K. Derakhchan, D. Li, M. Courtemanche, B. Smith, P. L. Brouillette et al., Method for Simultaneous Epicardial and Endocardial Mapping of In Vivo Canine Heart: Application to Atrial Conduction Properties and Arrhythmia Mechanisms, Journal of Cardiovascular Electrophysiology, vol.12, issue.5, pp.548-555, 2001.
DOI : 10.1046/j.1540-8167.2001.00548.x

J. Eckstein, B. Maesen, D. Linz, S. Zeemering, A. Van-hunnik et al., Time course and mechanisms of endo-epicardial electrical dissociation during atrial fibrillation in the goat, Cardiovascular Research, vol.89, issue.4, pp.816-824, 2011.
DOI : 10.1093/cvr/cvq336

P. Ruchat, L. Dang, N. Virag, J. Schlaepfer, L. K. Segesser et al., A biophysical model of atrial fibrillation to define the appropriate ablation pattern in modified maze, European Journal of Cardio-Thoracic Surgery, vol.31, issue.1, pp.65-69, 2007.
DOI : 10.1016/j.ejcts.2006.10.015

G. Seemann, C. Hper, F. B. Sachse, O. Dssel, A. V. Holden et al., Heterogeneous three-dimensional anatomical and electrophysiological model of human atria, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.66, issue.3, pp.1465-14811781, 2006.
DOI : 10.1016/j.cardiores.2005.01.020

D. Harrild and C. Henriquez, A computer model of normal conduction in the human atria, Circ Res, vol.87, issue.7, pp.25-36, 2000.

O. V. Aslanidi, M. A. Colman, J. Stott, H. Dobrzynski, M. R. Boyett et al., 3D virtual human atria: A computational platform for studying clinical atrial fibrillation, Progress in Biophysics and Molecular Biology, vol.107, issue.1, pp.156-168, 2011.
DOI : 10.1016/j.pbiomolbio.2011.06.011

M. Ridler, M. Lee, D. Mcqueen, C. Peskin, and E. Vigmond, Arrhythmogenic Consequences of Action Potential Duration Gradients in the Atria, Canadian Journal of Cardiology, vol.27, issue.1, pp.112-119, 2011.
DOI : 10.1016/j.cjca.2010.12.002

T. Saito, K. Waki, and A. E. Becker, Left Atrial Myocardial Extension onto Pulmonary Veins in Humans:., Journal of Cardiovascular Electrophysiology, vol.94, issue.8, pp.888-894, 2000.
DOI : 10.1002/jemt.1070300607

S. Labarthe, Y. Coudì-ere, J. Henry, and H. Cochet, A semi-automatic method to construct atrial fibre structures: a tool for atrial simulations, CinC 2012 -Computing in cardiology, pp.881-885, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00759191

S. Y. Ho, R. H. Anderson, and D. Sánchez-quintana, Atrial structure and fibres: morphologic bases of atrial conduction, Cardiovascular Research, vol.54, issue.2, pp.325-336, 2002.
DOI : 10.1016/S0008-6363(02)00226-2

. Efimov, Structural and functional evidence for discrete exit pathways that connect the canine sinoatrial node and atria, Circ Res, vol.104108, issue.7, pp.915-923, 2009.

M. Courtemanche, R. J. Ramirez, and S. Nattel, Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model, Am J Physiol, vol.275, issue.1, pp.301-321, 1998.

E. J. Vigmond, M. Hughes, G. Plank, and L. J. Leon, Computational tools for modeling electrical activity in cardiac tissue, Journal of Electrocardiology, vol.36, pp.69-74, 2003.
DOI : 10.1016/j.jelectrocard.2003.09.017

A. Gharaviri, S. Verheule, J. Eckstein, M. Potse, N. H. Kuijpers et al., A computer model of endo-epicardial electrical dissociation and transmural conduction during atrial fibrillation, Europace, vol.14, issue.suppl 5, pp.10-16, 2012.
DOI : 10.1093/europace/eus270