
objectives when thinking of long-term control of the cancer disease and not total
eradication of all tumors.

Although the two-dimensional situation numerically studied here is already rich
and complex, the numerical resolution of the complete infinite-dimensional
optimal control problem on the number of metastases should also be addressed.
The optimal control problem on the metastases is not linear but rather bilinear
in (u,p). Resolution of such an optimization problem is not standard. Without

resolving the complete optimal control problem, we could also investigate
slightly more elaborated situations yet still simple and suboptimal, for example
by dividing the time interval in two or more and applying what we did on the
whole interval to each sub interval.

On the modeling part, the optimal control problem that we defined is not
completely clinically relevant since the metastatic problem typically arises on
larger time scales, for example in determining the best way to avoid relapse after
surgery. Since it is not numerically neither clinically tractable to
compute/administrate a continuous control on a very large time interval, we
could impose some periodic structure that remains to be specified. If we still
focus on optimizing metastatic emission and growth on the time scale of a
therapy cycle (for example, 21 days), then we should integrate more complex
modeling of hematotoxicities of the chemotherapy, as done in the MODEL I
project (23,24). For larger time frames, drug resistance should also been taken
into account. Substantial literature exists about mathematical modeling of
resistance to chemotherapy due to genetic mutations, ranging from stochastic
models dealing with maximization of the probabilities of no development any



resistant phenotype and cure (see for instance the seminal work of Goldie and
Coldman (49)) to differential equations-based models using compartments
(40,22,48,52). Cellular efflux mechanisms inducing drug resistance could also be
considered, as done in (56). Most of existing models are focused on cytotoxic
agents, known to induce resistance in the genetically unstable cancerous cells
population. Anti-angiogenic therapy was thought to be exempted of resistances
because it is directed against the more genetically stable endothelial cells and
was even called a therapy resistant to resistance (50). However, more recent
findings suggest otherwise (51) and call for a different philosophy in the
modeling of AA therapy drug resistance.

Interactions between AA and CT therapy could also be more precisely dealt with,
for instance by considering a weighted sum of tumor volume and carrying
capacity in the tumor objective as done in (48). Moreover non-trivial biological
interactions between the two types of drug could be taken into account. Indeed,
drug delivery is dependent on vascular supply that is negatively affected by the
AA therapy. On the other hand it has been proposed a normalization effect (44)
of AA drugs that would result in vasculature pruning, improving the poor quality
of neo-angiogenic tumor blood vessels and thus delivery of the molecular agents.
Mathematical models that address these concerns have been proposed (45,46)
and could be used to refine the modeling.
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